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4.3 The OMG Object Management Architecture (OMA) ----
The major components of the OMG's Object Management Architecture are shown in Fig. 
1. 

Application 
Objects 

Object Request Broker 

Object 
Senices 

Common 
Facilities 

Figure 1. Object Management Architecture 

4.3.1 Object Request Broker (ORB) 

The Object Request Broker (ORB) provides the binding between requests and their tar­
get objects and methods. It performs data reformatting where necessary, name services to 
allow the target object to be located, selection of an appropriate method, de1ive:ty of the 
parameters of the request, activation of the target object, and synchronization mecha­
nisms. 

4.3.2 Object Services 

Object Services specify basic behaviots that objects can inherit as bailding blocks for ex­
tended or augmented functionality. For example. Object Services can specay interfaces 
for transaction management, persistence object management, versioning of resomces and 
query management. 
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4.3.3 Common Facilities 

Common Facilities comprise objects and interfaces that are useful across many problem 
domains. Examples include error reporting, help facility, printing and spooling and reus­
able user interfaces. 

4.3.4 .i\.pplication Objects 

Application Objects are the application or domain-specific objects that comprise the 
111ain conceptual framework for an application. These build upon the common facilities 
and object services to create complete applications. 

4.4 An OMG Compatible PASS Architectural Model 

A view of the components of the PASS project in tenns of the OMG Object Architectural 
Model is shown in Fig. 2. 

Application 
Objects 

Persistence 

Services 

Object Request Broker 

Services 

Common 
Facilities 

Statistics 

Figure 2. PASS Management Architecture 

Major new components are: 
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Primary Data Store Secondary Data Store 

t t 
Object Persistence Provider 

Figure 3. Process Model 

User 

4.S.1 Object Persistence ProTider (OPP} 

The Object Persistence Provider (OPP) provides persistence services to objects, and cach­
ing and migration services to the other components within the model. It interacts with the 
hierarchical data stores. The OPP is mainly an implementation of object persistence me· 
thonds and is described in more detail in Chapter 3. 

't 
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· . . = .. 

Application 

Query Services Computation 

Adaptor Services 
Adaptor 

Query Services Computation 
Services 

Broker Broker 

Object Request Broker 

Query Engines Computation Engines 

· Figure 4. Communication Model 

4.6.1 Query Services Adapter (QSA) 

The Query Services Adapter (QSA) forms the inteiface between the application adn the 
Query Services Provider from Fig. 3 .. 

4.6.2 Query Services Broker (QSB) 

The Query Services Broker (QSB) performs the following functions: 

• It distributes queries across the multiple Query Engines. 

• It combines the partial results from each Query Engine to form the final query re· 
suits. 

• It interacts with the Computation Services Broker to perform resouce allocation 
and optimization. 

4.6.3 Query Engine (QE) 

A Query Engine performs a query on an input collection. It can make requests to the 
Computation Services Provider for access to derived data as well as accessing persistent 
information. 

;- . 
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4.6.4 Computation Services Adapter (CSA) 

The Computation Services Adapter (CSA) forms the interface between the application 
code and the Query Services Provider from Fig 3. 

4.6.5 Computation Services Broker 

The Computation Services Broker (CSB) acts as the agent that performs the following 
functions. 

• It interacts with the Computation Services Broker to perform resource allocation 
and optimisation. 

4.6.6 Computation Engines (CE) 

A Computation Engine is an object that has been registered within the PASS environ­
ment and has a well-defined transformation function on input persistent data. The result 
of the transformation is derived data in the form of transient objects. Within the HEP ap­
plication domain, one class of CE might perform track reconstruction. another might per­
form vertex finding etc. Multiple instances of each type of Computation Engine may 
exist within the system, their allocation being managed by the Computation Services Bro­
ker in conjunction with the Query Services Broker. 

' . lJ 
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1 Introduction 

1.1 Introduction 

PASS (Petabyte Access and Storage Solutions) is an R&D project aimed at solving the 
data storage and access problem for the new generation of data-intensive scientific pro­
grams. Target projects include high energy hadron colliders such as the Superconducting 
Super Collider (SSC) in Texas and the Large Hadron Collider (LHC) at CERN, Switzer­
land, experiments at heavy ion colliders such as RIIlC, the Earth Observing Satellite sys­
tem, Human Genome database, and Global climate simulations. 

This document contains three major sections that detail the requirements for the system, 
an abstract reference model that identifies components and mechanisms within the sys­
tem and finally some implementation models that address some of the policy issues omit­
ted from the reference model and address specific projects. The models identified here 
are not optimized and should be viewed as working drafts which will be refined as our 
understanding of the nature of the problem and applicable solutions is refined. They are 
presented as models in which some care has been given to the value of parameters and 
major architectural questions so that the various components will to first order work to­
gether. The models are intended to form the basis for further work by (a) making choices 
that can be tested by specific scenarios for their use and (b) ideas for elaboration or better 
ways of accomplishing various aspects can be examined in the context of "working" mod­
els where all aspects can be taken into account. 



2 Requirements 

2.1 Operational Requirements 

The requirements are taken from a specific scientific problem (analysis of data from a 
major SSC experiment) but are expected to be appropriate for other problem domains. 

2.1.1 Input Data Rate & Size 

High Energy Physics (HEP) experimental data are mainly organized as a sequence of 
events, each event containing the information from the many individual detector chan­
nels for a single trigger of the detector. These raw data, and additional derived data pro­
duced by further processing, are highly hierarchical in structure. Each detector 
subsystem (tracking, calorimetry etc.) produces its own variety of data, which in turn is 
divided up into data from the components of the subsystem (e.g. inner, central and inter­
mediate angle tracking). As. analysis is performed, these subsystem data are refined and 
organized (e.g. collections of tracking system space coordinates recognized as belonging 
to a 3-D track) and additional connections are created between data from different sub­
systems. For example, a track in the tracking subsystem might be correlated with a clus­
ter of energy in the calorimeter subsystem. 

Each raw event may contain 0.3 to 2 MB of compressed data, having an average size of 
I MB. The event rate, which is determined by the underlying physics processes and the 
hardware trigger systems, may typically be 10-lOOHz, leading to a primary data storage 
requirement of 10-lOOMB/sec. The role of the online system is to record this information 
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in real time onto permanent storage media. Traditionally this has been magnetic tape, but 
the aim of this project is to evaluate alternatives to this, in particular the feasibility of us­
ing a distributed hierarchical mass storage system in which magnetic tape may play a 
role, but which might use a variety of storage technologies. 

Each event is essentially independent, the exception being that detector-specific quanti­
ties may apply to sequences of events, typically referred to as a data taking run. These 
calibration quantities are used to convert the electrical information from the detector into 
physically meaningful quantities such as the location and energy of charged particles. 
The goal is to make these calibrations prior to taking the data, but some of them are de­
rived from the data themselves, requiring an iterative analysis model. Thus the initial 
analysis might make some assumptions that prove to be incorrect and may need to be re­
peated with some systematic corrections derived from the analysis itself. 

2.1.2 The Role of Offiine Computing 

The role of the offline computing system is the following: 

(a) Refine the trigger decisions to eliminate events that correspond to uninteresting 
physics processes, but which the online trigger systems did not detect due to the 
harsh time constraints under which they operate. 

(b) Reconstruct the event to recover the momenta, energies and types of the particles 
produced. Depending on the physics process, many lOOs of particles may be pro­
duced for each event, each having different trajectories and properties. The recon­
struction process adds information to each event, but might not be fully applied to 
every event, depending on the exact sequence with which this process is combined 
with (a) above. This phase typically results in a doubling of the overall event siz.e. 

