

GEM TN-93-416

An Approach to Muon Reconstruction
in the GEM Muon System

Jin Chu Wu
Physics Computing Department

Physics Research Division
Superconducting Super Collider Laboratory

Dallas, TX 75237

June 1, 1993

Abstract

We study an approach to reconstruction of muons in the muon system
of the GEM detector. A circular cluster searching algorithm, the traceback
straight-line least-distance-squares-fit muon-track-finding technique, and re­
covery of the muon momentum using the inverse conformal transformation
are discussed. The efficiency of finding muon tracks can reach as high as
98%.

1

The essential structure of the GEM muon system is the three superlayers of multiple detectors,
located outside the calorimeter, surrounded by the large open solenoid magnet with a shaped field in
the forward direction, and divided into the barrel region in the transversal direction and the endcap
region in the longitudinal direction. In this article, we study an approach to find muon tracks from all
hits appearing on all three superlayers, and then reconstruct muon momenta. As an approximation,
we may analyze data only on the (x, y) plane, i.e., the</> projection plane. Therefore, it is understood
that the z coordinate of hits can be ignored in the following context.

First of all, we develop a circular cluster searching algorithm, and apply it to cluster all hits on
each superlayer respectively. Secondly, we use the straight-line least-distance-squares fitting method,
and trace backwards from the 3rd superlayer (i.e., the outer superlayer) to the 2nd superlayer (i.e.,
the middle superlayer) and down to the 1st superlayer (i.e., the inner superlayer) to find muon tracks.
And finally, we recover the muon momenta using the inverse conformal transformation.

1 Cluster Hits

To find muon tracks from hits on superlayers, these hits must be grouped in such a way that
"muon hits" can be distinguished from hits of background. There are several ways to do so, for
instance, the</> histogramming method[l], etc ..

However, according to the essential features of the GEM muon system, our motivation is to cluster
hits on each superlayer, respectively, with such appropriately small circles that a circle, in most cases
there is at least one circle, can contain, say, at least two hits, which are supposed to be good "muon
hits". Then the straight-line least-distance-squares fitting method can be applied to these hits, and
this can be a good start for finding muon tracks.

To develop our circular cluster searching algorithm, we shall discuss the definition of cluster, the
circluar cluster searching algorithm, and its implementation.

1.1 The Definition of Cluster

All Euclidean points belong to the same cluster, if and only if the Euclidean distance between
any two points among these points is less than or equal to a certain length l.

This is only the necessary condition, but not the sufficient condition for that points are located
within or on a circle with a diameter l - the same length as stated in the above definition. For
instance, three vertices of an equilateral triangle with side f can not be all sitting inside or on a circle
with a diameter l simultaneously. However, in practice, we can always adjust the radius of a circle
to include or exclude some points. Therefore, it is fair to say that we use circles with radius r to
search clusters of points which are subject to the above definition.

1.2 The Circular Cluster Searching Algorithm

The objective of the circular cluster searching algorithm is to cluster a set of points using circles
with radius r under the above definition. Suppose that there is a point set P. We pick up a point
from Pin an order, say, the "first come, first served" order. At the very beginning when there is no
existing cluster, this point is put as a new cluster. Otherwise, we determine whether to accept this
point to an existing cluster or not. That is to say, we calculate the Euclidean distances between this
point and all points in a cluster. If none of distances is greater than 2r, then this point is accepted
to this cluster, and a next point is picked up from the left-over point set. Otherwise, we consider
the relation of this point with the next existing cluster. If there is no next cluster, then this point

2

is just put as a new duster. Such a routine goes on and on, until all points in the point set P are
considered. Written in pseudo-code, it reads as follows.

