
GEM TN-93-296

GEM Software Users Guide

I. Sheer, K. McFarlane
SSC Laboratory

March 1, 1993

Abstract:

The motivation for and a description of the GEM software framework is
described. This framework which has been implemented at the SSC includes the
following elements: coding conventions, distribution, documentation, examples,
organization, utilities, and version control. A description of how to get started
with the GEM software framework is also presented.

GGG EEEEE M M
G G E MMMM
G E MMM
G GGG EEE MMM
GGG E M M
G G E M M

GGG EEEEE M M

SSS 000 FFFFF TTTrI' w w A RRRR EEEEE
s s 0 0 F T w w AA R R E
s 0 0 F T w w A A R R E

SSS 0 0 FFF T WWW AAAAA RRRR EEE
s 0 0 F T WWW A A RR E

s s 0 0 F T wwww A A R R E
SSS 000 F T w w A A R R EEEEE

u u SSS EEEEE RRRR SSS
u u s s E R R s s
u u s E R R s
u u SSS EEE RRRR SSS
u u s E RR s
u u s s E R R s s
uuu SSS EEEEE R R SSS

GGG u u III II DDDD EEEEE
G G u u I D D E
G u u I D D E
G GGG u u I D D EEE
G G G u u I D D E
G G u u I D D E

GGG uuu II III DDDD EEEEE

AUTHORS
=======
I.Sheer <sheer@sapphire.gem.ssc.gov>
K.McFarlane <mcfarlan@diamond.gem.ssc.gov>

ABSTRACT
========
The motivation for and a description of the GEM software framework is
described. This framework which has been implemented at the SSC
includes the following elements: coding conventions, distribution,
documentation, examples, organization, utilities, and version control.
A description of how to get started with the GEM software framework is
also presented.

INTRODUCTION
============
The primary motivation for the GEM software framework (and GEM itself)
is to achieve physics results. Because of the scope and time scale of
the project we need to have a coherent and complete approach towards
the development of the programs that we need to get those results.

1

The aim of this document is to provide a starting point for users
unfamiliar with the GEM software framework and a reference guide for
more experienced users. The practices described herein are
recommended for private code and will be required for public code.

This document defines, and briefly justifies, approaches for:

- program structure
- operating systems
- languages
- coding conventions
- code organization
- version control
- code distribution
- documentation
- examples
- utilities.

Because the computing hardware and software changes so rapidly the the
fundamental tenet of the GEM software framework is FLEXIBILITY. To
achieve flexibility in the design of our software we must adhere to
the following principles:

* modularity,
* scalability,
* platform independence,
* language independence.

Remaining flexible will also allow us to prof it from the the emerging
standards: POSIX, X, MOTIF and OSF.

Because manpower is limited, we require a working framework that is
well defined and provides guidelines and templates for typical tasks.

Modularity:

Modular code is one of the best ways to achieve the flexibility that
we need. Maximum flexibility can be obtained by making our programs
and the code within them modular.

Consider for example the standard offline reconstruction chain for
Monte Carlo data:

- event generation
- detector simulation
- reconstruction

These three steps can be further broken down as follows:

- interaction generation \
- event building I
- pipeline building I
- geometry definition \
- tracking I hit generation I
- digitization I
- local pattern recognition \
- local fitting I
- global pattern recognition I
- global fitting I

event generation

detector simulation

event
reconstruction

For high-luminosity colliders with high collision rates, the
additional step of pipeline-building is introduced to give a series of
bunch crossings (pipeline) as input. This is not the only technique

2

needed to simulate the high-luminosity environment, but it is a basic
one.

In the past experiments have often combined all of the above steps
into a single program with many complicated switches to achieve
different purposes. In GEM we have decided instead to produce several
independent programs that can be linked together in different ways.
one advantage of having the independent programs is that they are
easier to manage, develop and debug. In addition, it is always easier
to combine several small programs into a larger one than to
disassemble a larger one into component parts.