(c) Categorize events according to the underlying physics processes. These processes 
may represent both conventional physics, where the results may provide normaliza­
tions, or new physics, reflecting new processes occurring at the high collision ener­
gies provided by these accelerators. A typical experiment may identify 20-50 such 
categories. An event may be assigned to multiple categories. 

(d) Allow a large body of physicists (-1000) to perform repetitive analyses on the re­
sulting events, combining the data from selected event samples into summary plots 
which may be used to apply filter cuts to further refine the event sample. 

(e) Repeat reconstruction on selected events, perhaps with a new set of constraints be­
ing applied (e.g. secondary vertices) as a result of further understanding achieved 
from (d) above. Another reason for redoing event reconstruction may be systematic 
errors caused by the detector systems themselves. Only by analysing a large sam­
ple of events may such systematic effects be identified and then rectified by re-anal­
ysis. 

The physicists who wish to examine these data are geographically dispersed, the experi­
ments being organized as international collaborations of physicists from many (-100) dif-

• 
J. 'i 
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ferent institutions throughout the world. Each physicist will tend to focus on a few 
categories of events, but the group of physicists focussing on a particular category may it­
self be geographically dispersed. 

The nature of the computing changes as events progress down this analysis chain. The 
initial stages, particularly (b) above, are computationally intense and must be performed 
in a well-controlled environment in order to minimize redundant processing. The later 
stages require fast, immediate access to the specialized data sets. Analysis will be per­
formed repeatedly, involving the computation of derived information, but much of the 
process will be filtering of events on the basis of existing information and collection of 
histograms or other visualization tools that provide quantitive or qualitative insight into 
patterns in the data and hence the underlying physics processes. Hence the focus must be 
on rapid tum-around which in tum implies the use of parallel processing techniques. To 
the extent possible, the data access and analysis system should permit the physicist to use 
time to consider the implications of the data and to devise strategies for further analysis, 
rather than spending much of the time waiting for the previous analysis step to be com­
pleted. 

Analysis of data that has already been collected into refined data sets of up to 1 TB 
should have as a goal a completion time of under one hour. During that time, partial re­
sults should be made available to the physicist for display or statistical analysis. The 
study of such partial results may often allow the physicist to understand what is needed 
for the next step before the current analysis is completed. In that case it may be desirable 
to be able to terminate the initial analysis before completion. 

The above discussion places both bandwidth and processing requirements on the analysis 
system and must be considered in the context of the large, geographically dispersed user 
community. 

2.1.3 Traditional Processing 

The traditional approach is for the online system to write the raw event data onto magnet­
ic tape or similar storage media. An offline production system, typically centrally locat­
ed, performs sequential processing of the events in a series of passes over the data. Each 
pass corresponds to one of the items identified above. Thus Pass 1 might perform a pre­
liminary event reconstruction; Pass 2 might filter events and split them into output 
streams corresponding to the event categories; and Pass 3 might fully reconstruct events, 
etc. Initially information will be added to each event, corresponding to the reconstructed 
quantities, but then a process of refinement takes place, where both the number of events 
is decreased through the use of filters appropriate for each category, and also the amount 
of information for each event is reduced, keeping only the minimal information by which 
the underlying physics processes can be examined. This refinement is typically hierarchi­
cal, resulting in the production of Data Summary Tapes (DSTs), of which there might be 
several (DST, miniDST, microDST, nanoDST, etc.) corresponding to the degree of data 
compression that each has undergone. 

. ' 
J_., 
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Following the production stage, the physicists perform their interactive analyses on the 
event samples contained in the DST sample appropriate for their category of events. If 
these analyses indicate that events need to be reconstructed again, the events must be lo­
cated in the bulk production system and re-analysed since the required information has 
typically been dropped in producing the summary DSTs. 

These traditional systems may be categorized as hierarchical refinement involving multi­
ple sequential scans over the data. 

2.1.4 A Database Approach 

An alternative scenario assumes that all the events being generated by the online data col­
lection system are stored directly onto a database of some sort. Subsequent processing 
and analysis is performed by accessing the event data from this database. As each event 
is processed, more information is added to it, reflecting the additional understanding of 
its properties and the underlying physics processes. Event samples would be made by 
grouping classified events into database collection objects. 

Note that the above discussion is not meant to imply that all the data for an event should 
be located close together. Depending on the particular analysis, a subset of the data from 
many different events might be more optimally clustered together and the optimal organi­
zation might well depend on the history of the access patterns. 

The different phases of offiine reconstruction and analysis, together with the geographi­
cal dispersion of the physicists and their interest in different categories of events, lead to 
that requirement that the system support hierarchical datastores. One possible scenario 
for the organization of these datastores is: 

• Collaboration DataStore. This is the master datastore into which the online sys­
tem writes the raw data. 

• Regional DataStores. These duplicate some of the data in the Collaboration 
DataStore and contain collections of events and derived data that have been select­
ed for further study. There might be -10 such Regional stores. 

• Working Group DataStores. These consist partly of collections of events that 
have been cached from the Regional DataStore to local clusters for greater efficien­
cy, and partly of data that have been migrated from Individual DataStores in order 
that they be accessible to a wider audience. There might be -100 such Working 
Group stores, corresponding to each Institute within the collaboration. 

• Individual DataStores. These consist mainly of the collections resulting from 
querying a Working Group or Regional DataStore. There might be -1000 such In­
dividual stores, corresponding to the individual end users. 

This database approach can be compared to a hierarchy of cache memories, with data be­
ing cached or migrated on the basis of the access patterns. 

. ' 
J. \' 



§2.2 Technical Requirements Requirements 11 

2.2 Technical Requirements 

Bandwidth. 

Since the duty factor for the experiments is high (they expect to run continually for 
significant portions of the calendar year), data must be loaded into the Collaboration 
DataStore at a rate approximately equal to that at which it is being recorded by the 
online system. This implies a bandwidth of 10-lOOMBytes/sec. 

Concurrency. 

Because of the high duty factor, access to the data in the Collaboration DataStore 
must take place concurrently with loading of this Store. This implies that loading of 
the DataStore must be implemented in such a manner that transaction collisions are 
minimized. 

Since the hierarchical datastores may be accessed by many clients simultaneously, 
some requiring only read access, but others requiring write access to the datastores, 
the database system must support true transaction processing to prevent simultaneous 
modification of the same data. Note that only in rare cases will actual modification to 
existing data occur, the more normal situation being that a new version of some data 
needs to be created. 

Checkpointing. 

Many of the transactions, particularly in the reconstruction phase, are very time-con­
suming. The availability of checkpointing and transaction roll-backs is essential to 
ensure correct data integrity and to minimize wasted processing cycles. 

Uniformity. 

There should be uniform access to all data, regardless of whether they reside in the 
primary Collaboration DataStore, an intermediate datastore or locally on the physi­
cist's desktop. 

Scalability. 

The same software technology, combined with the appropriate hardware, should sup­
port databases ranging from the complete event sample, to small samples of events 
that an individual physicist might wish to use for a simple analysis. 

Clustering 

A particular physics analysis may indicate that logically diverse data objects are com­
monly accessed as a group. The database should support clustering of such objects 
together in order to improve performance. 

Extensibility. 

. ') 

J. I 
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During the course of processing, additional information may be added to an event 
The database must support a data model allowing such extensions to be made. 

Data versioning. 

