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Abstract: 

The chambers with cathode readout are a good alternative to the 
drift chambers of muon detector systems for the future colliders SSC or 
LHC, due to their high position resolution. The straw chambers with strip 
readout possess a big advantage over, for example, honeycomb strip 
chambers: if one chamber is damaged the other chambers continue working 
due to the external strips. While processing the experimental date we have 
used only induced signals on three significant strips; for big detectors, it 
would avoid the storage of a great amount of information per event. The 
position resolution computing was done with the centroid and charge-ratio 
methods. In this article we present both methods in connection with the 
straw chamber particular case. 
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1. INTRODUCTION 

The chambers with cathode readout are a good alternative to 
the drift chambers of muon detector systems for the future col­
liders SSC or LHC, due to their high position resolution. The 
straw chambers with strip readout possess a big advantage over, 
for example, honeycomb strip chambers: if one chamber is dama­
ged the other chambers continue working due to the external 
strips. 

While processing the experimental data we have used only in­
duced signals on three significant strips; for big detectors, 
it would avoid the storage of a great amount of information 
per event .. The position resolution computing was done with the 
centroid and charge-ratio methods. In this article we present 
both methods in connection with the straw chamber particular 
case. 

2. EXPERIMENTAL SET-UP 

A vaste description of our experimental set-up is gi­
ven in [l]. The straw chambers 10 mm in diameter were const­
ructed of mylar with a 0.1 µm aluminium film, partially cove­
ring the circumference of the tubes. The chosen window had a 
36° open angle which was the maximum allowed angle for good 
behaviour of the chamber. The external cuprum strips were laid 
on a fiber glass support and were normal to the anode wires. 
The evaluation of the position resolution was done for 3, 4 
and 5 mm strip pitches. Here we present the best results, achi­
eved for the strip pitch of 5 mm; this is in agreement with 
those reported in (2]. 

The signals from the three adjacent strips have been fed to 
CAHAC ADCs (ORTEC) after passing through charge preamplifiers 
and amplifiers. The information was stored on tape for subse­
quent off-line processing. 

In our testings we have used a gas mixture Ar/CH, (50/50) 
at 1 atm. 

The chambers were tested with narrow X-ray beam (8 KeV) with 
< 100 µm at FWHH, passing through the chamber normal to the 
anode wire. 
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3. PROCESSING METHOD 

In processing, only those events were taken into account 
when the induced signal on the middle strip was equal or gre­
ater than the corresponding ones from the adjacent strips. 
This condition was not fulfilled for all the events when the 
strips were uniformly irradiated, or when the narrow X-ray beam 
was between two strips. 

For position resolution we have used two algorithms: the 
centroid method [3] and charge-ratio method, improved by H.van 
der Graff et al. [4]. 

3.1. Centroid Method 

The avalanche position in the centroid method is found fit­
ting a Gaussian curve to the charge induced on the three more 
significant strips. 

ln Q L - ln QR 
x = w ~~~~~~~~~~~ (1) 

2(ln QR - 2ln QM + ln QL) 

where: 
w is the strip pitch 
QM• QL and QR are the charges induced on the middle, left 

and right strip; QM~~ (°i.). 

As is shown in [3,5,6], in this method and in other centroid 
methods (like: center of gravity, Lorentzian curve fitting to 
the charges, parabolic curve fitting) the computed position of 
the avalanche, xc, differs from the real one, x a' This can be 
clearly seen in the case of uniform irradiation of the strips 
with a 5 mm strip pitch (fig.la). 

For an accurate estimation of the position resolution, we 
corrected this shift using an empirical transformation which 
maps the estimated centroid xc onto the avalanche position X 8 
[6]. This transformation was obtained in the following way: 
for the uniform irradiation of the strips, dN/dx = l/k, the 
experimental distribution, (fig.la), is 

dN dN 

dxc dx8 

dx 0 

dxc 
(2) 

2 

, 

• 

• 

Taking into account that at the edges of the strips Xe= 
= x,. = ±w/2 and from (2) one can get: 

f
xc 

x = k (dN/dx ) dx - w/2 
a -w/i c c 

(3) 

with 

w 
k = I 

f" 2 
(dN/dxc) dxc 

J-w/2 

(4) 

This transformation was computed for the three kinds of strips 
used in our experiment and for every signal/noise ratio. In our 
measurements no significant dependence of this transformation 
on the signal/noise ratio could be observed. 

