GEM TN-92-138

Electronics Trigger DAQ Meeting -
SSCL

August 4, 1992

Abstract:

Agenda, attendees and presentations of the GEM
Electronics/Trigger/DAQ Meeting held at the SSC Laboratory on August
4, 1992. Agenda Items: Preliminary Remarks-Marlow; Si Vix Status; IPC
Status; Cal Status; Level 1 Calorimeter Trigger Studies; Calorimeter Zero
Suppression Study; Datawave Study; CSC Readout Architectures; General:
What Should DAQ Include; and R&D Plans.

GEM Electronics/Trigger/DAQ Meeting

August 4, 1992

aAgenda

9:00 AM Preliminary Remarks

Status Reports:

8:10 AM Si Vtx Status
9:30 AM IPC Status
9:50 aM Cal Status

Special

10:
10:
11:
;30

1l

12:

1:

10
40
00
]y

00

4:00

Reports:
AM Level 1 Calorimeter Trigger Studies
AM Calorimeter Zero Suppression Study
AM Datawave Study
AM CSC Readout Architectures
PM Iunch
PM General: what should DAQ include
a) DAQ architecture
b} studies done and to be done
¢} software issues
d) DAQ before FYZ00x (tests, ...}
Discussion
PM R&D Plans
PM Adjourn

Marlow

Mills
Musser
Parsons

Lissauer
Prebys
Crosetto
Marlow

Botlo

Shaevitz/Marlow

AM%— KL,)[‘% e~

MNamg TN C RN

N i Ll SsC L
Ml Sheeitz Golimbin (News)
GSary iy Clte)
“hades Al UTeras~ Avstin
:;qu:me.nmw« SCL

SRR PRy
/fenﬂ #sshs Yale

Ere /e_(-\s pmu«:sktw
‘Am.c,\ Mar-'l,ﬁw Princcte v

(EINN ﬁfﬁbdf& 5l

P r-.u-f

"._'db.’_ ._.-"-'-/9 ssC /1
Viowom G0 SSLe

% it) S S‘ L
. 1‘” j r?(c\ > ¢

(4 4 /_.
- "'/"‘// / f/ % : /"?//f A
,,‘{/qf-o- = e~ ssel.

T WM S5, ‘10(.
Lot Ko Sscl

Y S L N
U108~ 05T U 183- 6089
WY-591-~ 1o 71¢-57/~&1 20
§18-356-6E80 gl gD ciftiex .tk todck 2ely
SWMH-BAIA Nea@utheR, ph. wieses. edu
NIF~7O08=(I(B Li¥-70F- 600o‘/:scwd e

:/535"4{‘ $S2 ""&-"{5“_ Py ?:CO[MIM,;

203 432 3269 Xfcz:la@ e/eée 5,/;,,&

Lo 2Se-4933% PREB SEPUPHER
p/?fw- Tl

o8 259 438 3 PUPHTPEI MAaGLOW
2IH 708 L2225 prudeL b SEUK]
214 708 6305 SHAO & SSCVX
47 GUO@ sscux|
U (e X149 sseu]
615-971-330 Buec® SACYH

24 ~ 5o p-E38] X0 yu @) sscvxy
fr2- 7Y =997 TaA §12-3 $5-%23

Si-Tracker Electronics
Development Status

Si-Tracker Electronics Development Status
7-28-92 ‘
Bipolar

Two additional topoiogies were developed and being evaluated.
(issues; bias stability and time-walk)

Two new SPICE libraries obtained from AT&T, simulations started.
(CBIC-U2, V series) :

Bid package for semi-custom ASIC(tile array-based, single channet)
being prepared to place an order before October 92

CMOS

Architectural studies continues.

SPICE simulation of the main function blocks started using UTMC.
LSI rad-hard 0.7u process under evaluation.

Conversion of the UTMC HSPICE library to PSPICE started.

Fiber Optics
- Purchased low-cost, rad-hard optical fibers for evaluation.
MCM
A realistic layout of the MCM using TI/HD! process compieted.

A new connection scheme between MCM and the strip detector
studied. -

» On Detecior

Multi-Chip Module on Detector

Silicon Strip‘ Sensor Sign

Y

Bipoiar Amplifier/
Shaper/Comparator

Y

CMOS-1
" Digital Buffer

|

Y

CMOS-2
Controiler

A

i

Optical Data Link

Cabie
Hamess

Counting -

Room

Fastbus DAC System

{100m Muit-Mode Fiber)

Clock

Bias Voltage
and
LV Power

Slow
Control

System

(Level 3 Trigger)

Trigger

10

CBIC-V ALA110 VHF Semicustom Linear Array

JiAD

az

|

BEEEE

seost mm |
PE® @b ®Wagppp e S N\

Figure 1. ALA110 Unear Arrzy Cle Layout

2 - 11

SST-11/BC-20b

CMOS-1 ARCHITECTURE

RN ~
P A A A S A A A A
TR R Y RN Y R YN NN A N
P S L

NN Y N W N N A
LSS S S ST
R R TR N Y T)

CONTROL/TEST

CLOCK, POWER, TRIGGER AND CONTROL
CLOCK, POWER, TRIGGER AND CONTROL

Los Alamos

Lno °

+A

A10

|

ATD

]

=

;o—-{m

A1O0

|

17p]
le

[Fe

e /9

P.F—mm

FT" YT AT

o)
LASTY

3

+A

r
T

1

—° NI

SPRCER

{_/ HCH
NTERCONNECT

S1 / MCH
INTERCONNECT

v wa® wem s m—m me e i e e G e WA
o s see s e— s —

MCH

CRBLE

F/0
Be

COCSLING RING

GEM SILICON TRRCKER. OETECTOR ASSEMBLY HW/SPACER

NOT 10 SCALE.
B.C. 7 G.B. / M. UK. U/20/92. DRRARN(M.J.K. 7/9/92,

L.O0S ALANOS NATIONAL LABOAATOAT IST-(1 HCOL TEAM. ASOYNB.P0 BOX 1663,L05 ALANGS NA B7SNN, FICED FWAM: CEMSSTIL_T.