Throughout the lifetime of an event, several different reconstructions may be attempt­
ed, corresponding to different calibrations or constraints. The data model should sup­
port such data versioning. Another possible role for data versioning is to support the 
creation of smaller, workgroup databases containing a replication of a subset of the 
original data that is hence more optimally available, perhaps at a secondary comput­
ing center, for access by a small group of users. This concept can be extended to the 
individual physicists and their desktop workstations. 

Schema versioning. 

It is highly desirable that some sort of schema versioning be supported by the data­
base since it is possible that changes in the data model will be made throughout the 
lifetime of an experiment. Given the enormous quantity of data, it is essential that the 
database support incremental versioning where an object is updated as it is accessed 
rather than requiring bulk updating. Updating should be static in that each object 
should only require updating once, subsequent accesses returning the updated object 

Access Control. 

The database must support access control whereby the ability to make modifications 
may be limited to those people having the appropriate authorizations. Furthermore, 
since the database is foreseen as being hierarchical, with data migrating closer to the 
end user depending on the access patterns, such access control must also be hierar­
chical, allowing different authorizations at each level of the hierarchy. 

Sample libraries. 

The database should support creating persistent objects corresponding to collections 
of the physics data of interest. These would then allow for queries to be made on stan­
dardized data samples. 

Query Language. 

Many queries are characterized by significant processing being performed in code 
written by the application physicist in the language of their choice (typically Fortran). 
Thus the database must support a query language allowing callout to external rou­
tines. 

~ . 
J. () 
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3.1 Introduction 

3.1.1 
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We describe a reference model for working with a distributed persistent store of complex 
objects and an interface between the store and a hierarchical storage system. 

Basic Concepts 

The model described here for distributed object computing uses just three primary con­
cepts: 

Obje~ts. The data is assumed to be organized into objects. 

:__ Proce;sliS?Computation consists of communicating processes which act upon objects. 
-------------- . - -

Networks. Data and processes are distributed among nodes in a network, with two 
nodes being able to exchange objects in case there is a path connecting them. 

In addition, the following three concepts, which are defined in terms of the basic con­
cepts, are also important: 

Persistent Objects. Objects may be persistent, which means that they may be accessed 
independently of the process which created them. Otherwise, objects are called tran­
sient 

Brokers. Processes may make request of other processes, called brokers, to take certain 
actions on objects. Requests to brokers are transported across the network in a transpar-

l ;J 
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ent fashion. 

Folios. For efficiency, objects and collections are collected into physical units called fo­
lios, which the system manages. Components of the system respond to distributed re­
quests for objects, folios, and pieces of folios called segments. 

Each of these concepts is described in more detail in the sections below. 

3.2 Data model 

3.2.1 Overview 

We begin with an overview of the data model. We assume that the items of interest are 
objects; that objects are collected into one or more collections; and that stores consist of 
objects and collections. 

Queries accept an input collection of objects and produce an output collection by select­
ing objects and computing derived objects. 

3.2.2 Objects 

The data of the system is divided into objects; objects have attributes; when functions or 
processes act upon objects, they are sometimes called methods. Objects which share the 
same attributes and methods form classes. 

3.2.3 Collections 

Instances of objects can be gathered togethered into logical units, called collections. Col­
lections may contain the actual objects themselves or pointers to the objects. Ordered 
collections are lists; unordered collections are called either sets or bags, depending 
whether or not duplicates are allowed. Collections are themselves objects; as such, they 
may support specialized access methods to access their elements, such as hashing or B+ 
trees. 

3.2.4 Registered Collections 

A collection is called registered in case it can be accessed by processes making requests 
to a broker asking for the collection by its properties instead of its name. Processes may 
register collections by sending the name of the collection to a broker, together with 
(some) of its properties. 

3.2.5 Functions 

A function, or method, is simply a means of acting upon an object. The result may be a 
void or another object. 

:..:u 
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3.2.6 Queries 

Since collections are themeselves are objects, functions may be applied to collections. If 
the result is another collection, the function is called a query. Notice that this definition 
of query includes queries that select objects for inclusion into the output collection, que­
ries that compute new objects from the input objects, and queries which both select ob­
jects and compute new objects. When new objects are produced by a query, this 
additional data is sometimes called derived data. 

3.3 Process model 

Processes are the components of the model which act upon objects. Processes may cre­
ate, store, access, or modify objects themselves, or may request that other components of 
the system called brokers take such an action. After receiving such a request, the broker 
may take an action or forward the request to another broker for action. Requests are 
transported across the network to the appropriate broker in a transparent fashion, and ob­
jects are returned to the requesting process transparently. 

We assume that a computation consists of communicating, distributed processes. Pro­
cesses may communicate with each other through a variety of mechanisms, including cli­
ent-server connections, and peer-to-peer connections. 

Note that a query can be viewed as a sequence of processes, which take input collections 
to output collections. Formally, processes are finite state automata. 

3.3.1 Requests 

As mentioned, a process may make a request to a broker for a specific object. If the re­
quest is successful, the object is returned to the process which requested it; otherwise, a 
failure is returned. 

3.3.2 Clients and Servers 

A process which requests an object from a broker is also known as a data client. A bro­
ker responding to a request for an object is also known as a data server. Requests and ob­
jects are transported transparently across the data access network. 

3.4 Persistence 

We say that an object is persistent in case its existence is independent of the existence of 
the process which creates it. Objects which are not persistent are called transient. In par­
ticular, objects and collections of objects may be persistent, since as remarked above, col­
lections of objects are also objects. 

,, 
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In practice, persistence objects are distributed and are stored in a transparent fashion on 
disk or some other permanent media, such as tape. 

In order to be managed more efficiently, objects are gathered together into physical units 
called folios. Objects are extracted from folios by the Persistent Object Broker (de- ; , 
scribed below). Folios are extracted from bitfiles by the Persistent Folio Mover Broker ', n """ 
(described below). Bitfiles are managed by the hierarchical storage system. j 

3.4.1 Persistent IDs 

We assume that each persistent object is assigned a unique id, called a persistent id and 
that each object belongs to one persistent store or store. · 

3.4.2 Persistent Folios and Segments 

We also assume that each store is physically divided into folios, and each folio is physi­
cally divided into segments. Objects may span one or more segments, and even one or 
more folios. We assume that each folio has a folio id attached to it each segment has a 
segment id attached to it. 

3.4.3 Physical Addresses 

Persistent objects must be stored on some permanent media_;_ because of this, each persis­
tent object is associated with a physical address. For eiiinple, a persistent object may 
have a virtual memory address or byte location within a file associated to it in this way. 
Note that this physical address may change. For example, this happens if the object is 
cached or migrated. In addition, each object may have a logical id associated to it. By 
assumption, this does not change, despite any changes to the object. 

There are several possiblities: 

(a) The pid is always the physical address just described. 

(b) The pid is always the logical id and a table is maintained between the physical ad­
dresses and the logical ids. 

(c) The pid is sometimes the physical address and sometimes the logical id; tables are 
maintained as necessary. The pid is said to swizzle between the two. 

3.5 Data Network 

3.5.1 Nodes 

The data network consists of nodes. A node is an abstraction of a computing, storage, or 
other type of device. Nodes are connected to each other by edges. Each edge has an asso­
ciated data rate. In addition, some nodes are labeled with capacities or processing rates. 
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In other words, a network is a graph, with the nodes verticies and the edges labeled by 
the appropriate data rate. For example, a networked workstation may be modeled by a 
graph with the following nodes: 

(a) a node representing the cpu, labeled with by its flops 

(b) a node representing the memory of the workstation, labeled with its capacity 

( c) a node representing a local disk, labeled with itscapacity 

( d) several nodes representing remote networked disks, labeled with their capacities 

(e) several nodes representing other workstations in the the local cluster 

(f) a node representing a gateway to the rest of the network 

In addition the nodes would be connected by edges as appropriate and labled with the ap­
propriate data rate. 