CCSA(P)

1. pick up a point p1 from the point set P

2. make P1 be a new cluster

3. for each point p E {setP - pi}

4. for each existing cluster C
5. calculate distances between p and all points in cluster C

6. if any one of distances is greater than 2r

7. then go to statement 4

8. else accept point p to cluster C

9. go to statement 3

10. make p be a new cluster

It is not too difficult to figure out the complexity of this algorithm. At the ith loop indicated by
the statement 3, i points have already been grouped into clusters. So within this loop, to determine
which existing cluster the new point belongs to, or if this new point does not belong to any existing
cluster, the number of computing distances can not exceed the number i. And for the total of n
points, where n is greater than 1, it requires n - 1 such loops, therefore, in the worst case, the total
number of calculations of distances is 1 + 2 + · · · + (n - 1). So, ultimately it comes up with that the
complexity is 0(n2).

This cluster searching algorithm does depend upon the order of taking points from the point set
P. That is, if the order changes, the resultant clusters may be altered. We can change the order of
picking points from the point set P to make several iterations for finding muon tracks. However to
our experience from all tests up to now, one iteration is good enough.

Certainly, the resultant clusters vary with the size of circles. The radius can neither be too large
nor too small. Otherwise, either "muon hits" can not be distinguished from other background hits,
or no circle can contain at least two good "muon hits". In our tests, the size of radius varies among
3.0, 2.75, 2.5, 2.25, and 2.0 cm. That is to say, if using circles with radius 3.0 cm can not find a
muon track, then we try using circles with 2. 75 cm, and so on.

1.3 Implementation of the Algorithm

This algorithm can be easily implemented in the programming language C with the feature of
dynamic data structure[2). However, it is not too economic to implement it in Fortran 77.

1.3.1 c
We define two data structures: pointstruct and clusterstruct. The data structure "pointstruct"

plays the role of a point, and its single-linked list forms a cluster, which expands as a new point joins
in. The data structure "clusterstruct" links all heads of clusters into a list, which grows as a new
cluster is created. The whole dynamic picture is depicted in Figure 1.

The major part of the code, i.e., the function "searchcluster", is presented in the following:

struct pointstruct {
float xyz [3] ;

3

I 0-- 0-- 0-- •••

I 0-- 0-- 0-- 0-- 0-- •

•
•

• •

Figure 1: The dynamic data structure of clusters in C. The big circles stand for "clusterstruct", and
the small circles represent "pointstruct".

struct pointstruct •next;
};
struct clusterstruct {

int numpts;

};

struct pointstruct *front;
struct clusterstruct •next;

float radius;
int numcluster = O;
struct clusterstruct •cluster;

int searchcluster(float •);
struct pointstruct •mallocpoint(float •);
struct clusterstruct •malloccluster(struct pointstruct •);
float distance(float *• struct pointstruct •);

I• Search cluster. •/
int searchcluster(float •xyz)
{

float diameter;
struct pointstruct •npoint 1 •ppoint;
struct clusterstruct •neluster 1 •pcluster;

diameter = 2.0 • radius;

if (cluster == llULL) {
cluster= malloccluster(mallocpoint(xyz));

} else {
for (ncluster = cluster; ncluster != NULL; ncluster = ncluster->next} {

pcluster = ncluster;
for (npoint = ncluster->front; npoint != NULL; npoint = npoint->next) {

ppoint = npoint;

4

}

}

if (distance(xyz, npoint) > diameter)
break;

if (npoint == NULL) {
ncluster->numpts += 1;
ppoint->next = mallocpoint(xyz);
break;

}

if (ncluster == NULL)
· pcluster->next = malloccluster(mallocpoint(xyz));

}

return O;
}

where the parameter "radius" is an input; the global variable "cluster" has the address of "the first
cluster", i.e., the address of the big circle at the upper-left corner in Figure l; *(xyz + i), i = 0, 1,
2, are the Cartesian coordinates x, y, and z of a new point; and the number of points in a cluster,
"ncluster-->numpts", is incremented by 1 as a new point is accepted into this cluster. Other functions
"mallocpoint(fioat *)" - allocate memory for a point and assign values to its (x, y, z) coordinates,
"malloccluster(struct pointstruct *)" - allocate memory to a cluster head, start counting the number
of points in a cluster, and make it point to the first point of a cluster, and "distance(float *, struct
pointstruct *)" - calculate distance between the new point and a point in the cluster, can be written
easily. The global parameter "numcluster" - the number of clusters, is computed in the function
"malloccluster".