14

Gl

"HDI Process Flow:

2 ~
1 -

T T RN
//11 ST ESEEIIIIILS,

/ R T NN,
I Ts s s s AP IIIYEISS

Repeat
for cach | P
layer

2222227277272

B =t ,
, 5] \\\\\\\\\\\\\\\\\\\\\\\\Q\\\
//IIIIIIIIIIIIIIII

P T)

'O\\\\\\\\'- l‘& y'\\\ [V

/// ///

" AR

Mill Substrate, - _
Deposit and Patiem Aluminum

Place and Bond Chiﬁs 10 Substrale

Laminate Kapton

Laser Drill Vias

Spuiter T, Cu; Electroplate Cu;
Sputter Ti

- Laser Expose Photo Resist and

Etch to Form Conductor Pattern

Apply Dielectric Layer

Apply Passivation,
Pattern Edge Fingers

Packagc and Test

850 nM FIBRE OPTIC INTERCONNIECT

LENS CLEAVED FIBRE

S ~ - /
oy -
Sl

P e .

T

" _LED SLEAVE
LED { .}'
200 uM (500 uM OD) SILICA FIBRE

e

—T]
HEAT SHRINK SLEAVE% N CLEAVI, & WELD

Tl opN J/
. \\\\\

6180 6/91 6192 6/93 6/94 £/95 6796 6§97

Semi Custom Bipohr‘Fab | _T
H Semi Custom Bipolar Tos:; E:
Full Custom Bid Package []
Bipoiar Full Cystam Fjabricanon [
: Bipc:ilar Waler Test [
Liogk TAgrEh) : 1
; Clock Distribytion Hybrid Circuit R&0 |
(::m:!nnI Distribution Bid Pacfkage
Clock Distribution éroducﬂon b
Clock Dfis:ribmion Test [i
CMOS-1 Tegm ’ : 1 :
- System Architecture Development :::__] i
MO FPGA Development] |
cmcjas Bid Package ||
{ CMOS Fabrieation []
ouosTest []
AC Team H !
pacReo [
DAC Production |
DAC Test [
EriQ Taam
Fioer Optics R&D
Flexible Gircuit Team
Lagder Team
MCht Toam. .) .
MCMRED [
Test Scaton Oe;dopmeﬁr L
MCM Bid Package [I
MCM Fabrication ;:
MCMTest []
Shall Team
Sheif Assembiy and Test []
Tracker [; am ‘
Tracker Assembly and Test ::

17

Central Tracker Status

19

Central Tracker Status

Analog Pipeline Prototype

8 channel, 128 deep rad-hard SCA now in final stages of
layout by ORNL in Harris AVLSI-RA process.

Design review at Harris in mid-September.

Fab run start - mid October

Preamp/Shaper Test Structure
Readout Amps
- BRREY
A o ‘
. g —
Add.
Decoding .
) ' I Y A
7mm . :
8x128 pipeline 8x128 pipeline
- Interdigitated Separate
Address pages Address Pages
Each test chip contains two readout amp types and two readout topologies
(voltage write voltage read / voitage write charge read)

21

- Central Tracker Status
Tront End Electronics

8 channel preamp/shaper prototype has been
fabricated in 2 micron ORBIT process.

Device now under test at BNL

Peaking Time: ~25 ns

Gain: 3.5V/pC

Noise: Needs optimization - shaperr
contribution too large

Modified design will be layed out in Harris

rad-hard process | T

for Oct fab run =

A\

' 20ns BOmy

Ad. Rd.
Penol;aé Qene

Y

Cu‘fa AS Teas ‘l‘k

' M’ ur &
' a@/ 0\"
ra:t

rtﬂ 330. c
i

|| |

i i

| B

o |

| |

= = + gending, $

AR .o C

- H S pende s

| [T T IRy Paiptav

1 H |

1 Read
| | aufrac
. | []

[+ |

[« | | | Rel of,

n |

8] l
I |

2

aa CA,

1 B =
[| v
] Qe Adel
a [«

n A

[, | A

o] IPC Adlolearss
Q! o

B ol

3} -

o‘r a.r /S‘k P Iq9.<

23

firam AJJ

Rolout Costrolle r
VNIRRT,

o LK (C}:,p;s Gead&r.) New werk-ig o 2.0
on ofeda.led (R7'e N L

Prcfotyec impliment len &7 be ea
’ FPGASS' 1emgcmc0m.§h“ ‘n 93/

Per.an of Adoleers Dr.‘uf-/ﬂ::p lop e
weall u.uluw«a:

Basic 9@.3-.,3&. foclinre”