3.5.2 Connections 

Two nodes may communicate with each other if there is a path from one to the other; 
that is, if there is a sequence of edges connected one to the other. The two nodes may 
transport requests and objects at a data rate which is the minimum of the data rates of the 
edges comprising the path connecting the two nodes. Since paths are not necessarily 
unique, two nodes may communicate at different data rates depending upon the commu­
nication path. If two nodes are connected they may exchange requests and objects in a 
transparent fashion. 

3.6 Requests and Brokers 

A process attached to a node may request an object from one is known as a broker. Some 
important types of brokers are described in the rest of this section. 

I !! _\ ::_" ' 

3.6.1 Requesting a Persistent Object: Overview \~ _f" \.().-_;.·' 

The Persistent Object Broker implements persistence for complex objects. If the Persis­
tent Object Broker determines that the object requested isnotm a folio currently avail­
able, it sends a request for the folio to the Persistent Folio Broker. The Persistent Folio 
Brokers determines the bitfile containing the folio and sends a request for the bitfile to 
the Bitfile Server, part of the storage system. The bitfile is returned by the Bitfile Mover, 
also part of the storage system, to the Persistent Folio Broker, which extracts the folio 
from the bitfile, loads the persistent folio into the space of persistent objects, and sends a 
reply to the Persistent Object Broker indicating that the folio is loaded. Queries are pro­
cessed by the Query Broker to produce a list of requested persistent objects, which is 
passed to the Persistent Object Broker. In addition, applications may request persistent 
objects from the Persistent Object Broker directly. 

See Figure- I. 
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3.6.2 Persistent Object Broker 

The Persistent Object Broker is responsible for creating, storing, and accessing complex 
persistent objects. A subcollection of the objects in the persistent store are in memory, or 
virtual memory, at any one time. The Persistent Object Broker is also responsible for r , ~ 
moving objects from memory to permanent storage as necessary so that objects may per-
sist after the process which created them terminates,~d so iliai: persistent objects may be 
accessed in essentially the same way as transient objects. 

3.6.3 Persistent Folio Broker 

We assume that from the pid of an object it is possible to infer the folio which holds the 
object. If the Persistent Object Broker requests an object with a pid corresponding to a fo­
lio which is not available in (virtual) memory, it faults, and generates a request for the fo­
lio to the Persistent Folio Broker. The Persistent Folio Broker then determines the bitfile 
containing the persistent folio and sends a request to the Bitfile Server, which is part of 
the storage system, for the bitfile. The Persistent Folio Broker also sends a message to 
the Persistent Folio Mover that the specified persistent folio is required. 

3.6.4 Persistent Folio Mover 

In response to a request to the Bitfile Server for a bitfile, the storage sytem responds by 
moving the bitfile from the Bitfile Mover, which is part of the storage system, to the Per­
sistent Folio Mover. The Persistent Folio Mover extracts the folio from the bitfile, loads 
it into (virtual) memory, and sends a reply to the Persistent Object Broker indicicating 
that the persistent folio has been loaded. 

3.6.5 Query, Compute, and Statistical Broker 

Other brokers handle distributed requests for queries and various computations on persis­
tent objects by making the appropriate requests to the Persistent Object Broker. Queries 
on local transient objects are handled as usual by the application. In principle, one can 
request transient non-local objects by making the appropriate request of a suitable broker. 

3. 7 Dictionaries 

3.7.1 Schema 

Each persistent object is a member of a class. The information describing the class is con­
tained in the schema dictionary. 
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3.7.2 Object Dictionary 

This contains lists of all the objects, their storage location, the collections they belong to, 
their indicies, and similar information. 

3. 7 .3 Folio Dictionary 

This contains a list of all persistent object folios, the associated segments, their locations, 
and related information. 

3.7.4 Application Metadata Dictionary 

3.7.S 

This contains various types of summary information about objects and collections of ob­
jects. The exact information contained is specified by the persistent store administrator. 
For example, this may include information about collections and collections of collec­
tions. 

Registered Collections 

This contains a list of all registered collections, including various of their properties. 
Registered Collection Brokers use these dictionaries to access registered collections by 
their properties. 

,, ' 
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4 An OMG Compatible 
Reference Model 

4.1 Introduction 

This chapter describe a reference model that conforms to the definitions and terminology 
for the object model from the Object Management Group (OMO) [l]. It uses the concept 
of an Object Request Broker (ORB) to provide the mechanisms by which objects trans­
parently make requests and receive responses. The ORB provides interoperability be­
tween applications on different machines in heterogeneous distributed environments and 
seamlessly interconnects multiple object systems1. The Common Object Request Broker 
Architecture is discussed in more detail in Ref. [2]. 

1. From Object Management Arrhitecture Guide, Revision 1.0, OMG TC Document 90.9.1. 

,, ' c.u 
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4.2 The OMG Object Model 

4.2.1 Objects 

An object is an encapsulated entity (i.e. with a well-defined interface) that provides one 
or more services that can be requested by another object. There are several components 
to an object system. 

4.2.2 Clients 

A client is an object that makes a request for a service provided by another object. 

4.2.3 Servers 

A server provides one or more services that may be requested by other client objects. A 
server object may itself make requests of other server objects and may therefore be con­
sidered a client of those other servers. 

4.2.4 Requests 

Clients reque.st services by issuing requests. A request causes a service to be performed 
on behalf of the requesting client. The information associated with a request specifies a 
target server object, an operation and zero or more parameters. The operation identifies 
the service to be performed and the parameters specify both the objects that are to partici­
pate in providing the service and any other information needed to specify the result. 

4.2.5 Interfaces 

An interface is a description of the available services provided by a server object. In 
the OMG model, the interface is specified in the Interface Definition Language 
(IDL). The interface the client sees is completely independent of the location of the 
server, what programming language it is implemented in and the communication 
protocols used. An object can inherit characteristics from one or more ancestor objects. 

4.2.6 Methods. 

The code that is executed to perform an operation is called a method. When a client is­
sues a request a method of the target object is called. The input parameters are passed to 
the method, after any necessary data reformatting has been performed and the output pa­
rameters and return value, if any, are passed back to the requestor. 

("\I ' 
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4.3 The OMG Object Management Architecture (OMA) 

The major components of the OMO's Object Management Architecture are shown in Fig. 
1. 

Application 
Objects 

Object Request Broker 

Object 
Services 

Common 
Facilities 

Figure 1. Object Management Architecture 

4.3.1 Object Request Broker (ORB) 

The Object Request Broker (ORB) provides the binding between requests and their tar­
get objects and methods. It performs data reformatting where necessary, name services to 
allow the target object to be located, selection of an appropriate method, delivery of the 
parameters of the request, activation of the target object, and synchronization mecha­
nisms. 

4.3.2 Object Services 

Object Services specify basic behaviors that objects can inherit as building blocks for ex­
tended or augmented functionality. For example, Object Services can specify interfaces 
for transaction management, persistence object management, versioning of resources and 
query management. 

, .... '. c. () 
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4.3.3 Common Facilities 

Common Facilities comprise objects and interfaces that are useful across many problem 
domains. Examples include error reporting, help facility, printing and spooling and reus­
able user interfaces. 

4.3.4 Application Objects 

Application Objects are the application or domain-specific objects that comprise the 
main conceptual framework for an application. These build upon the common facilities 
and object services to create complete applications. 