This function "searchcluster" acts like a generator of clusters. That is to say, once given a new
point, "searchcluster" puts it into a cluster, and the initial address of a group of clusters is indicated
by the global variable "cluster".

To sort clusters in the descending order of numbers of points in clusters, we can define a data
structure as

struct sortstruct {
int numpts;
struct clusterstruct *address;

};

and allocate a memory block to "numcluster" of such objects. Then we make each of them point to
a cluster head in the order which appears in the list of heads of clusters, and record the number of
points in the cluster in the entry "numpts" of each object correspondingly. Since all these objects
are in a contiguous memory block, they can be specified by indices using address arithmetic. So now
we can sort these objects, therefore clusters, by applying, say, quick sort algorithm.

1.3.2 Fortran 77

Since Fortran 77 does not incorporate dynamic data structure, we must manipulate arrays instead.
To define a static data structure for a point, we may use a nonstandard statement such as[3]

5

structure /one_point/
double precision xyz(3)
integer cltnam

end structure

record /one_point/ points(maxpts)

where "xyz(3r records the Cartesian coordinates of a point, the entry "cltnam" is the name of the
cluster, i.e., the index of the order that the cluster, to which this point belongs, is constructed, and
the. pre-defined parameter "maxpts" is the maximum number of points which can be clustered in the
code.

Once data structure is defined, we may implement the above algorithm. However, manipulation
of arrays causes lots of overhead inevitably.

Fortran 90 incorporates dynamic data structure. We leave this to the future investigation.

2 Find Muon Tracks

The muon trajectory on the 4> projection plane, in spite of the inhomogeneity of the magnetic
field in the forward direction, is supposed to be a circle which goes through the interaction point
(IP). Since the radius of the muon track is much larger than the thickness of the superlayer in our
GEM muon system (that will be seen in the following calculations), the arc of the circle cut by the
superlayer can be approximately treated as a segment of a straight line. Due to multiple scattering
effect, "muon hits" are bouncing around such kind of straight line on each superlayer. Therefore,
after clustering hits on each superlayer, those points in a cluster should be fit by a straight line,
if they can. After that, "muon hits" are selected from the 3rd superlayer, tracing back to the 2nd
superlayer, and finally to the 1st superlayer.

2.1 The Straight-Line Least-Distance-Squares Fitting Method

Fitting a bunch of points to a straight line, there are several ways to do so(4], for instance, the
least-squares fitting, the chi-square fitting (with known measurement errors only in y coordinate, or
with known measurement errors in bothy and x coordinates), and the robust fitting, etc .. However,
in our case, at the current stage, only are the x, y and z coordinates of hits on three superlayers
from simulations given without any information regarding errors of measurements of coordinates.
On the other hand, the chi-square fitting of straight line with known standard deviations in both
coordinates can cause intractable nonlinear equations. Therefore, we develop the straight-line least­
distance-squares fitting method.

The idea of the straight-line least-distance-squares fitting method is to fit points with a straight
line in such a way that the sum of squares of distances from all points to the straight line gets
minimized. Suppose that the straight line which fits points is

y=a+bx (1)

At first sight, it seems that vertical lines with infinite slope are excluded. However, if we cope with
this problem very prudently, vertical lines can be taken into account, as we shall see in the following
discussion. Thus, given a set of coordinates (x;, y;), i = 1, · · ·, n, the least-distance-squares merit
function is,

d?(a b) = ~ (y; - a - bx;)2
'L.J b2 +1

1=1
(2)

6

We have squared the distance from each point to the above straight line Equation(!) to make calcu­
lation much easier, and this will not affect the result too much.

