
:.

GEM TN-93-379

gem

Gemgen A Generic Monte Carlo
Generator Interface Package

Irwin Sheer
SSC Laboratory

March 31, 1993

Abstract:

• _____ .__...... "' '""_. --- ,...,.., l;).......,.&.&.&l::J.._.-&a Q"&a""""&.&""' ::.&.t".&.V.&A'- U.&..&V f:>""".&&,.,.&.U"V&.

interface package is described. The package currently includes: interfaces
to both the PYTHIA and ISAJET Monte Carlo generators, a JETSET based
single particle/jet generator, an event builder, an event pipeline builder,
and a user analysis frame. Gemgen is the framework for the fast detector
simulation package gemfast being used to model the GEM detector for the
Technical Design Report.

Gemgen

A Generic Monte Carlo Generator

Interface Package

Irwin Sheer

SSC Laboratory

AbStract

Version vllO of the gemgen generic Monte Carlo generator interface
package is described. The package currently includes: interfaces to
both the PYTHIA and ISAJET Monte Carlo generators, a JETSET based
single particle/jet generator, an event builder, an event pipeline
builder, and a user analysis frame. Gemgen is the framework for the
fast detector simulation package gemfast being used to model the
GEM detector for the Technical Design Report.

Introduction
Gemgen is a generic generator interface package which includes
interfaces to both the PITHIA [1] and ISAJET [2] Monte Carlo
interaction generators, a JETSET [2] based single particle/jet
generator, an event builder, an event pipeline builder, and a user
analysis frame. Gemgen is the framework for the fast detector
simulation package gemfast that is being used to model the GEM
detector for the physics studies in the soon to be submitted Technical
Design Report (IDR).

Motivation for such a generator package includes:
• standardization of generator output,
• unbiased comparisons of different generators,
• events which include both signal and underlying minimum bias

interactions, and
• pipelines of interleaved signal and minimum bias interactions.
Gemgen has been designed to address all of the above items.

Overview
The gemgen package has been constructed in a highly modular
fashion to provide a great deal of flexibility and ease in development,
debugging and maintenance. The elements of the package are shown
in Table 1. The package consists of a number of program modules,
subroutine libraries and examples of how modules can be customized
for specific user applications. Gemgen applications are created by
linking together program modules sequentially and/or concurrently.

Gemgen modules fall into three broad categories: generators,
builders and the user analysis frame. The generators include
interfaces to PITHIA (gempyt), ISAJET (gemisa) and a single particle
generator (gemspg). The user customizable versions of these
generators are respectively: usrpyt, usrisa and usrspg. The builders
include an event builder (gemevb) and an event pipeline builder
(gemplb). The user analysis frame which can be inserted into the
data stream at any point is called usrgfa 1.

1 The initials GFA denote Generator File Analysis. The name has been retained
for historical reasons.

1

gempyt
gemisa
gemspg
gemevb
gemplb

libraries
libutg
libpyt
libisa
libspg

libgfa

Examples

usrpyt
usrisa
usrspg

usrgfa

utilities
PYTHIA interface
ISAJET interface
single particle generator
event builder
pipeline builder
generator file analysis

Table 1: The elements of the gemgen package.

Because of its inherent modularity it is possible to configure the
generator package in many different ways. In Figure 1, some
possible gemgen applications are shown.

gems pg gempyt

usrgfa emevb

usrgfa

usrgfa

Figure 1: Three different configurations of gemgen modules. Llnes
connecting the modules may be regular disk files and/or UNIX FIFO's.

As can be seen in the figure the generators are data sources and all
other modules are filters. Data can flow from one gemgen module to
the next in one of two ways:
• via a disk file or
• via a UNIX FIF02 (obviating the need for a potentially large

temporary disk file).
In the first case the modules must run sequentially while in the
latter case they run concurrently. Complex application may employ
both techniques.