4.4 An OMG Compatible PASS Architectural Model ----
A view of the components of the PASS project in terms of the OMG Object Architectural 
Model is shown in Fig. 2. 

Application 

Objects 

Persistence 

Object Request Broker 

Query 
Services 

Common 
Facilities 

Figure 2. PASS Management Architecture 

Major new components are: 
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4.4.1 Persistence Services 

4.4.2 Query Services 

4.4.3 Computation Services 

4.4.4 Statistics Services 

4.5 An OMG Compatible PASS Process Model 

A process view of the PASS Model is shown in Fig 3. The model described here is target­
ted towards the HEP analysis problem and therefore has components that are specific to 
that domain. However, the overall organization and relationships between the compo­
nents is appropriate for a wide range of problem domains. 

Note that the ORB does not appear explicitly on this process view since its functions are 
represented by the communication arrows between components. The major components 
are described in the following sections. 

" ' ,,u 
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Primary Data Store Secondary Data Store 

t t 
Object Persistence Provider 

Figure 3. Process Model 

User 
Interface 

User 

4.5.1 Object Persistence Provider (OPP) 

Sample 
Registrar 

Sample 

25 

The Object Persistence Provider (OPP) provides persistence services to objects, and cach­
ing and migration services to the other components within the model. It interacts with the 
hierarchical data stores. The OPP is mainly an implementation of object persistence me­
thonds and is described in more detail in Chapter 3. 

" 0 l 
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4.5.2 Query Service Provider (QSP) 

The Query Service Provider (QSP) provides query services to the application. As de­
scribed earlier, a query is an operation on an input collection and results in a new collec­
tion and possibly other derived information. This model differentiates between this QSP 
that operates on already existing persistent information and the Computation Service Pro­
vider (see next section) that can create derived information. This derived information can 
be used directly by the application or by the QSP and can itself be made persistent by the 
Data Registrar. 

The interface between the Analysis Application and the Query Service provider is de­
scribed in more detail in Section 4.4.x 

4.5.3 Computation Service Provider (CSP) 

The Computation Service Provider (CSP) is responsible for performing computationally,' ",' /, 
intensive operations using persistent objects as input It creates transient, ~erived informa-i '-
tion for use by its £l~e_n_ts, e.g. the Query Service provider and the Analysis Application. / 

The interface between the Analysis Application and the CSP is described in more detail 
in Section 4.4.x 

4.5.4 Statistics Service Provider (SSP) 

The Statistics Service provider (SSP) operates on result collections and forms histograms 
or similar visual aids by which the end user may make qualitative and quantitative deci­
sions to effect the future processing of data. 

4.5.5 Data Registrar 

The Data Registrar is responsible for taking transient information and making it persis­
tent. This information will typically be derived data from the Computation Subsystem, or 
collections that result from query operations. 

4.6 An OMG Compatible PASS Communication Model 

The PASS Communication Model for PASS is shown in Fig 4 . 

... . , 
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Application 

Query Services Computation 

Adaptor Services 
Adaptor 

Query Services Computation 
Services 

Broker Broker 

Object Request Broker 

Query Engines Computation Engines 

Figure 4. Communication Model 

4.6.1 Query Services Adapter (QSA) 

The Query Services Adapter (QSA) forms the interface between the application adn the 
Query Services Provider from Fig. 3 .. 

4.6.2 Query Services Broker (QSB) 

The Query Services Broker (QSB) performs the following functions: 

• It distributes queries across the multiple Query Engines. 

• It combines the partial results from each Query Engine to form the final query re­
sults. 

• It interacts with the Computation Services Broker to perform resouce allocation 
and optimization. 

4.6.3 Query Engine (QE) 

A Query Engine performs a query on an input collection. It can make requests to the 
Computation Services Provider for access to derived data as well as accessing persistent 
information. 
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4.6.4 Computation Services Adapter (CSA) 

The Computation Services Adapter (CSA) forms the interface between the application 
code and the Query Services Provider from Fig 3. 

4.6.5 Computation Services Broker 

The Computation Services Broker (CSB) acts as the agent that performs the following 
functions. 

• It interacts with the Computation Services Broker to perform resource allocation 
and optimisation. 

4.6.6 Computation Engines (CE) 

A Computation Engine is an object that has been registered within the PASS environ­
ment and has a well-defined transformation function on input persistent data. The result 
of the transformation is derived data in the form of transient objects. Within the HEP ap­
plication domain, one class of CE might perform track reconstruction, another might per­
form vertex finding etc. Multiple instances of each type of Computation Engine may 
exist within the system, their allocation being managed by the Computation Services Bro­
ker in conjunction with the Query Services Broker. 
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5 Policy Issues 

5.1 Policy Issues 

This Chapter discusses some policy issues not detailed in the Reference Model which 
deals with the mecahnisms and components. 

5.2 Parallelization strategies 

Queries directed to a very large database of essentially independent events are natural 
candidates for data parallelism. This most basic of approaches may in fact be the most ef­
fective. The idea is that multiple processors would each apply a complete query to dis­
joint portions of the database, and pipe their output to a single process that would merge 
the results. 

Another approach to parallelism is to pipeline query processing. Suppose a query of the 
form "SELECT a FROM b WHERE c" is issued, and the collection corresponding to b 
resides on a number of tapes. Such an approach might have one set of processors han­
dling tape input of entire event objects and passing these to another set of processors. 
These processors might apply the WHERE criteria and pipe the qualifying events to an­
other set of processors that would in turn cull the data according to the SELECT direc­
tive. The efficacy of the latter approach would depend strongly on such performance 
considerations as the quantity of data involved in the query, I/O and network characteris­
tics. and processing power. 

" r,_ 
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Queries 

Throughout this draft, we shall use a pidgin Object-SQL to convey the sense of some 
sample queries. This usage is not intended to endorse selection of Object-SQL as the 
official query language of the PASS project 

Positions taken with respect to issues addressed in this reference model are intended sole­
ly as starting points for discussion. They should not be construed as representing a 
project-wide consensus. 

5.2.1 Hierarchical Processing 

Query parsing for syntactic correctness should be handled as close to the point of query 
issuance as possible. 

Complete query processing should be possible at this same level when the necessary data 
sets are local. For example, 

USE mydata 
SELECT * 
FROM myevents 
WHERE event.number_of_muons()=2 

should be executable on a physicist's workstation if mydata is local (and locally owned?). 
Failure of the network should not disable access to local data. 

Once a query has been parsed for syntactic correctness, the local query handler deter­
mines whether direct local access to the requisite data is feasible. 

If the local query handler cannot service a correctly posed query, e.g., it does not recog­
nize the name in a USE statement, the query is passed up the system hierarchy for pro­
cessing. A single query manager has responsibility for queries to a given data set The 
collaboration may choose to maintain a single query manager for all data owned by the 
collaboration at large. 

It is the responsibility of the query manager to transform queries against data sets for 
which it is responsible into service requests directed to the requisite object manager(s). 

Notes: 

• A single query manager is responsible for entire data sets, even though one data set 
may be distributed over a number of systems. 

• A query manager may be replicated for the sake of reliability and performance. 

• It should be possible to direct a query to a specific query manager for the (rare?) 
cases when one-way traversal of the hierarchy is inadequate. 

Once a query has been checked for correctness and its associated database resources lo­
cated, there is some flexibility in how the query processing is divided among processors 
in the system hierarchy. Refer to the reference model section on parallelization strategies 
for related details. 
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It could be argued that partitioning the query processing workload is a matter of query 
optimization and should not be addressed by a reference model---a commercial object­
oriented database with client/server capabilities, multiple server support, and its own ap­
proach to query processing should be admissible if it meets performance criteria and ca­
pability requirements. It is nonetheless instructive to consider several scenarios here. 