The coefficients a and b are determined by minimizing d2(a, b) in Equation(2), i.e., taking deriva­
tives of d2 (a, b) with respect to a, b and setting them to be equal to 0,

8d2(a, b)
8a

8d2(a,b)
ob

= t2(a+
2
bx,-y;) =O

i=l b + 1

= ~ [2(a +bx; - y;)xi _ 2b(a +bx; - y;)2
] = 0

{;;;. b2 + 1 (b2 + 1)2

We define the following average sums:

n

x = L:xifn
i=l
n

fj = "'£ y;/n
i::l

With these definitions, Equation(3) and (4) become

a= -bx+ y

n n n

I: l<x• - x)y,J b2 + "'£ l<x• - x)x; + cv - Y•lY•l b +"'£<ii - y;)x; = o
i::::l i=l i=l

Thus the coefficients a and b can be obtained by solving these two trivial algebraic equations.

(3)

(4)

(5)

(6)

(7)

(8)

Equation(8) is a quadratic equation. The characteristics of this quadratic equation is that the
coefficient of b2 and the constant term differ only by a sign. If they are equal to zero, the primary
conclusion is that there is only one zero solution to b, assuming the coefficient of bis nonzero. However,
further study shows, this extreme case implies that a horizontal line y = fj and a vertical line x = x
are candidates for the right choice of straight line. Since we use double precision throughout our
computation, such a case rarely happens. Nevertheless, in general case, Equation(8) has two solutions
for b, which correspond to two perpendicular straight lines. This is because the product of two slopes
is -1 for this particular quadratic equation. The right choice is made by comparing sums of distances
from all points to these two straight lines and picking up the smaller one.

The uncertainty of such a least-distance-squares fitting method can be measured by evaluation
of d2(a,b)/n, where n is the total number of points. Some attention must be paid to the issue of
roundoff error, as solving a quadratic equation and writing these down to a code[4].

2.2 Tracing Back Technique

First of all, we need to do some quantitative calculations to establish grounds for the technique
that we shall present. Suppose that the IP is at the center of the muon system, and the magnetic
field throughout the muon system is homogeneous, therefore the trajectory of muon is a helix, and
its projection onto the <P plane is a circle through the origin, as depicted in Figure 2. The tangential
line of the circle at the middle point P of the arc, which is the segment of the circle cut by the
superlayer, can be considered as the straight line which fits "muon hits" on that superlayer, since
the radius of the circle is much larger than the thickness of the superlayer in our circumstances as
will be stated in the following.

7

0

Figure 2: Muon trajectory on the <P plane in the muon system. Point 0 is the IP, and the rightmost
point is the center of the circle.

The angle between two tangential lines of the neighbor superlayers is calculable. Let us first take
a look at the barrel region. As is well-known, the transversal momentum Pr of charged-particle
muon and the radius R of its track in a constant magnetic field B are related by

Pr= 0.3BR (9)

where Pr is in GeV /c, Bis in tesla and R is in meters. Since in our case Bis 0.8 tesla, so the radius
of curvature R becomes known with respect to different Prs. On the other hand, the center angle
a in the circle subtended by the chord £, which is from the IP to the above middle point P, can be
expressed in terms of radius R by

. (0.5£;)
a; =2arcsm R i = 1,2,3 (10)

where i represents the corresponding superlayer. In the barrel region,£; are 4.181, 6.3345, and 8.489
meters respectively. In the meantime, the angles in degrees between two neighbor tangential lines
can be calculated using

Angle;, i+I = 180° - (a;+l - a;) i = 1,2 (11)

8

where Angle12 is the angle between the 1st superlayer and the 2nd superlayer, and Ang/e23 is the
one between the 2nd superlayer and the 3rd superlayer. Therefore, the angles Angle;, i+l can be
determined as long as PT is specified. The results are listed in Table 1. From Table 1, we can see
that the radius of the muon track is much larger than the thickness of superlayers, which is about
0.4 meters in the barrel region. At 10 GeV PT, the angle is about 177°, and at above 50 GeV, angles
are larger than 179°. That is to say, three straight lines with respect to three superlayers lie almost
along the same straight line.

I PT (GeV /c) 10 I 50 I 100 I 500 I 1000 I
Radius (m) 41.67 208.33 416.67 2083.33 4166.67
Angle12 (deg) 177.033 179.408 179.704 179.941 179.970
Angle23 (deg) 177.025 179.407 179.704 179.941 179.970

Table 1: Angles calculated in the barrel region.

