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Abstract 

In order to achieve the required dynamic range compression for the calorimeter, 
it has been proposed to utilize a preamplifier with a nonlinear response curve. One 
consequence of such a response curve is that the waveform of the output signal be­
comes a function of its amplitude. A concern is that the calorimeter level l trigger 
may not properly identify the bunch crossing for signals of very large amplitude. Two 
solutions to this problem are available, and they are evaluated in a simple bilinear 
model of the preamplifier response curve. 

1 Introduction 

For the GEM calorimeter, in order to accomodate the full dynamic range with adequate 
precision, it will be necessary to introduce a roll-off in the gain of the preamplifiers. 
A nonlinear (or bilinear) gain of the calorimeter preamplifier will cause a shift in the 
peaking time of up to 20 ns in the output signal of the shaper[l], as one passes from the 
linear region (-200 GeV) to the highest energy signal. In what follows, we refer to the 
signal above the transition region with shorter rise time as "distorted". We consider two 
solutions to this problem, and they a.re evaluated by modelling the response curve of the 
preamplifier in a simple way. We assume that the output waveform has a peaking time of 
75 ns up to the amplitude corresponding to 200 GeV, which is set to be half of the output 
voltage scale. From this point to full scale, the preamplifier gain changes to accomodate 
signals up to the maximum ( -6 Te V or so), with a peaking time of 50 ns. 

The level 1 trigger system can easily identify that a signal beyond the transition region 
may have occurred, as the highest threshold will be set just below this region (since we 
deal with trigger sums, it is also possible that a signal above the transition region is 
undistorted). The important question is whether the trigger system can identify correctly 
the bunch crossing when the signal is distorted. 
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In the calorimeter level 1 trigger, the bunch crossing is identified in two different ways, 
using either the timing of the timing discriminator[2] output or from the zero-crossing of 
the timing signal generated in the digital filter on the jet sums. Without precaution, both 
can identify the wrong crossing in the case of a distorted signal. There is a solution to 
each problem. A suggestion[3) has been made that for large signals, the discriminator can 
be switched to leading-edge timing, and thus becomes much less sensitive to the exact 
shape of the signal. In Fig. 1 we show an example of a. 200 Ge V signal of peaking time 75 
ns a.nd amplitude 2 Volts at the discriminator input. A 2 GeV threshold corresponds to 
20 m V on this scale, which is indicated as the horizontal line in the figure. We also show 
a full-scale ( 4 Volt) signal with a pea.king time of 50 ns, representing the most extreme 
case of signal distortion. We see tha.t the discriminator fires 7.6 ns earlier for this signal. 
Thus, if we set the leading edge nominal timing to the middle of this range as indicated, 
the output will lie within ±3.8 ns, adequate for proper bunch identification. 
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Figure 1: Leading edge discriminator timing for large signals. The solid curve is the 
normal signal with energy up to the preamplifier break point, with a peaking time of 
75 ns. The amplitude corresponds to 2 V, which will be half sea.le a.t the discriminator 
input. The dashed line is the leading edge of a 4 V signal with a. peaking time of 50 ns, 
corresponding to the most extreme case of distortion. A low level threshold is used to 
determine the timing in each case, the example shown here corresponding to an energy 
of 2 Ge V. The difference in the times of crossing the threshold for the two cases is 7 .6 
ns. Thus, if the nominal dela.y for the lea.ding edge timing, relative to the normal timing 
output, is set at the indicated point, the the maximum timing error incurred is 3.8 ns. 

The digital filter which operates on the jet sum can a.lso be programmed to handle a 
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distorted signal. If we model the distortion as a linear sum of two signals with different 
shaping time 

g(t) = a/1(t) + (1 - a)/2(t) 

and introduce the fraction a as a parameter in the fit, the result is that the amplitude and 
timing parameters are, to first order, independent of a. Of course, there is a price to pay 
in fitting one additional parameter; the values of O" A and O".,. are increased. However, if this 
is done only for large (~200 GeV) signals, the increased error is acceptable. The solution 
for the coefficients is a straightforward extension of the optimal filter formalism(4]. We 
define three linear sums over the samples S; as follows: 

u = L;a;S; 

v =I; b;S; 

w=L;c;S; 

and demand that u, v, and w evaluate to A, AT, and A<l, respectively. We then solve 
for the coefficients a; and b; (we could also solve for the c;, but that is unnecessary) by 
minimizing the variances of u, v, and w. The solution can be written as a linear sum of 
four vectors VU; with coefficients A; and B;, as follows: 

The vectors U; are given by 

4 -
ii= L;A;VU; 

i=l 
4 

b= I; B;VU; 
i=l 

01 =A 
U2=h 
- dh 

U3 = dt 

- dh 
U4= dt' 

and V is the weight matrix (the inverse of the covariance matrix R) for the samples. The 
values of the coefficients A; and B; are found from the elements of the matrix Q, the 
inverse of the matrix U; VU;, as follows: 

A;= Qi;+ Q2; 

B; = -(Q3; + Q4;). 

The errors of the parameters are found from the coefficients and the covariance matrix: 

o-! = I; a;a; R;; 
ij 

A2.,.; = I; b;b;R;;. 
ij 
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Figure 2: Histogram of the fitted value of timing to a composite waveform. Two cases are 
shown The solid curve is for a=O.l and the dotted curve is for a=0.9. The two functions 
fi(t) and fz(t) are the same functions illustrated in Fig. I. 

Table I: Errors on the parameters for fits to single and composite waveforms. The 
case chosen is a 6 x 6 EM sum in the barrel qi.lorimeter operating at a luminosity of 
I033cm-2sec-1 • In the composite case (a free), the energy is split (with a fraction a) 
between two waveforms with peaking times of 75 ns and 50 ns. 

Case O'A Au~ 
(GeV) (Gev-ns) 

a=I 0.37 9.3 
a free 3.0 206 
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We demonstrate this technique by using the two waveforms shown in Fig. 1. In Table 
1 we show the values for u A and Au,, both for the case where a is fixed at unity (i.e. the 
normal case) and for a free. One sees that the errors are an order of magnitude larger for 
the latter case, but for large amplitude signals, they are acceptable. 

A Monte Carlo calculation has been done to verify this result. In Fig. 2 we show the 
timing error distribution for a 200 GeV signal at a luminosity of 1033cm-2sec-1 for the 
cases a=O.l and a=0.9. Such a wide range of values of a could not really occur near the 
preamplifier break point, but we wish to demonstrate the most unfavorable case of low 
energy and a wide range of a. One sees that there is no discemable dependence on a, 
and that the value of u, is close to 1 ns, as expected. Note that in reality there will be 
a continuum of rise times between the two gain regions of the preamp, which may widen 
this distribution for certain energies, but it is unlikely that this will be a significant effect. 

In summary, there are two solutions to the problem of timing shifts introduced by the 
distortion of the waveform at high signal amplitudes. Either is sufficiently accurate to 
permit unambiguous identification of the bunch crossing. 
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