By also taking the complementary step of defining the data structures
that are passed between the tasks, we create the possibility of
replacing a task with a different version. For example, a full
tracking simulation could be replaced by a parameterized simulation,
while leaving the reconstruction untouched. An effort is currently
underway to define general data structures.

Using many small programs instead of a few large ones normally means
that much of the steering code needs to be duplicated. However,
because most of these programs share the same basic structure:

- default setting
- initialization
- main loop

+ beginning of run
+ input selection
+ event processing
+ output selection
+ end of run

- termination

a tremendous economy of effort can be obtained by creating a generic
steering template. This also has the advantage of giving all GEM
programs the same look and feel.

Modularity within GEM programs comes by organizing related pieces of
code into a tree-like architecture such that any given branch can be
cut or grafted with relative ease. In GEM, related pieces of code are
the following:

- utility code,
- central tracker code,
- liquid calorimeter code,
- scifi calorimeter code,
- forward calorimeter code,
- global detector code,
- trigger code,
- user code.

Scalability:

By scalable we mean the ability to make many copies of a given task so
as to allow parallelism in execution. Scalable code provides
flexibility by allowing programs to be run in multi-tasking,
multi-processor environment. Care must be taken when coding so that
natural parallelisms and pipelines can be exploited. Runs and events
are trivial examples of natural parallelisms and linking together of
small programs are an example of natural pipelines.

Platform Independence:

3

GEM code has been designed to work on several different UNIX
platforms: SGI, Sun, HP, IBM, and DEC. This platform independence
gives us maximum leverage with vendors in terms of sales and service
and it allows users to choose among a variety of platforms. Because
the modular approach must depend heavily on the operating system for
specific services, we have chosen to limit the current support of GEM
software to UNIX.

Language Independence:

Various pieces of GEM software have been written in FORTRAN77 and C.
Two other languages, C++ and FORTRAN 90, must be considered for the
future. Different tasks can be performed more easily if the
appropriate programming language is used.

Adherence to strict coding conventions makes code easier to read,
maintain and debug. Also, if we wish to have tasks in different
languages interacting, we must pay strict attention to conventions for
the interfaces.

GEM SOFTWARE FRAMEWORK
======================
In the sections which follow the various elements of the GEM software
framework will be described:

.* coding conventions,
* distribution,
* documentation,
* examples,
* organization,
* utilities,
* version control.

Coding Conventions

Coding conventions are useful for making sources readable. The
following coding conventions are proposed:

The following units of measure should be the default in all GEM
programs:

- length
- time
- energy
- momentum
- mass
- angles

[m]
[s]
[GeV]
[GeV /cl
[GeV/c/c]
[rad] (increasing from 0)

Deviations where necessary must be CLEARLY marked in the code.

Symmetric matrices should be described by their lower left components.

Particle identifiers should follow that of the PDG with the STDHEP
modifications and extensions for new particles [Lynn Garren, FNAL memo
PMOOSO, Nov. 7, 1991].

The GEM conventions for FORTRAN77 coding are the following (keywords
are capitalized; this does not mean that F77 code is to be uppercase):

4

- IMPLICIT NONE (follow default typing to improve readability)
- no tabs
- 72 columns
- SAVE statements (where needed) must be used explicitly
- maximum 12-character subroutine, function and common block names
- subroutines and functions should follow naming convention
- one subroutine or function (In the case where several functions

are clearly and permanently related, these may be put in a single
file)

- no ENTRY points
- no use of alternate RETURN
- no use of NAMELIST

initialization of variables in DATA statements
- all common blocks in include files (use .inc extension)
- no assigned GOTO's (avoid goto's as much as possible)
- no arithmetic IF
- maximum 31-character variable names

common block and their variables should follow naming convention
- inline comments using'!' character
- debug lines with 'D' (or 'd') in first column
- indent code for readability
- use PARAMETERs instead of constants
- OS-specific extensions (e.g. for exception handling) to be isolated

in a function or subroutine

Subroutine and function naming conventions used by the GEM
collaboration:

All functions and subroutines in a given library should
share a conunon prefix, e.g. all routines in the generator
utility library (libutg) begin with utg.