In the endcap region, neglecting the inhomogeneity of the magnetic field, the trajectory of muon
is still a helix, and its ¢ projection is still a circle. The only difference is that the helix distance
becomes larger due to relatively larger longitudinal momentum of muon. This changes the above
i;,i = 1,2,3 accordingly. The zenith angle in the endcap region varies from 9.4° through 29.8°. The
distances of the middle points of three superlayers in the endcap region from the origin are 6.565,
11.140, and 16.475 meters, respectively. At different zenith angles, these three distances correspond
to different sets of three distances, i.e., different i;s, i = 1, 2, 3, on the¢ projection plane. This causes
different results of angles between two neighbor tangential lines. After comparison of results, we may
see that the worst case when angles between two neighbor tangential lines get minimum is at the
zenith angle 29.8°. In this case,£; are 3.760, 6.380, and 9.435 meters respectively, and the results
are presented in Table 2. It follows from Table 2 that the fundamental feature of muon trajectories
projected onto the ¢ plane in the barrel region remains unchanged in the endcap region.

I PT (GeV /c) 10 I 50 I 100 I 500 I 1000 I
Radius (m) 41.67 208.33 416.67 2083.33 4166.67
Angle12 (deg) 176.390 179.279 179.640 179.928 179.964
Angle23 (deg) 175.779 179.160 179.580 179.916 179.958

Table 2: Angles estimated in the endcap region.

These quantitative results are confirmed by our test on about 100 events of clean hits without
background at different levels of PT· Some graphs and histograms of distributions of angles between
two neighbor tangential lines are shown in Figure 3. The input data for creating these graphs are
based upon old geometry of GEM detector, so the resultant data are slightly different from the results
calculated in the above. Nevertheless, they match very nicely.

Based upon these grounds, now we are in the position to design our technique to find muon tracks.
Muon track is found by tracing "muon hits" from the 3rd superlayer, back to the 2nd superlayer,
and then to the 1st superlayer - treating with one superlayer at a time.

On each superlayer, we deal with one cluster at a time, and try to fit points in a cluster with a
straight line. If there is no hit on the superlayer, surely there is no need to do straight-line fitting.
If a cluster with only one point in it is encountered, certainly there is no straight line to fit it. For

9

400

350

300

250

200

150

100

50

0

10 10
Entries 76

40 """" 1 .6
RMS 1 25

35

30

25

20

15

1 0

5

0
400 500 600 700 800 100 120 140 160 180

Figure 3: The clean muon tracks and histograms of distributions of angles between the 1st and the
2nd superlayer. The top row is at 10 GeV Pr, and the bottom row is at 50 GeV Pr.

10

each cluster which contains at least two points, points in it are fit by a straight line using the least­
distance-squares fitting method, under the constraint that the fitting uncertainty as stated in the
above must be less than a certain small value, which is set to be 1.0 cm throughout our calculations.
Such an upper limit of the fitting uncertainty 1.0 cm is determined by means of testing on different
input data. If the fitting uncertainty is greater than or equal to 1.0 cm, we still claim that there is
no straight line to fit this cluster. Thus, if there does exist at least one cluster on each superlayer, in
which points can be fit by a straight line under the above constraint, a cluster on each superlayer is
chosen according to the selection rule that we shall state.

On the 3rd superlayer, we choose such a cluster that its fitting straight line is closest to the IP,
by determining the distance from the IP to it. This straight line is a good starting line for finding
muon track on this superlayer. Then, the so-called adjustment routine is applied to include as many
points as possible to reconstruct a muon track on the superlayer. As an intialization, let a point set,
S, be the chosen cluster. And suppose that the slope of the straight line, which fits those points in
the chosen cluster, is k. For each point on the superlayer, which has not yet been considered if it
is accepted to the point set S, we put it with points which have already been in S together, and fit
these points with a straight line using the least-distance-squares fitting method under two conditions:
the fitting uncertainty must be less than the upper limit 1.0 cm, as well as the difference of the slope
of the new fitting straight line with the original k must be less than an upper limit 0.01, which is
also set by means of testing. If both conditions are satisfied, then this point is accepted to the point
set S. After all points on this superlayer are exhausted, points in the final point set S are considered
as "muon hits" on this super!ayer, and the fitting straight line to these points is considered as the
"muon track" on this superlayer.