One model suggests that application of selection criteria should take place as close to the 
location of the data as possible, and this is the model proposed in this draft The idea is 
that if sufficient processing power can be provided, maximizing performance means min­
imizing data transfer requirements. An alternative is to have processors near the data deal 
with only that portion of the query that cannot be handled elsewhere. This might mean, 
for example, processing "SELECT FROM" directives, and deferring all further work 
(e.g., WHERE handling) to processors further down the hierarchy. The idea is to mini­
mize an individual user's load on system-wide resources, and to have the cost of query 
processing borne by the query issuer as much as possible. 

Consider the following example. 

USE Eventstore 
SELECT * 
FROM events 
WHERE event.number_of_Jlluons() = 2 

Deferring WHERE processing could in this case mean moving a petabyte of data 
through the network. {\it (Say something about indexing here.)} 

It may not be easy to do {\it all} query processing near the location of the required data. 
If the above example is modified to look like 

USE Eventstore 
SELECT event_tag, tracks, particles 
FROM events 
WHERE event.number_of_muons() = 2 AND 

myfunction(event.muons(l),event.muons(2)) > mythreshold 

where myfunction is a user-supplied function and this query is being issued from within a 
code running on the physicist's workstation, then at least part of the data culling might 
need to be handled at the point of issuance. 

5.2.2 Returned data sets 

Returned data sets are collections of objects. It must be possible to name these collec­
tions and to render them persistent (e.g., the SQL "SELECT INTO" construct). Returned 
objects may be of a class already defined in the database, or may be instances of a new 
class derived by selection from existing objects, and may include any combination of 
new, old, and modified attributes. The database must support creation and use of such de­
rived classes by individual physicists. 

, ... ' . 
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Significant technical issues arise when returned objects contain references to other ob­
jects. Recently proposed schema define Track objects, for example, that may contain Par­
ticles and Vertices. These references may be implemented as sets of pointers to Particle 
and Vertex objects. Such objects may themselves contain sets of pointers to other ob­
jects. When Tracks are returned in response to queries, are the corresponding Particle 
and Vertex objects returned also? 

The situation is analogous to copying across links in file systems, and the preferred strate­
gy may depend upon the circumstances. In any case, mechanisms must be provided to 
dereference any such pointers correctly. Advantages of not automatically copying across 
pointers include reduced data traffic in response to the initial query, increased efficiency 
if the pointers turn out never to be dereferenced, and the potential for improved data con­
sistency and smaller storage requirements when the query response data is itself made 
persistent. Disadvantages include the potential for serious performance degradation if ob­
jects constituent to those returned by the query are needed later. (Imagine building a da­
tabase on your workstation by means of a slow and expensive query to the Event Store, 
only to find more queries to the Event Store being generated dynamically every time you 
reference certain fields.) 

Programmers may process collections of objects by directly traversing lists of pointers to 
those objects in. an essentially sequential fashion. In such scenarios, one could make a 
case for not copying across references---pointer dereferencing would simply lead to pos­
sible page faults, which would result in the appropriate page of event data being request­
ed of and supplied by a remote database server on demand. (This is analogous to the 
Object Store model.) If the physical organization of the database has events stored contig­
uously, then this could be a very viable strategy unless the code were also to generate a 
persistent collection of objects from the query data, and those object definitions included 
references to other objects. In such cases, the same considerations described in the previ­
ous paragrah would apply. 

See also the related discussions of object and volume managers elsewhere in this docu­
ment. 

A characteristic of the PASS project data structure is that the chain of references is not ar­
bitrarily complex---almost all references can be resolved within the scope of a single 
event. (The ones that cannot, such as pointers to run and trigger descriptors, tend to corre­
spond to objects that are small and uncomplicated in structure.) This suggests that copy­
ing across references may not be a formidable undertaking. 

The position taken in this draft is that users should be able to choose explicitly whether 
or not to copy across references when building persistent collections of objects, and that 
copying should be the default in certain cases. (Examples include queries directed to the 
petabyte Event Store, and queries that build personally managed local databases by ex­
traction from collaboration-wide data. Collections of objects that reside on the same sys­
tem as those from which they are derived, which are managed as part of the same 
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database, and which contain references only to objects in local online storage are exam­
ples for which not copying across references might be more appropriate.) 

5.2.3 Physics query language 

No physics-specific query language is required. It is not the inherent structure of physics 
queries that makes them challenging - a 

SELECT a,b,c 
FROM d 
WHERE e,f,g 

capability suffices in most cases. The difficulty arises rather from the complex nature of 
the objects being manipulated and from the computational character of the selection crite­
ria. If a vendor-supplied query language would, for example, accept the equivalent of 

USE trigger2_data 
SELECT event_tag, tracks, particles 
FROM events 
WHERE event.nurnber_ofJnuons() = 2 AND 

myfunction{event.muons(1),event.muons{2)) > mythreshold 

where myfunction is a user-supplied procedure, no new language would be needed. 

The challenge is to design the database so that the burden of expressiveness lies in two 
places: in class and method definitions that naturally describe the objects of concern to 
physicists, and in interface tools that shield physicists from the organizational complexi­
ty and overwhelming detail that is likely to be inevitable in even the best of database de­
signs. 

While they are not unique to physics applications, the following characteristics are re­
quired of the database query language: 

• Queries must be directed to managed collections of objects in the database, and 
must return collections of objects as their results. 

• Computation, including user-provided procedures, must be supported in selection 
criteria. 

• Derived objects resulting from queries must be manageable by the database. 

• Interfaces must be provided so that any query specifiable in the query language can 
be issued from within programs written in high-level languages, and will return ob­
jects that can be processed by those programs. 

5.2.4 Tools for physicists 

A number of tools are implied by the preceding discussion. These include facilities for in­
teractive query execution, and interfaces for execution of arbitrary queries from within 
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user-written codes. The latter requirement means that any tool can, in principle, be made 
to query the database and process the results. 

Additional facilities that should be provided for physicists include: 

• 
• 

• 

• 

graphical tools for interactive query generation; 

graphical tools for object and schema browsing, with ways to interrogate object at­
tributes; 

graphical tools for displaying query results (these include histogram and curve-fit­
ting tools, and tools for representing events in relation to detector geometry); 

tools for incorporation of user-provided code into database queries; 

• tools for estimating time and resource requirements for processing a given query; 

• tools for translating graphically generated queries into code for inclusion in user­
written programs. 

It should be noted that most, though certainly not all, of these tool requirements are not 
unique to physics applications. 

5.2.5 Numerical Examples 



6 Implementation Models 

6.1 SSCL Testbed 

The implemention work for the PASS project at the SSC uses the commercial relational 
database management system (DBMS) Sybase and the object oriented database manage­
ment system ObjectStore for data management and the helical scan tape device 002 
from AMPEX for mass storage. 

Sun670MP 

lOGB 
002 Tape 

Drive 

Figure 1. Current Hardware Configuration 
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Both commercial database management systems cover several of the components of the 
access and storage system identified in the PASS Reference Model [l] (Names in bold re­
fer to functions identified in [1]). Other components are implemented as special solutions 
regarding our testbed using operating system commands and the functions provided by 
the tape device and driver. The following figure gives an overview of existing compo­
nents. 