Figure 2 shows the relation between x a and Xe, obtained by 
fitting the results from (3) with a polinomial of degree six 
for the signal/noise ratio of 50 and 5 mm strip pitch. Figure 
lb gives the distribution dN/dx after correction. c 

Figure 3 gives the dependence of the position resolution on 
the signal/noise ratio after correction for the 5 mm strip 
pitch. 
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Fig.1. Events distribution for unifol'll irradiation of the strips 
before (a) and after (b) empirical transformation. 
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Fig.2. Relation between estimated 
centroid and avalanche position. 
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Fig.3. Position resolution depen­
dence on the signal/noise ratio 
for o centroid 11ethod and A 
charge ratio method at x

8 
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For strips with a 3 ... pitch, the maximum signal/noise ratio 
was about 20 + 25 and o • 250 µm. 

3.2. Charge-Ratio Method 

When strips are uniformly irradiated, the ratio Q ,/Q H depen­
ding on QL/QH is given in figure 4a, for 5 mm strip pitch and 
S/N = 60 + 65, and in figure 4b, for narrow X-ray beam. 
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Fig.~. lbe ratio QR/~ depending on QL/QH for (a) uniform irradia­
tion and (b) narrow X-ray beam. 
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It is possible to relate the points in the precedent scat­
ter plots to the avalanche position. The angle 

a = arctg 
(l - QR/QH) 

(5) 
(1 - QL/QH) 

depends on the avalanche position x
4 

• The induced charge along 
the X-axis (normal to the strips) is of the form [5]: 

Q = Q
8 

g f(x,x
8

). (6) 

where Qa is the avalanche charge; g, a geometrical factor; 
f, the profile of the induced charge. The charge induced on the 
i-th strip is given by the following equation: 

J
x. +w 

Q = Qa g 
1 

f(x.x,.) dx. 

xi 

(7) 

If function f is known, then it is possible to find numeri­
cally or analytically the relation between a and Xa using re­
lations (5) and (7). It was the case shown in [6], but geomet­
rical factor g was changed to obtain the minimum position re­
solution. In our case, we could not apply this method because 
we did not accurately know function f. 

One more way to determine the position resolution is to 
use an empirical relation a= a(x ) [3]. We have used the fol­
lowing expression for the 5 mm ana 3 mm strip pitches 

xa = A arctg [B(a - n/4)] (8) 

with A= 2.4065, B = 2.0995 for the 5 mm strip pitch respec­
tively A = 1.4439, B = 2.0995 for 3 mm. In processing, the 
uniformity test described in 3.1 was used. 

This method has two advantages over the first one [6): 
- it does not depend on the common bias-level substraction 
- it does not strongly depend on the cross talk. 
Figure Sa shows the avalanche distribution for the narrow 

X-ray beam estimated with the relation (l); and Sb, the cor­
responding one computed with the relations (5) and (8) after 
uniformity test. The dependence of the position resolution on 
the signal/noise ratio computed with the charge-ratio method, 
is given in figure 3. 
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Fig.5. Avalanche distribution estimated with (a) centroid method, 
a"' 135 µm (b) charge/ratio method, a"' 121µm. 

Along the strip (X-axis) the position resolution estimated 
with the charge-ratio method, gives almost the same results as 
the centroid method, excepting the points near the edges of 
the strips where the position resolution is smaller by , 10% 
than the position resolution estimated with the centroid me­
thod. 

4 . CONCLUSIONS 

The centroid and charge-ratio methods can be applied to es­
timate the position resolution for the straw chambers with 
strip readout. The second method gives , 10% better resolution 
than the first one at the edges of the strip. Its advantage: 
it is not sensitive to the pedestal substraction or to the 
cross talk between strips. It means that the charge-ratio 
method is more suitable for data processing of big detectors 
having straw chambers with strip readout. 
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