On the 2nd superlayer, we pick up a cluster in such a way that the difference between the slope
of the straight line which fits points in the cluster and the slope of the straight-line "muon track" on
the 3rd superlayer gets minimum. However, if there is no "muon track" on the 3rd superlayer, the
same criterion of choosing a cluster for the 3rd superlayer is applied to the 2nd superlayer. Taking
the fitting straight line to this selected cluster as a good starting line, the above adjustment routine
is once again employed to expand "muon hits" on the 2nd superlayer as many as it could, and after
that the straight-line least-distance-squares fitting method is applied to the new set of "muon hits"
to obtain the "muon track" on this superlayer.

On the 1st superlayer, the analogous procedure to the one for the 2nd superlayer is processed.
From Table 1 and 2, it follows that at PT higher than, say, 50 GeV, there is no problem about

such selection rule that the "muon track" on the 3rd superlayer should be closest to the IP and the
slope of the straight-line "muon track" on the lower superlayer should match the slope on the higher
superlayer. At lower PT, say, 10 GeV, it seems to be not quite appropriate. However, at such lower
PT, the background should be much less, therefore this selection rule would not cause too much
problem. Nevertheless, the further investigation is under way.

In addition to that there must be three "muon tracks" on three superlayers, one more condition
that the difference between Angle12 and Angle23 must be less than or equal to 1 degree is imposed
globally. This is supported by both the results as shown in Table 1 and 2, and all the testing that we
have ever gone through. Once all these conditions are satisfied, we then claim that the muon track
is found in this event.

2.3 Graphs and Efficiencies

How muon tracks penetrate backgrounds can be visualized using our codes in the interactive
mode. Figure 4 shows some samples that muon tracks are found at 1 TeV PT in the very bad
background.

11

100 1200
e

0 e 1000

f'$'
0

-100 • 800 - 0
e

600 -200 0 ,,0
41 ~

400 0

-300 e 0

200
-400 e e

0

400 600 800 -500 0 500

200 800

0 • 100 8 600

400 e
0 ct <%:>

••
-100 200

-200 0

-300
-200

400 600 800 -250 0 250 500 750

Figure 4: Muon tracks are found at 1 TeV PT in the very had background.

12

About the efficiency, we test at Pr of 100, 500, and 1000 GeV. And the total number of input
events is 2264, ~65, and 2178, respectively. The total efficiencies and the relations of the efficiencies
versus the pseudorapidity at these three scales are presented in Table 3. In general, the efficiency
decreases as Pr increases. Thls is understandable since the higher the momenta, the more irrational
the behavior. And also, generally speaking, the efficiency decreases as the pseudorapidity increases.
This is because that the hardware structure and the magnetic field in the endcap region are more
complicated than in the barrel region. Investigation on this issue is also under way, for instance,
using r = Jx2 + y2 and z coordinates other than x and y coordinates to search muon tracks in the
endcap region.

Pr (GeV /c) 100 500 1000
Total Efficiency (%) 98.6181 96.3504 96.5452

Pseudorapidity Efficiencies (%)
[0.1, 0.5) 99.1511 98.9796 98.3003
[0.5, 1.0) 99.5154 98.1675 97.5610
[1.0, 1.8) 98.7480 97.6982 97.9536
(1.8, 2.5] 95.9752 92.7957 93.1929

Table 3: Total efficiency and relation between efficiency and pseudorapidity at three levels of Pr.

3 Reconstructing Muon Momenta

As discussed above, those "muon hits", which are found using our algorithm and technique, and
form the "muon track", are bouncing around a circle on the </> projection plane in view of global
picture. The circle must start from the IP. The inverse conformal transformation can convert such
kind of circle to a straight line, and meanwhile give the quantitative relation between the radius of
the circle and the distance from the origin to the straight line. Once the radius of the circle, i.e., of
the trajectory of the muon becomes known, the momentum of the muon can be reconstructed.