- Where possible the following two-letter combinations should
be used to improve clarity:

ct: Central Tracker
le: Liquid Calorimeter
sc: SciFi Calorimeter
fc: Forward Calorimeter
mu: MUon spectrometer
gd: Global Detector
tr: TRigger
ut: UTility

- An additional letter may also be used to identify the project,
some examples follow:

g: Generation
f: Fast simulation
x: Geometry
h: Hits
d: Digitization

generic

Common block and their variables should share a common and unique
delimited suffix, e.g. the file paraitLxyz.inc might contain:

integer LEN_KYZ ! length of array
parameter(LEN_J{YZ=25)
common /paraitLxyZ/ i_xyz, r_xyz (LEN_XYZ), c_xyz
save /paraitLxyz/
integer i_xya
real r_xyz
character c_xyz*SO

some
some
some

integer quantity
real array
character variable

5

The GEM conventions for c coding are to be determined.

Distribution

Distribution of GEM public code shall be done on a pull only basis.
This prevents the inevitable problems that occur when remote disks
fill up. It also allow for individuals to determine the frequency
with which their code is updated. All updates of public code are
announced to a USENET news group (ssc.pdsf.gem).

Identical copies of directory trees can be maintained relatively
simply with the rdist program that is a standard UNIX command.
Since, however, rdist varies from one platform to the next there
is no simple recipe for explaining how to set up a scheme for
getting a copy of the GEM tree to a remote site.

Once you become familiar with your flavor of rdist the following
information will help you get and maintain a copy of the GEM tree
at you local institution:

* To use rdist you must setup a .rhosts files on your local
machine.

* There is a master GEM tree maintained at the SSC for each
supported UNIX platform. These trees are accessible via:

hp any pdsf hp node (i.e. cshpl3.pdsf.ssc.gov)
sgi any pdsf sgi node (i.e. dssgO.pdsf .ssc.gov)
sun any pdsf sun node (i.e. cssn06.pdsf .ssc.gov)
dee sscuxl. ssc .gov
ibm sscrsO.ssc.gov

(Provided you have an account on the machine.)

* /gem on any of the above machines points to the GEM tree.

* If you want your tree updated on a regular basis (e.g. every
night) you can use cron to execute rdist as a remote command
on the source node.

Note to HP users: HP machines do not come with rdist by default. A
public domain version of rdist is available on pdsf in the /usr/local
directory.

Documentation

With the very large number of end users of GEM software it is
essential that we maintain complete and up to date documentation on
the following items:

- subroutines and functions,
- conunon blocks and global variables,
- data cards,
- data structures,
- program flow,
- algorithms,
- user entry points.

The GEM standard is that the source for each item must contain its own
documentation (be self-documenting) to an extent that goes beyond
comment lines. A method for doing this has been devised which allows

6

automatic extraction of the self-documentation text into other
documents {e.g. man pages); it is implemented in the various
templates. This is done by introducing semaphore into code, inside
comment strings, to delimit lines of code and comments that will be
later extracted (with the gemxdoc utility) when building a manual
page. The language-independent semaphores that we use are:

(+doc.)
(-doc.)

- to mark the start of the extraction region
- to mark the end of the extraction region

For this to work properly the code and the comments inside the
delimited region must be coherent when extracted.

Examples

Working examples are located in a obvious place (/gem/demo) section).
These examples serve the following purposes:

- starting point for new users,
- reference for experienced users,
- tests of new software,
- archive of programs used for production.

Organization

All public GEM code is stored in one directory tree to make locating a
given piece of code as simple as possible. The GEM environment
variable is a pointer to this tree. Where possible a symbolic link
/gem will also be defined that points to the GEM tree. The top level
directory contains the following subdirectories:

- bin
- contrib
- CVS

- demo
- doc
- etc
- include
- info
- lib
- man
- src

link directory to utilities/executables
source tree for contributed software
link to master source repository for gem code
link directory to examples
link directory to miscellaneous documentation
link directory to miscellaneous files, including templates
include files for contributed software
info files for contributed software
libraries for contributed software
link directory for documentation
source tree for gem code

This documents, for example, would be found under the /gem/doc
directory. To allow for different compilers a master GEM tree of
frozen software is maintained for each of the supported architectures.
At the SSC /gem will normally point to the correct tree.