2 A FIFO is a first In first out buffer. See the UNIX man pages for mknod or
mkfifo for more Information.

2

Each of the generator interfaces and the user analysis frame allow a
number of important control parameters to be set at run time (e.g.
the total number of interactions to generate, the maximum number
of generator errors, a number of selected events to generate, a
maximum CPU time, the number of events to print). These run time
parametersl are typically read from standard input as modules
initialize.

User access to generator information is via the standard FORTRAN77
/hepevt/ common block [3] or equivalent C hepevr,_struct (see
Appendices). Each of the generator interfaces and the user analysis
frame contain user hooks for default setting, initialization, event
analysis, and termination.

Generator Interfaces

Gemgen includes interfaces to the PYTHIA and ISAJET Monte Carlo
interaction generators. The interfaces standardize the input, output
and internal program structure of these very different programs. In
principle, it is a relatively straight-forward affair to create interfaces
for other Monte Carlo interaction generators.. Gemgen also includes a
JETSET based single particle/jet generator.

The single particle generator (particle gun) allows the user to select a
particle type, momentum or transverse momentum, eta, and phi
range. The particle can be stepped through these ranges or
randomly distributed throughout. If the particle is a quark or gluon
it will be fragmented.

The generators are driven by two input files. The first of these
modifies values of run time parameters . These parameters are
used to define input and output files, numbers of events to print,
debug flags, etc. The second input file contains the information that
is needed to configure the generator for the physics interaction of
interest. The first file has a standard format and many of the run
time parameters are generator independent while the second is
generator specific. In some cases the generator setup can be
appended to the run time parameter file.

1 A run time parameter Is a variable whose value may be modified at run time.
See the man page for libuL for additional information.

3

Hooks for default setting, initialization, event processing, and
termination are provided in each of the generators to allow for user
customization.

Event Builder
The event builder nominally reads interactions from two streams, a
signal stream and a minimum bias stream. The interactions are
merged by the event builder and the results are written out. To
build one event, the event builder reads one interaction from the
signal stream and a Poission distributed random number of events
from the minimum bias stream. The event builder also smears the
vertices of each interaction according to Gaussian distributions. The
means and sigmas of which are user modifiable run time parameters.

It is important to note that events read from the signal and
minimum bias stream need not have been produced by the same
generator. It is also possible to build events that consist only of
signal or minimum bias events if that is so desired.

Event Pipeline Builder

The event pipeline builder interleaves events from two streams
writing the results to a single output stream. One of the input
streams is for signal events and the other is for pileup events. Here
the term pileup is used to denote events that come from bunch
crossings other than the one of interest. Each unit in the pipeline
consists of a number of 'before' pileup events followed by a signal
event followed by a number of 'after' pileup events, where the
number before and after are user modifiable run time parameters.

User Analysis Frame

The user analysis frame (generator file analysis) reads events from
an input stream and optionally writes selected events to an output
stream. User hooks are provided for setting defaults, initialization,
event processing, and termination.

Examples
Each of the generator interfaces, the particle gun and the generator
file analysis has a corresponding example. These examples are
provided as a starting point for the user. Each contains: dummy
user routines, a Makefile to build the application, example

4

initialization files and a README file with instructions on how to run
the program. Examples may be found in the GEM tree under the
demo/gemgen directory.

References

[1] T. Sjostrand, "PITHIA 5.6 and JIITSIIT 7.3", CERN-TH 6488/92
(1992).

[2] F.E. Paige and S.O. Protopescu, "ISAJIIT-The Brookhaven High
Energy p-p and pbar-p Monte-Carlo CERN POOL WS036", CERN
Computer Centre Program Library Long Write-up W999 (1989).

[3] L.Garren, "Monte Carlo Standardization at FNAL", STDHEP 1.03,
PMOOSO, 7 Nov. 1991.