3.1 The Inverse Conformal Transformation

Without loss of generality, in the x and y coordinates, the equation of a circle which goes through
the origin is,

x 2 + y2 + 2Bx + 2Cy = 0 (12)

where coefficients B and C are arbitrary real numbers, but can not be equal to zero simultaneously.
Obviously, the center of the circle is at (-B, -C), and its radius is R = ../ B2 + c2. In terms of
complex variable z = x + iy, this equation can also be written as,

zz* + (B-iC)z + (B + iC)z* = 0 (13)

Applying the inverse conformal transformation in terms of complex variable

(= .!.
z

(14)

it turns out to be
B((+ (*) + iC((- (*) + 1 = 0 (15)

13

. ~·

Written in real variables {and 'f/, that is, (== e + i11, it becomes

2B~ - 2C'f/ + 1 == 0 (16)

Certainly, this is a straight line in the { and 1/ plane, and the distance from the origin to it is

1 1
d == == 2v'B2 + c2 2R

(17)

Equation(l 7) offers us how to calculate the radius of curvature of muon trajectory in the x and y
plane.

The above inverse conformal transformation can also be expressed in terms of real variables,

x
~ == x2 + y2

-y
1/ == x2 + y2

And Equations(18) and (19) are used in our codes.

3.2 Muon Momenta

(18)

(19)

After using the inverse conformal transformation, in the { and 1/ plane, images of "muon hits"
are supposed to lie on a straight line. Therefore, in the new plane, once again the straight-line
least-distance-squares fitting method is applied. Through the above procedure, the radius of "muon
track" can be obtained. And then using Equation(9), finally the transversal momentum of the muon
is reconstructed.

We test at Pr of 100, 500, and 1000 GeV, and the distributions of reconstructed transversal
momenta of muons are presented in Figure 5. We may see that it can give us 75 to 803 of confidence.
Nonetheless the way of reconstructing muon momenta discussed here is quite preliminary at this stage,
and further study, for instance, taking more constraints and some iterations, is under way.

4 Conclusion

Our cluster searching algorithm and the straight-line]east-distance-squares fitting method have
been developed, and are applied to find muon tracks from the 3rd superlayer, tracing back to the 2nd
superlayer, and then to the first superlayer in the GEM muon system. Muon tracks can be found
in the very bad background, and the efficiency can reach as high as 96 to 983. Muon momenta are
reconstructed using the inverse conformal transformation, and it can give 75 to 803 of confidence
level.

Optimization and fine tuning need to be done. And some issues, as pointed out in this article,
need to be investigated further.

Acknowledgments

I would like to appreciate discussions with Peter Dingus, Yuri Fisyak, and Frank Paige, and thank
Peter Dingus and Yuri Fis yak for providing me their simulation data.

14

160

140

120

100

80

60

40

20

0

ID JD
Entries 2040
Mean 974.8
RMS 283.7

/ndf 138.7 I 45
Constant 119.7
Meon 96J.8
Si mo 234.4

500 1000 1500 2000

Figure 5: Distributions of reconstructed transversal momenta of muons at input Pr of 100, 500, and
1000 GeV.

15

References

[1] R. K. Bock, H. Grote, D. Notz, and M. Regler, Edited by M. Regler, Data Analysis Techniques
for High-Energy Physics Experiments, pages 180-183, The Cambridge University Press, 1990,
and references therein.

[2] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, Second Edition,
The Prentice Hall Software Series, 1988.

[3] Sun FORTRAN Reference Manual, Sun Microsystems, Inc., 2550 Garcia Avenue, Mountain
View, CA 94043-1100. Part Number: 800-5303-10, Revision A of 22 February 1991. Page 36
and page 168.

[4] William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, Numerical
Recipes in FORTRAN: the Art of Scientific Computing, Second Edition, page 178 and pages
650-700, The Cambridge University Press, 1992.

16