M 50;&:4{/&2 wolbe qdle705s
¢ Gray code adlddrersy

24

|

80—
+5

r@

P?7 P& PS5 P4 P3 P2 P1 PO
PE gt Synchronous CET

y/D Counter

CEP

CK
7C

Q7 Qe Q5Q4Q3Q2QT Q0

4 Bit Bi A3
it Binary

Adder With A2
Fast Cary Al

AQ

WRITE ADDRESS COUNTER

2

Combinational

Logic

Combinational Logic

W7 W6 W5 W4 W3 W2 W1 W0

B2
—= B1
~—— BO

50 S1 s2 S3 §0 81 s2 S3
WRITE ADDRESS | | ’ I oFF I [l I
DECODING 255-~— 2 —
— 16:1 — 16:1
— MUX —1 MUX
—_ w/ Tri- —1 w/ Tri-
1 State —1] State
D-FF] — D-FF] -
239 —d CE 242 —— CE
sS4 sls s‘s s7 ’
40f16 [
Decoder t—
[—— B0
S0 51 S2 S3 SO S1 52 S3
D-FF | D-FF L {1
15 18—
- 16:1] 16:1
—1 MUX 1 MuX
— w/ Tri- — W/ Tri-
—| State 1 State
DFF — = DFF — —
o — CE ; — CE

26

READ ADDRESS

COUNTER
+5

PWR ON P7 P6 P5S P4 P3 P2 P1 PO

PE g Bit Synchronous CET
+5 =—4 y/D Counter CK

CEP 7C
f "Q7 Q6 Q5 Q4Q3Q2Q1 Q0

- CK 8 BIT LATCH

27

Zero Supression Studies

Eric Prebys

29

Zerc guﬁf'&&&. LON

Q‘_a % LA 6{ \QQ.._(_
—4

Erve Prebys

GEM DAQ/Tf‘l 33!"

31

One Io‘ea.: " _-,,3««-‘:?‘-"-"& Aot

ch‘}cd'w centso\ li Level 2 l

Ul Fete

poss:L‘e., L)u“‘ {:wo o‘a'\'a ’)a:\'Ls Mu"\'rac.“';uc...

Cc;* owna.\y S;S ':Uc. w.l'“a. Zevo - Suffe-SSeJ

data ?

32

;‘/\/‘J\. C n‘f’:. < Cw ‘ic Se‘l'u. r)

GEANT
L AR Ca\or.nn c.“'e.f

Ba Sc\;M , e¥<e P+
My xAn =

L-‘gus a“' Par"‘ u.

20,25 ¢4 22. g°)m }oe
08<n <12

04 =.04

G¢n¢}~“¢ p) ;“3'.'
enerqies W H

Aglo\ no;sc. -
S\nw\ cs.\'c. Pl‘c up Wi

of min. hias evew

'H-\ G Sew) le

'LS (c.vu.f" tS\,
D Mou- 'ou-

fLum‘ netse wt‘u-
4. TR-A-40 (90ws)
172,)
USe bl-po‘ar 2eco SupresSien, Le.
Keep ng;u‘ \'“ a.Ls (s.-.,....l)> flvcsla IA

33 Mote ! cluste, = S xS $owers, helll \ayens

RQ&POV\S(v e

SO GV ¥

\ © i\' C’-l.’b e

Cv

w/ l-'l’l"- Nﬁt};t
awd

50 GeV 7. No Noise or Pileup

S0

——T

30 + -

P;!e_ \Ayﬁ ——'—"‘_> b

=
i
|
|
!

w0
|
!
|
L

3

No Zero Supression
26 Mev Zero Sup.

....... 78 WeV Zero Sup.

B

&

L |
T
i
N
Ml
ML
hN |
]
i
e
M |
M]
P
i
H
i
M
H
h]
)
i
L
i
'
-4
o
P -
H—- .
P H
HE .
HE '
I3 L]
[l N
H L
.--: .
fa] 4
e !
1]
H
'

[

f-.
[
. o
1 1

Ps

o
40

] :.nl :...nin . g"':'-:r-= -
&

2 44 46

50 CeV y, Thermal Noise and Pileup

52

8
-

&
LR LA S AN A

Pl le u'ﬁ

34

v o
"‘"j_"_’l

13

LA B ot an

10

36

No Zero Supression

26 MeV Zero Supression

_____ 78 MeV Zero Supression

=200 o TUalk s B o O Wi :r'.]'_’H

e
H]
: .
H 1
H L]
: +
H 1
H Y
H st
F L I
P
F
Do
[
N B

-
4
*
4+

1.3

-

L]
o*r_rﬁj'vrrvlvv

42 44 46 48

52

Com Ouf‘&‘”

16\/

J

1 GeV 7, No Noise or Pilcup

-

100

No A/’.OI.SQ .un-

v

Y1 v v

1

. -
&0
-

Pn!e u},_) ____—a‘o'

)

No Zerg Supression

26 MeV Zero Supression (10}

78 MeV Zero Supression (3a)

)
. 2
U\JI'\J‘\ '\-"O;b{ za;-

N
B
1

::'p'-.\

\

e,

P

rY{yryyrrorrry

¢ St ,9 loc,'He./

35

T

= No Zero Supression

weeee 26 MeV Zero Sup.

T8 MeV Zero Sup.

L‘_}l\\, 'EL@.‘ Gl;-cgefchCGL .

28

N(towers)

24

20

16

12

£

N(towers) vs Threshold

No Noise in Calorimeter

B 50CGevy

A 104ev y

-
-
-
--a..----
-

X 1 1 ¥ l L T L] ' L} ¥ T i T T ¥ I' ¥ T L l [} T L { Ll ¥ L I

A l i 1 | ke, I] i L ;4 ! Lol i A [L 1 I 'l l 1 L il 1 l 1 A

0 20 40 60 80 100
' _Threshold. (MeV)

_;?_efo - Sw J;r?tc.SS;\D fow e_y\ung Y
Cede eu¥ neirse.