/ Bitfile Server ' 
Bitfile Mover 

Mass Storage System 
\.. , 

• 
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Persistent Manager 
Persistent Volume Mover 

Query Manager 
Metadata 
Schema Persistent Volume Manager 

Local Object Space 

DBMS D2 Driver 
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Figure 2. Covered Componerc::J 
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6.1.1 Data Management Functionality 

Either database management system provides a Persistence Manager, implementing per­
sistence for objects e.g. tables in case of a relational DBMS. Query capabilities are pro­
vided by both systems covering the functionality of a Query Manager. The database 
Schema is an integral part of the DBMS's. Application specific Metadata, a catalog of 
information about objects and collections of objects and an Object Dictionary and a Vol­
ume Dictionary, mapping objects to storage locations are not part of the commercial 
products but can be implemented as application programs using the database mecha­
nisms. The Local Object Space and the migration of objects between memory and disk 
is controlled by either DBMS and is transparent to the user. 

The units currently managed by the for PASS at the SSC are databases of about 100 MB 
in size. Each database contains the complete data for approximately 100 events. Com­
plete means all the data that is important for our applications. Currently there is no infor­
mation available about the location of objects on tape, therefore several databases may 
have to be scanned sequentially. This requires sequential loading of the 100 MB chunks. 
Processing with finer granularity is done after the database becomes available to the ap­
plication. A Persistent Volume Manager together with a Volume Dictionary and Ob­
ject Dictionary mapping objects to volumes and scheduling loading will be 
implemented as part of the proposed future PASS system [2] at the SSC. This will make 
use of the commercial DBMS's, the units will still be 100 MB chucks of complete events. 

6.1.2 Tertiary Storage 

Sybase provides mechanisms to transfer databases to and from tape. Databases are identi­
fied by name, objects can be uniquely identified within a database. Special Sybase com­
mands are used to copy databases to tape or extract them from tape. This is currently not 
supported for D2 tape drives. For Objectstore a modified version of the Unix filesystem 
commands osmv and oscp and generic tape commands are used to archive databases to 
tape. The user has to keep track of the location of the data as well as any meta data about 
the content of a database to support access to data in the mass store. The tape in the cur­
rent system has to be determined and loaded by hand. A more transparent Persistent Vol­
ume Mover could be implemented based on the current commercial tape system. The 
functions of a Bitfile Server and Bitfile Mover as mentioned in the Pass Reference Mod­
el are not supported explicitly by the tertiary storage device. The D2 drives covers this 
functionality with its functions to store and retrieve data from files using standard read/ 
write access to tapes. 

6.1.3 Parallelism 

Both database management systems support concurrent access for multiple application 
programs to the same database as well as the possibility for a program to talk to several 
databases at the same time. If multiple databases are used, loading of a chunk of data can 
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take place at the same time as other databases are being used. With the current configura­
tion only one database can be loaded at a time. 

6.2 Generic Model 

[This still needs to be done.] 

6.3 SDC/GEM Model 

[This still needs to be done.] 
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11 
Methodology Summary 

This chapter summarizes the methodology of the Object Modeling Technique. The tech· 
niques discussed in previous chapters are listed below as numbered steps. While this implies 
that the order is imponant, we find that: 

• Experienced developers are able to combine several steps or perform cenain steps in 
- parallel for portions of a project. 

• Iteration of the steps is necessary at successively lower levels of abstraction, adding 
more detail to the model. 

• After the overall analysis has been completed at a high level of abstraction, subsystems 
within a large project can be designed independently and concurrently at lower levels of 
abstraction. 

The distinction between analysis and design may at times seem arbitrary and confusing. The 
following simple rules should guide your decisions concerning the proper scope of analysis 
and design. 

The analysis model should include information that is meaningful from a real-world 
perspective and should present the external view of the system. The analysis model should 
be understandable to the client for a system and should provide a useful basis for eliciting 
the true requirements for a system. The true requirements are those that are really needed, 
internally consistent, and feasible to achieve. 

In contrast, the design model is driven by relevance to the computer implementation. 
Thus the design model must be reasonably efficient and practical to encode. In practice, 
many portions of the analysis model can often be readily implemented without change; thus 
there may be considerable overlap between the analysis and design models. The design mod­
el must address low level details that are elided in the analysis model. The analysis and de­
sign models combine to provide valuable documentation for a system from two different. but 
complementary, perspectives. 
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11.1 ANALYSIS 

The goal of analysis is to develop a model of what the system will do. The model is ex­
pressed in terms of objects and relationships, dynamic control flow, and functional transfor­
mations. The process of capturing requirements and consulting with the requestor should 
continue throughout analysis. 

I. Write or obtain an initial description of the problem (Problem Statement). 

2. Build an Object Model: 

Identify object classes. 

Begin a data dictionary containing descriptions of classes, attributes, and associations. 

Add associations between classes. 

• Add attributes for objects and links. 

Organize and simplify object classes using inheritance. 

Test access paths using scenarios and iterate the above steps as necessary. 

• Group classes into modules, based on close coupling and related function. 

=> Object Model = object model diagram + data dictionary. 

3. Develop a Dynamic Model: 

Prepare scenarios of typical interaction sequences. 

• Identify events between objects and prepare an event trace for each scenario. 

• Prepare an event flow diagram for the system. 

Develop a state diagram for each class that has important dynamic behavior. 

• Check for consistency and completeness of events shared among the state diagrams. 

=> Dynamic Model = state diagrams + global event flow diagram. 

4. Construct a Functional Model: 

Identify input and output values. 

Use data flow diagrams as needed to show functional dependencies. 

Describe what each function does. 

Identify constraints. 

Specify optimization criteria. 

=> Functional Model = data flow diagrams + constraints. 
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5. Verify, iterate, and refine the three models: 

• Add key operations that were discovered during preparation of the functional model to 
the object model. Do not show all operations during analysis as this would clutter the 
object model; just show the most important operations. 

Verify that the classes, associations, attributes, and operations are consistent and com­
plete at the chosen level of abstraction. Compare the three models with the problem 
statement and relevant domain knowledge, and test the models using scenarios. 

Develop more detailed scenarios (including error conditions) as variations on the basic 
scenarios. Use these "what-if' scenarios to further verify the three models. 

Iterate the above steps as needed to complete the analysis. 

=> Analysis Document= Problem Statement + Object Model + Dynamic Model + 
Functional Model. 

11.2 SYSTEM DESIGN 

During system design, the high-level structure of the system is chosen. Chapter 9 presents 
several canonical architectures that may serve as a suitable starting point. The object-orient­
ed paradigm introduces no special insights into system design, but we include system design 
for complete coverage of the software development process. 

l. Organize the system into subsystems. 

2. Identify concurrency inherent in the problem. 

3. Allocate subsystems to processors and tasks. 

4. Choose the basic strategy for implementing data stores in terms of data structures, files, 
and databases. 

5. Identify global resources and determine mechanisms for controlling access to them. 

6. Choose an approach to implementing software control: 

Use the location within the program to hold state, or 

Directly implement a state machine, or 

• Use concurrent tasks. 

7. Consider boundary conditions. 

8. Establish trade-off priorities. 

=> System Design Document= structure of basic architecture for the system 
as well as high level strategy decisions . 
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11.3 OBJECT DESIGN 

During object design we elaborate the analysis model and provide a detailed basis for imple­
mentation. We make the decisions that are necessary to realize a system without descending 
into the particular details of an individual language or database system. Object design starts 
a shift away from the real-world orientation of the analysis model towards the computer ori­
entation required for a practical implementation. 

I. Obtain operations for the object model from the other models: 

Find an operation for each process in the functional model. 

Define an operation for each event in the dynamic model, depending on the implemen­
tation of control. 

2. Design algorithms to implement operations: 

• Choose algorithms that minimize the cost of implementing operations. 