The src directory contains subdirectories for each GEM project.
Currently the following subdirectories exist:

- gemutil GEM utilities
- gemgen GEM generators
- gemfast GEM fast simulation
- gemsim GEM full simulation
- gemrec GEM reconstruction

Deep in the tree version number are used to keep track of frozen
versions of the code. These version numbers are used explicitly
in Makefiles in order to make GEM code reproducible.

Utilities

7

In many respects utilities are responsible for holding together the
GEM software framework. Extensive use is made of the make utility for
building executables, etc. The man utility is used for on line help.
Version control is accomplished with the CVS utility. In addition,
many GEM utilities help for GEM specific tasks. Some useful gem
utilities are listed below:

- gemf77
- geml77
- gemxdoc
- geminstall
- gemadm
- gemctrl

platform independent interface to f77 compiler
platform independent interface to f77 linker
extract documentation from files
install file in GEM tree
invoke gemadm shell
multi-tasking process control

Note to dee users: Since dee's version of man does not support the
MANPATH environment variable you must use 'man -P /gem/man' which you
may want to alias to gemman and save some key strokes.

Version Control

Version control via the CVS package provides the GEM software framework
with the following functionality:

permanent archive of all stable versions of the software
- access control to limit the number of people modifying the code

allow for merging of concurrent modifications
- allow for branching of versions
- allow for building software configurations
- allow for distributed software development
- keep track of modification history

Additional information regarding CVS is available in the post script
file /gem/doc/cvs.ps and from the cvs{l) man page.

It is strongly recommended that a code management tool such as CVS be
used for private code as well. This protects code from accidental
deletion, allows previous versions to be recovered and documents
changes.

GETTING STARTED

To get started using GEM software you need to know essentially two
things:

1.) How to set up your environment so that things work.
2.) Where to find template files so you can begin coding.

gemsetup

To take advantage of GEM utilities, you must first insure that
you have properly set up your environment. This can be done by sourcing
one of the following files at login:

/gem/etc/gemsetup.sh
/gem/etc/gemsetup.csh -

sh, ksh, bash, ... users,
csh, tcsh, ... users.

This will setup a number of GEM specific environment variables. And it
will modify your PATH/MANPATH environment variable so the you shell knows

8

where to find GEM utilities and documentation.

Unix provides many choices for the user environment. For example,
there are several available shells. There is currently no requirement
to use a particular shell; many users prefer other shells to the
Bourne shell (e.g. csh, tcsh, ksh, zsh). However, it is reconunended
for reasons of portability that shell scripts run under the Bourne
shell and that make files also use the Bourne shell.

gemtmpl

Template files have been created for most of the code that will need to
be written. These files insure that RCS variables are embedded in
headers and it also encourages proper documentation of source code.
The following template files may be found in the /gem/etc directory:

gemtmpl .c
gemtmpl.f
gemtmpl .make
gemtmpl .man
gemtmpl.rtp
gemtmpl.tex
gemtmpl.sh

RCS

c function
FORTRAN subroutine/function
Makefile
Manpage
Run-time parameter file
LaTeX file
Bourne shell script

/gem/cvs/gemutil/gemswdoc/gemswdoc.txt,v
$Revison$, 1993/02/27 00:03:48
sheer, , Exp
gemswdoc.txt,v
Revision 1.3 1993/02/27 00:03:48 sheer
Abstract added. VlOO version. To become GEM/TN.

Revision 1.2 1993/02/22 21:00:20 mcfarlan
Add comments on private code management

Revision 1.1 1993/02/18 14:44:16 sheer
Initial version

9