36

E(meas)/E(y)

—
.
-

-

0.9

0.8

0.7

0.6

0.5

0.4

E(meas)/E(incident) vs. Threshold

II'rlIl'lIll_ll'llll]"_rlT"l_l'_'—l_'ﬁ"l

1GeVy

5GeVy
10 Gevy

S0 GeV y

i_ll_l_l_L.l._lll_ll_[l

1 1 1 l 1 Y L A I J S 1 l Il L

NC A - l;KQAJ:"-’

60 80 100
Zero Supression Threshold (MeV)

gy

E(meos)/E(incident)

-
—

s

o
0

o
o

0.7

0.6

0.4

F(meas)/E(incident) vs. E(incident)

.
-

‘-

.

. .
- .

N

.
-

-

-~

RO

O o 4 »

L

\

LI

No Zero Supression Thresh.

26 MeV Threshold {10)
52 MeV Threshoid (20)
78 MeV Threshold (3a)
104 MeV Tﬁresho;d (40)

F L L] l L i i]

p—

R il e e="
- -
.-

o mr T l T r ' L] T T L | L) L™ LB L]
[B CINC I N

-
Q

20

38

S0 60
Incident Energy {GeV)

0.125

0.1

0.075

0.05

0.025

R esSo lU\ '\';of\

o(E)/E(meas) vs. Threshold

-_ B 1GeVy |

i S) \3[\-“- Jon g.‘)m Ve Meu\.'{'

— A SCeVy v

[¥ 10GevVy

I

L O 50GevVy

A e A,

- A A-r A A

I A Y

k ' TR T ¥ o R s ~ AR EE R P === - O T

-l 1 l s i 4 l 1 L L 3 I 'l L L _1 t Iy L 1 I R Ny L] m A
0 20 40 60 BO 1

Zero Supression Threshold (MeV)

39

S _');J-\.':l' cgeﬁ!eJ a¥rem

~J
o

o
-
W

o(E)/SQRT(E(meos))

0.125

0.1

0.075

0.05

0.025

o(E)/SQRT(E(meas)) vs. Threshold

_

-

- B 1Gevy

- A SGevy

- ¥ 10GeVy

- O 50CevVy

. A--_-----_---f-‘ ______________ “ ------------ .‘

[_________________ ¥ H' AT o)

- v___,.....-' .-.::.::'“ --------- - -.-"

LT et T T S0

| Q------= T LC) j _________________

[_\' ' .

- No™ <concliusive

[

r-

-l - l 3 L 1 L l 1 L L] I L 1 i — | L) | L 1 l L J I . 1 I 1 1
0 20 40 60 80 100

Zero Supression Threshold (MeV)

40

Con C ‘u.sfor\s .

» "Z@?@ “\mg_ﬁve:gaoa L«ﬁeu\c! {@C 45%*"3&}
c\f@&a&' B\a J‘&.C%MQ@. H‘-‘@ %Mmﬁw@ Q‘(

c!,@cm %Q,L reac c-u'!;".

e g‘ ﬂ”‘f' Cm'{f nﬁv“gmw.’l-neg
IK‘L rec!ucec! 15“ {%‘% &;;n.c,"f M&aH -

f".j‘l\aa-‘_'tm. pv’ec.a cia $ (_ﬂ"el e-‘-..-..\
. Neta‘-s' ‘@ L% mese $4“¢(y.

o ﬁ’\aus!'\g, c,eu\s:c'cr mere Couf)llcg‘nl

2&’@ € I ;)V €.$< 3'%" - -:a'*& 3 .i \A e

—

SR D

The pﬁyo{r-‘

N{cells) vs Threshold

55000
c .
@ - «— No Supression
O -
o
w =
°
< - . .
000 - Minimum Bias Events
Q
“5 -
5T _
g i EM C&IOr;mg4gr
= -
30000 |-
20000
" 1400 (= 3%
10000 400 (3 2)
[3 Y
- ——— ‘e
O 1 1 l £ 1 1 Il l_L N I S _{ It L 1 L l i I i l 1 1 1 [i 1 1
0 20 40 60 80 100

Zero Supression Threshoid {MeV)

Fully Pipelined and Programmable
I Level Trigger

43

SSCL-576

SSCL-576

Y

Supercbnd_ucting Super Collider Laboratory

!
H
H
£
H
¥
H

Fully pipelined z;nd programmable
I level trigger

4
¢

/
£
;

D. Croseito and L. Love

July 1992

SSCL-576

Fully pipelined and programmable I level trigger

D. Crosetto and L. Love

Physics Research Division
Superconducting Super Coilider Laboratory'
2550 Beckleymeade, MS-2000
Dallas, Texas 75237

July 1, 1992

*Operated by the University Research Association, Inc., for the U.S Department of Energy under Contract
No. DE-AC35-89ER404386.

47

DRppy

SSCL-576

Fully pipelined and programmable I level trigger

D. Crosetto and L. Love

Abstract.