Appendix A: The /hepevt/ FORTRAN77 common block
INlEGER NMXHEP
PARAMETER (NMXHEP=20000)
COMMON/HEPEVT/NEVHEP,NHEP,ISTHEP(NMXHEP),IDHEP(NMXHEP),

& JMOHEP(2,NMXHEP),JDAHEP(2,NMXHEP),PHEP(5,NMXHEP),
& VHEP(4,NMXHEP)

INTEGER NEVHEP,NHEP,ISTHEP,IDHEP,JMOHEP,JDAHEP
REAL PHEP,VHEP
SAVE /HEPEVT/

C... NEVHEP - event number
C... NHEP - number of entries in this event
C... ISTHEP(..) - status code
C... IDHEP(..) - particle ID, P.D.G. standard
C... JMOHEP(l, ..)
C... JMOHEP(2, ..)

- position of mother particle in list
- position of second mother particle in list

C... JDAHEP(l, ..) - position of first daughter in list
C... JDAHEP(2, ..)
C... PHEP(l, ..)

- position of last daughter in list
- x momentum in GeV/c

C... PHEP(2, ..) - y momentum in GeV/c
C... PHEP(3, ..) - z momentum in GeV/c
C... PHEP(4, ..) - energy in Ge V
C... PHEP(S, ..) - mass in GeV/c**2
C... VHEP(l, ..)
C... VHEP(2, ..)
C... VHEP(3, ..)
C... VHEP(4, ..)

- x vertex position in mm
- y vertex position in mm
- z vertex position in mm
- production time in mm/c

Appendix B: The hepevt_ C struct
/*NEVHEP
/*NHEP
I* ISTHEP(..)
I* IDHEP(..)
I* JMOHEP(l, ..)
I* JMOHEP(2, ..)
I* JDAHEP(l, ..)

- event number */
- number of entries in this event */
- Status code */
- particle ID, P.D.G. standard */
- position of mother particle in list •/
- position of second mother particle in list */
- position of first daughter in list •/

5

I* JDAHEP(2, ..)
I* PHEP(l, •.)

- position of last daughter in list */
-x momentum in GeV/c */
-y momentum in GeV/c */
- z momentum in GeV/c */

I* PHEP(2, ..)
I* PHEP(3, •.)
I* PHEP(4, ..) -energy in GeV */
I* PHEP(S;,.) - mass in GeV/c**2 */
I* VHEP(l, ••) - x vertex position in mm */

- y vertex position in mm *I
- z vertex position in mm *I

I* VHEP(2, .•)
I* VHEP(3, .•)
I* VHEP(4, .•) - production time in mm/c */

#define NMXHEP

struct HEPEVT {

20000

};

int nevhep,
nhep,
isthep[NMXHEP],
idhep[NMXHEP],
jmohep[NMXHEP][2],
jdahep[NMXHEP][2];

float phep[NMXHEP][S],
vhep[NMXHEP][4];

extern struct HEPEVT hepevt_;

I* macros to provide FORTRAN like access */
#define NEVHEP hepevt_.nevhep
#define NHEP hepevt_.nhep
#define ISlHEP(J) hepevt_.isthep[(J)-1)
#define IDHEP(J) hepevt_.idhep[(J)-1)
#define JMOHEP(l,J) hepevt_.jmohep[(J)-1][(1)-1)
#define JDAHEP(I)) hepevt_.jdahep[(J)-1][(1)-1)
#define PHEP(I,J) hepevt_.phep[(J)-1][(1)-1)
#define VHEP(I,J) hepevt_. vhep[(J)-1] [(1)-1]

Appendix C: Additional Gemgen Documentation

The following gemgen manual pages are available on-line with the
UNIX man command:

• gemgen(S),
• gempyt(l), gemisa(l), gemspg(l),
• gemevb(l), gemplb(l),
• libutg(3), libpyt(3), libisa(3), libspg(3), libgfa(3).

Gemgen examples can be found in the GEM tree under the
demo/gemgen directory.

6