• Select data strUctures appropriate to the algorithms. 

Define new internal classes and operations as necessary. 

• Assign responsibility for operations that are not clearly associated with a single class. 

3. Optimize access paths to data: 

• Add redundant associations to minimize access cost and maximize convenience. 

• Rearrange the computation for greater efficiency. 

Save derived values to avoid recomputation of complicated expressions. 

4. Implement software control by fleshing out the approach chosen during system design. 

5. Adjust class strUcture to increase inheritance: 

• Rearrange and adjust classes and operations to increase inheritance. 

Abstract common behavior out of groups of classes. 

Use delegation to share behavior where inheritance is semantically invalid. 

6. Design implementation of associations: 

Analyze the traversal of associations. 

• Implement each association as a distinct object or by adding object-valued attributes to 
one or both classes in the association. 

7. Determine the exact representation of object attributes. 

8. Package classes and associations into modules. 

=> Design Document = Detailed Object Model + Detailed Dynamic Model + 
Detailed Functional Model. 
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11 A CHAPTER SUMMARY 

The OMT Methodology is based on the use of an object-oriented notation to describe classes 
and relationships throughout the life-cycle. The Object Model is augmented with a Dynamic 
Model and a Functional Model to describe all aspects of a system. The analysis phase con­
sists of developing a model of what the system is supposed to do, regardless of how it is im­
plemented. The design phase consists of optimizing, refining, and extending the Object 
Model, Dynamic Model, and Functional Model until they are detailed enough for implemen­
tation. As we shall see in Pan 3, implementation of the design is a straightforward matter of 
translating the design into code, since most difficult decisions are made during design. 

EXERCISES 

analysis 
dynamic model 
functional model 
object design 

object model 
relationship between models 
system design 

Figure 11.1 Key concepts for Chapter l l 

Use the Object Modeling Technique to develop the following systems. Prepare scenarios, diagrams, 
models, specifications, and documents as appropriate. For each diagram and model that you prepare, 
show both your first version and your last refinement. State any assumptions you make concerning 
functional requirements. Also. summarize the order in which you followed. the steps of the methodol­
ogy. 

11.1 (Project) A simple flight simulator. Using a bit mapped display. present a perspective view from 
the cockpit ofa small aiiplane, periodically updated to reflect the motion of the plane. The world 
in which flights take place includes mountains. rivers, lakes, roads. bridges. a radio tower and, 
of course, a runway. Control inputs are from two joysticks. The left joystick operates the rudder 
and engine. The right one controls ailerons and elevator. Make the simularor as realistic as pos­
sible without being too complex . 

11.2 (Project) A system for automatically executing the actions needed to build a software system 
from its components, similar to the UNIX Make facility. The system reads a file which describes 
what must be done in the fonn of dependency rules. Each rule has one or more targets, one or 
more sources. and an optional action. Targets and sources are names of files. If any of the sourc­
es of a rule are newer than any of its targets, the action of the rule is executed by the system to 
rebuild the targets from the sources. 

11.3 (Project) A computer tic-tac-toe player. Inputs and outputs are provided through a dedicated 
hardware interface. The user indicates moves by pressing membrane switches, one for each of 
the nine squares. X's and O's are displayed by a liquid crystal display. The user may select a 
level of skill and who is to go first. 
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Application Server Organization: 

a proposal from Mark Selover and JH 

Background: 

o The app. server "project" is: 

- putting software of use to several people into a 
common area, thereby making more effective use 
of human and material resources (cf. ASIS project 
from CERN) 

- afs has been found to be a convenient way to achieve 
this goal. There are ACL's, a global name file-name 
space, file-level caching 

- The GEM tree, and alot of other software (230 binaries 
for the SUN) are installed in this area 

- BUT we (the SSC lab) has had no coherent strategy 
for populating and maintaining products. In fact, 
there is no real "project" and definitely no project leader 

John Hllgart - SSC Lab August 17, 1993 Page 1 
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app. server project is, cont. 

- Friday afternoon some IS, GEM, and SOC reps 
met and agreed on: 

A) afs must be stress-tested to anticipate scaling 
problems, and monitored, like PDSF, to determine 

usage patterns, etc. IS agreed to do this. 

B) A scheme for documentation of the products, 
including support disclaimer, name of a responsible 

will be provided by IS for areas under their control. 

There was disagreement on the organizational 
principles guiding the choice of directory names. 

As GEM software librarian, I SHALL FIND A SOLUTION TO THE 
ABOVE PROBLEM, WHICH WILL NOT GO AWAY BY ITSELF! 

The latest proposal attacks the high-level organzation problem. 

John Hllgart - SSC Lab August 17, 1993 Page 2 
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MS, JH proposal: 
what comes under /usr/ssc 

Currently, we have _ orgs 

- -----
/us r / s s c / {physics, g erTI,; d~:,pub,build,is,prod}, 
i.e., a mixture of organiztions and other stuff 

The proposal: 

/usr/ssc/{pr ,is,gem,sdc,doc, pu b,prod} 

o pr subsumes "physics", and becomes the landing pad for: 

- packages which know something about physics 
- packages written or co-written by someone in prd, 

GEM, or SOC 
- packages for which only pr users are foreseen 

o "pub" is reserved for use-at-your-own-risk public domain 
shareware which has not been written by someone at the SSC 

o "prod" remains for commercial software 

John Hllgart - SSC Lab August 17, 1993 Page 3 
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The next level: /usr/ssc/ORG 

The recommended structure will be, e.g., 

/usr/ssc/pr/{src,bld,bin,lib,man,doc,include} 

~ links into bid 
lndir'd build/release area 

a multiply-mounted afs volume 

This seems very "clean" in that my path can be set to: 

/usr/ssc/gem/bin /usr/ssc/pr/bin /usr/ssc/pub/bin 

and it's very clear where products are coming from. 

The "pr" area will become very active and should be our main 
concern. It will be the area for: 

o resgen, sscgen, gismo, cern, geant, stdhep, 
isajet, prcd-produced software, etc. 

Can we all agree to this much?? 

John Hllgart - SSC Lab August 17, 1993 Page 4 
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So Where do you put Interviews? 

ans: Somewhere in /usr/ssc/pub, but we don't address this issue 
in the above proposal. 

ans 2: I think the question is secondary (and yes, I will suggest a 
certain place if asked) to the overall design 
considerations addressed above. 

John Hllgart - SSC Lab August 17, 1993 Paga 5 
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SSC EPICS System. 
(Global control system prototype). 

* The system arrived last week and has been installed next to the 
TIR 

* The system consists of a Sun Spare IPX station, some hardware 
to control (power supply, stepper motor, .... ), the EPICS 
software (and a demo package) and a pile of manuals. 

* Those of you interested in working with EPICS should contact 
me for an account on ssc-epics, a demo and a copy of the 
"introduction to Epics" by Bill Kornke. 

*Warnings: 

1. There are a few minor problems with the setup itself, 
not everything in the intro. works as it should work. Bill 
Kornke and I are working on this. 

2. At present, everybody can overwrite almost 
everything. I'm trying to fix that. In the meantime: do not 
save any modified files unless the text explicitly tells you to 
do so. 

3. No backups are being made, the system is not yet 
connected to the network. Both problems will be solved soon. 

* We had a hardware problem last week that made the screen 
look like a 1V. with a bad antenna. It disappeared for no 
apparent reason. Should this problem ever occur while you are 
working on the system, call me immediately. 

Henk Uijterwaal 
GEM/SSCL 

henk@pdsf.ssc.gov 
1-214-708-6192 
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