The types of detectors and the physics involved in today experiments are reaching a level of cost and
compiexity so high that it is preferable to implement a programmable trigger solution at all levels rather
than a system realized with cabled logic. Experience demonstrates that often the fine tuning on the trigger
is achieved after running an experiment and analyzing the first data acquired, Since technology is advanc-
ing rapidly, it is now feasible to have some real-time programmabile algorithms down to the Level 1 trigger.
In this report a number of algorithms, for the first level trigger, using one of the most advanced chip has
been simulated.After simulation a fully pipelined and programmable Level 1 trigger system sustaining the
clock rate of 16 ns has been designed based on a modified version of the DataWave chip.

49

CONTENTS

1.0 INTRODUGCTTION. ... eeeeeeeeiviaseessasnaassssssosnssssressmmssrstsssssstassassassaseamssocsss santsassaranssansanassasasans 1
2.0 PURPOSE OF THE SIMULATTON.....ccccercitsrsnmasasssasrsrasssassnsansarasmsas s srssissssasssmmnssssssasssoess 2
3.0 PHYSICS REQUIREMENTS.....occontimnmemsssesessmsassearemsmssiassessnssassensssessmssssssnassasasssssssssonassaas 3
3.1 Electronic channel infOrmMatioN.......cocecercsrssnsssmessmessrminesssssessasscssssnsnsrmsstassessassssasmsnnansncss 4
3.1.1 Single value derived from analog AHEl.. v ettt ssaanee 4
3.1.2. Digital filter upon receiving several sampling values at the InpuL.........cceeeersuereenes 4

3.2 TOMAl EDEIZY.orereverccreacecssesramsesessrsssamasanseasssasassssssmomssaresmemesass e sasstasacassasmsamstssinsssessseassons 4
3.3 TTANSVEISE CIIETE Y eeuereeesraemssssssanssmnssssmatrsasssssnssssntesansasst foribesesssransasssatnamasssasansovassssonsss 5
3.4 Local maximum identification in 2 3 X 3 MatfX...cccvueeieemrrmrnsesrseseeessseasmrsnec s cnsanas S
3.5 EM Cluster finding (isolation) in 2 4 X 4 MAWIX...ccvrerisescceresemssistssrssanaeisasstsnsnsassnenns 5
3.6 JEUS BNAINE. ..eeeeerrvsssrecrsrmecaaeranenc s cessseraeseasasasmsssr s e nesosntneasaoemsar st s st n cre e et asansasaseasanas 6
4.0 PROCESSOR ARRAY VERSUS CALORIMETER ARRAY.....cnrvireccrircstsicssssearssanennans 7
5.0 DATAWAVE ARCHITECTURE DESCRIPTION.....ccocreeriineeranirrennansenessesamree o ceracnsansstnsns 9
5.1 DataWave INSIUCHOMS. ..ccveeevveseresersssecessaeamrcessosssstssssssmassesssessssssensesmnsassssassossanssaseasssassones 9
5.2 Optimization techniques on program speed execution in real-time computations......... 10
5.2.1 Threshold comparison and ratio calCulation.......occoeeeeeeeemreeeeesce et senne 11
5.2.2. Precalculated CONSIANLcocoveerecicrcsrvssssnsnssnismarasssaesasssesssnsessnrsssssrassasasarssnmesncees i1

5.3 Unique features of the DataWave assembly INSTUCHONS.eeveomeececcernerniasnsanece s cneas 11
6.0 DIGITAL FILTER EXAMPLESiiinerisnericmsscnscssssesmsaesenmnsmasanssss setessssnestnasasanass 12
6.1 Example of @ transverse fIlterccicirimiiiimirrinimesineiessmese e ssesns s e ar e s asstnsn s snsesassansas 12
6.2 Example of a recursive filIer.......ccooiiiismsissmiimsccin s s seessnee e s e e ner e s s srnesaes 13
6.3 Example of a digital filter on calorimeter Signals......cecveseeessrescsnesonsessnesrnremesnensssnasessesns 13
7.0 ELECTRONS TDENTIFICATION IN A 3 X 3 MATRIX (1-CELL/CHIP)....cceccovmvenvsunnnas 15
7.1 Loading “EM™ data into 1-cells per chip aITay.......cocceceeccvieccsnensimnnsiesesnene e seereessseans 15
7.2 DataWave assembly code and detailed iming deSCTIPHON.....ccveeveinreerrermsimssirsscessisssnens 17
7.3 Result analysis of electron identification in 1-cells per chip array.........ccovveivcvinrnniienns 19
8.0 ELECTRONS IDENTIFICATION IN A 3 X 3 MATRIX (16-CELLS/CHIP)........ccoesruenes 20
8.1 DataWave CRIP aSSEMDLY....coioiierieeerec et cseecens s s s sen s e s s ss s e mram s e s et naseensnis 20
8.2 Loading “EM’" data into 16-cells per chip amay. . vecieieriensscssssssessinssinssssssssesnesansns 21
8.3 DataWave assembly code and detailed timing deSCriPUON....cccvcrersreesmsenmisrsarssssssssassans 23
8.4 Code differences between the analyzed cell and others within the chip..........cccccec...0. 26
8.5 Result analysis of electron identification in 16-cells per chip aray......cccvoeveevecnerrnennnes 26
9.0 “EM” CLUSTER FINDING (TWO “EM” SUMS + FRONT-TO-BACK)......ccccvevereenenee 27
9.1 Real-time algorithm description for two “EM” sums + front-to-back veto.................... 27
9.2 Loading “EM” and “HAD" data to check “EM” sums + front-to-back............ccccecccee. 28
9.3 DataWave assembly code and detailed timing deSCIPUON.c.vvvrreeemreesaserenrsasmsrensnneens 29
0.4 Result analysis of two “EM” sums + front-to-back in 1-cell per chip armay.........cccerueee 31
10.0 “EM"” CLUSTER FINDING (ISOLATION) IN A 4 X 4 MATRIX (1-CELL/CHIP).......31
10.1 Real-ume algorithm description for “EM™ cluster 1s0lation.......oceceeri o 31
10.2 Loading “EM” and “HAD" data and routing criteria to check isolation....................... 31

ol

10.3 DataWave assembly code and detailed iming deSCripton..........ccocevvaercevrerrneresesanens 35

10.4 Result analysis of “EM™ cluster isolation in 1-cell per chip array......occcovvveveevervrenennes 37
11O JETS FINDING ...t nreincscerenscssesssnsssaesemessnsmesssmsassesasassssassesssrsssse sarsssssesssssnsrsasess 37
11.1 Real-time algorithm description for jet finding.........ccocoeeoeeeeeeeeeee et eaee e 37
11.2 DataWave assembly code and detailed description for the 4 x 4 jet finding 37
11.3 DataWave assembly code and detailed description for the 8 x 8 jet finding 38
11.4 Result analysis of jet finding in 1-cell per Chip amray.....occoveureceeeceeernceseenemeceseecsnesenes 41
12.0 “EM” CLUSTER FINDING (ISOLATION) AND JET FINDING......cccorseeerreeereeresenencene 41
12.1 DataWave assembly code and detailed timing description . .dl
12.2 Result analysis of “EM” cluster isolation and jet Anding.......coeecceceeneeccsaseerssencsesssnses 42
13.0 PROGRAMMABLE LEVEL 1 TRIGGER SUSTAINING 16 NS RATE......ccocccceeemreees 43
13.1Suggested modifications of the DataWave toFront-end processor........c.coceeeceeceecnnsenae 43
13.2 Differences on the real-time algorithm in respect to the earlier algorithm......cucounuue.nc 45
13.2.1 Assembler code of the modified DataWave for the chapter 9.0 algorithm............ 47
13.2.2. New coding of the two “em” sum + front-to-back + jet-finding algorithm..........48
14.0 CONCLUSIONS......c et s scrcrseseeosaearame s s ecramsas st sm e e amtetsraacr s roasan bt esssasesesnsssarees 53
REFERENCES

072

FIGURES

1. Conceptual VieW Of @ CAlOMIMEIET....cucerurecceecerrierssoreneccecrsnssssanemsmsssssssess s sssesssnssssmsmnnsassasasesse 1

2. Local maximum, a tower value greater than or equal t0 itS NEIGhDOLS.cveerereeeeerrceseennesessnens 5
3. Front-to-back algorithm in cluster fiNAING.......coccvevieerncicansernrnnsrenenenssmssssnesmesseressisesssensssssnsensase 5
4. Isolation algorithm in Cluster fINGING.com st nneesessnsnsesnesssssssenessanasmanasasssassnssenaen 6
5. Jetfindinginad4 x4 and an 8 X 8 rBGION....u ittt e e ce e e evsrssrme e sma e e eaneeaens 6

6. Processor array Yersus CATOTLNEGIET AITTAY . cuei meersersssssnesssssssnreensssessssssssssmmesasssssnnsmnssassessernnsensss 8
7. DataWave cell architecture.... ..o eeeceeeccomrecceermcvse e acans rvermennresssnsseasnets s e annnsan 9
8. Flow chart of a digital filter on calorimeter SIgNAlS......comuicerecrereaenrenrenensersoncrcanssessessissessssanes 13

9. Calorimeter signal digital fIIET.. ..o e srresa st e rs e s essess e e e s aas s amsnsrassenanee 14
10. Routing of data to one cell (1-cell per chip assembly)...coccoeecerccmericcecceeecert it e eeeas 15

11. Routing of data from one cell (1-cell per chip assembly)......c..coiceiececcoecnrrnrnineecmreenecrreranereees 16

12. DataWave chip assembly with 16-cell per Chip......ccorin e s reeeeeas 20
13, INET-Chip Gata floW .. e ccrecvennttner e snisis st sest et s e cecesesssesssssass s mocsnense samensamms smsmmensee 21

14. Routing of data to one cell (16 cells per chip assembly)...ccuee oot cvsaesaesnes 22
15. Routing of data from one cell (16 cells per chip assembly).....veviecenccncccmnniesireeree e cecncesaees 23

16. Electromagnetic cluster algOrtRIm.o ceeireirnernsnsmesinnsssnmasesssassssssssssansassnsesnsessesmsssssssssans 27
17. Routing data to two “EM” CELLS..ciiuenirerrersensssesvineimasessssessesnsranmasesssasensssansssstsssesmsemensssssenssssses 28
18. Isolation ClUSIEL AIZOTIAML.......ccocvrrreernerrrrissnessesrarsamneasssssrsasmansessmsssmrnsressmestsessmnsansesasarsanresses 32
19. Routing data to one cell for ISOLATION Check. ... ccencenecaretrecaaeennscnmraneesanneas 33
20. Routing data from one cell for [ISOLATION CalCulation....ue.. eecceeeeereneeeneeereeeeaesssasssessssans 34
21. Routing data for JET finding in @ 8X8 MAatMIX.......ccccceerneresssrceseercesmsneseaesaaseesaeennessssssseesssensanes 39
22. Flow diagram of the “em” cluster and et finding........ccocoecervseeiecereemcnrsssessesses ceereeevssassssseses 42
23, FrONE-CN0-PrOCESSON ... cicrerirenrencressersrssssnac s sssnesssss e stmsenscasssasssssssutsus srsssresenassssnnsesrensmssns 43

24. General scheme of the pipelined parallel processing architecture using the FEP...................... 44
25. One board of the programmable first level trigger with FEP array.....ccceoccoveeeeeemsseeeceneceeeeereennas 46
26. Timing diagram of four stages pipelined programmable first level trigger......ocuioveneececerncncnes 47
27. Flow chart of the two “em” sum + front-to-back + isolation + jet finding.....cccccvvrmreueererrenennns 49
28. Routing 4x4 sum for electron isolation and 4x4 jet finding..........ccccevertvermmecreserssmeenessnvseressenene S0
29. Routing 2x2 “em” sum for electron isoiation and 4x4 jet finding........cceoeeeeeecvmmmrerencreseresenens 5G

043

TABLES

1. Example of calorimeter SEEMENIAtION. ... vceeresirresrmssestasssssssesaecssssssssansansssssasssraseassssssnssoses 7
2. Program example of optimizing “branches’..........eiecirmeniinissnisnecsssessssessiressnesessess 11
3. Program example of using “branch” to pass a parameter.........ccccceeveessenvences . 12
4, Eample of 2 nON-TECUISIVE fLIET.ccoviericitrrecreseceresetessns s ceseessssasssstasm s sresssssasmesessnsesessens 13
5. Eample of 2 reCursive fIlIEr.icveesncsniirissrsssesssnnssissesasssrm s sasersssssunnssssesessrmvsssesnsssanenns 13
6. Example of 38 digital fllter......coucvieruisecriiiieececcsnsisssssncn s sesnssneeemsanenesseressnssennasssrsansesanssensanses 14
7. DataWave assembly code for one cell (1-cell per chip assembly).....cccccovvveniresceccnsicrscncccnnas 17
8. Total array algorithm execution time (1-cell chip as58mbly)....cccererrinenrirrescrsrirvesnssnsanons 19
9. DataWave assembly code for one cell (16-cells per chip assembly)....cccvveeererrenceccsnessncrannee 24
10. Total array algorithm execution time in 16-cell per chip assembly.....ccccvoverereececcrenrenrienennes 26
11. DataWave algorithm for “em” cluster finding (two “em™ sums + front-to-back).........ceueu..... 29
12. Total algorithm execution time for “em” clustering (two “em” sums + front-to-back).......... 31
13. DataWave assembly code for 4 x 4 Matrix iSOlatON.ccuciierceneire e sec e rrenssasros s se e nen 35
14. Total array analysis for 4 x 4 isolation algorithm....c..ccceevieoeecneccennsnns SOOI 37
15. Differences between the 4 x 4 electron isolation and 4 x 4 jet finding code.....ccccoeccnreecnenen. 38
16. Routing code for the 8 x 8 jet finding algorithm.....ccoviecem et 39
17. Total array algorithm execution time for “em” sums + front-to-back.........c.oovecierecriicrannne 41
18. Combination of two “em” sums + front-to-back + isolation + 4 x 4 jet finding.....ccceeecercvennes 42
19. Instruction set suitable for trigger algOrThImIS. ... ccoveceeee e crecr e e escaaneeensnasessesrasnansrssvons 45
20. New FEP assembler code of the four pipelined stages algorithms of chapter 5.0................... 48
21. Output codes for two “em” sum + front-to-back + isolation + jet-finding algorithm............. S1
22. New FEP assembly code of the pipelined algorithm to find Er, electrons, isolaton, jets.......52
23, Fully programmable Level 1 trigger sustaining 16 ns clocking......ccvceoimmmrecenieccenrncacscencnenee 53

09

1.0 INTRODUCTION

The Super Conducting Super Collider was built for the study of high-energy physics. Every 16 ns proton
beams will collide and the particles produced by the collision must be ideatified and studied.

Many detectors will be used to detect and identify the particles. The calorimeter (shown in Figure 1) is one
of the sub-detectors used at the SSC. The two proton beams will collide in the center of the calorimeter
sending particles to the calorimeter towers in the barrel and end caps. The amount of energy can then be
transferred through channels to digital processors, where the identificaiton of particles is begun in the
Level | riggering.

Since processor technology is advancing rapidly, it is now feasibie to have real-time programmable algo-
rithms down to the Level 1 igger. The study of this report is to take already developed off-line algorithms
and modify them for on-line use with the most suitable chip available today, the DataWave processing
chip. With a list of physics requirements (described fully in Chapter 3) and the DataWave architecture
(described in Chapter 5), we have simulated the real-time algorithms of cluster finding (Chapter 7 and 8),
isolated electron finding (Chapter 9 and 10), and jet-finding (Chapter 11) as they relate to the calorimeter.

Readers who are interested in how this state-of-the-art processor technology is suitable for this type of
application, can find a brief overview of each algorithm as it pertains to the DataWave architecture in the
first secton of each chapter, while the results of the simulation, complete with detailed timing results, are
found in the last section of each chapter. A combined test of both isolated electrons and jets is found in
Chapter 12. A suggested modification of the DataWave to a Front-end-processor for a fully pipelined and
programmable first level wigger sustaining 16 as clocking is described in Chapter 13. While an overall
evaluation of the performance of the DataWave processor array as applied to these algorithms is given in
Chapter 14, Table 23..

BARREL

/

END CaP

FIGURE 1. Conceptual view of a calorimeter

2.0 PURPOSE OF THE SIMULATION

The purpose of the simulation is to try and solve the rate requirements of the first level wigger with a pro-
grammable chip and to determine the suitability of the most advanced component available for this type of
application.

The types of detectors and the physics involved in today experiments are reaching a level of cost and com-
plexity so high that if the technology could meet the requirements, one would prefer a programmable trig-
ger solution at al! levels, rather than staying with a fixed algorithm realized with cabled logic.

Experience demonstrates that often the fine tuning of the trigger is achieved after running an experiment
and analyzing the first data acquired. With a programmable solutio, it is possible to be able to use the
same electronic (commonality) chain for several experiments. For this reason, and because all physicists
do not accept a specific type of trigger algorithm, a programmable solution is highly desirabie.

A survey on the market has been made to find which would be the most suitable component to fulfil the
requirements of the first levet trigger algorithms. Presently, there does not exist a component that can solve
100% of all the requirements. The DataWave, for its features, has been considered one of the best. In order
to verify its suitability, a series of typical algorithms for the first level trigger have been selected and tested
on the DataWave. Analysis of the results and performance may lead to an optimization of the algorithms in
order to meet the fully programmable first level trigger requirements. The DataWave component (or a
modified version of it) may be used as a preprocessor of the second level trigger or as pipelined processors
sustaining the rate of the first level trigger. '

As an exampie of programmability and scalability, typical first level trigger algorithms for identifying par-
ticies in calorimeter such as: find local maximum, calculate cluster energy, transverse energy, compare
cluster and partial sums 10 different thresholds, require that electromagnetic cluster be isolated from nearby
energy deposition, jet finding, have been simulated on two different platforms of DataWave-ITT array pro-
cessors. Some have been simulated on a platform of a DataWave array made of DataWave chips, each con-
taining one DataWave processors cell. Since the packaging (printed circuit board or Multi-Chip-Module) is
also an important issue in realizing these type of systems, some algorithis have aiso been simulated on a
second platform of DataWave array processors which assumed to use chips containing 16 DataWave cells
each. The DataWave is a data-controlled RISC processor with high bandwidth communication capability
deveioped for video signal processing.

The algorithms proposed and tested in this report are oot the only one ¢Or the best applicable o the first
level tigger. They are examples of operations and correlation of data that neads to be done for a first level
trigger decision. Is is not necessary to execute all of them, because only one algorithm is needed for each
type of information (identifying electrons, jets, etc.).

The importance of this simulation and study lies in the programmability of the system and the “real-time”
algorithm. The starting point is always the wigger off-line algorithms that require ms for execution and the
challenge is: for a given “processor architecture” and “system architecture™ which is the best and most suit-
able (to the component) conversion of the off-line algorithm to a fast and simpie “real-time” algorithm that
will still preserve a high efficiency in identifying the particles. Ratios, trigonometric functions, and other
time consuming operations cannot be performed during “real-time”. As a result speed optimization tech-
niques for real-time computations, such as precalculated look-up tables, multiplication cormparisions in
place of ratios. Finally, a design based on a modified version of the DataWave ITT processor aimed to effi-
ciently execute 1st level trigger algorithms on pipelined and programmable mode has been done.

08

2

3.0 PHYSICS REQUIREMENTS

Experiments at the SSC will have on average of 1.6 interactions during a beam crossing which occurs
every 16 ns. The triggering mechanism must be able to rapidly reduce the amount of data by discarding
unimportant data, Every 16 ns, the sub-detectors (including the calorimeter) send data to the Level 1 trig-
ger, which then must be able to distinguish between events of interest and background events.

The level 1 wigger will consider single objects (muons, photons and electrons) and combined objects (di-
leptons, jets). Any of the above may be combined with other trigger informations (minimum bias and Et
sums). The calorimeter will provide 1st level rigger informations regarding: electrons, photoas, jets, miss-
ing Et (such as neutrino).

There are many conditions to test when making the Level 1 decision. For distinguishing electrons and pho-
tons the “em” trigger tower energy must be greater than a threshold, the “had” to “em” ratio must be very
small, and if isloadon is to be achieved in Level 1, the surrounding towers must contain only small
amounts of energy. For jet identification, the sum of a tower matrix must be tested against a threshold. To
disuguish neutrinos, the Er sum must be compared with a threshold.

There exist several methods to verify the existance of such conditions. As an example of a programmable
system, a few methods that will verify these conditions will be implemented using the DaraWave parallel

processing system array.

We have implemeated two methods for cluster finding from these algorithms. The first requires that a clus-
ter is distinguished by a “hit” in a single tower with all of the energy of the cluster deposited in the sur-
rounkiing 3 x 3 tower matrix. The “center” of the cluster is found by determining the tower in the cluster
which contains most of the energy, which is called the local maximum. Further investigation will help to
identify the type of cluster (jet, electron, etc.)(1, 2].

Another method not only recognizes clusters, but also tries to distinguish between an isolated electron and
a jet. An isolated electron should be recognized by a large amount of energy deposited in a small area
(about 1 tower wide) while a jet’s energy should be spread out covering a large matrix of calorimeter tow-
ers.

This method of electron finding takes into consideration the possibility of a “hit” occurring between two
towers and hence, the epergy of the electron would be divided between the two towers. Therefore, an elec-
tron is distinguished from other particles by a 1 x 2 or 2 x 1 region containing most of the energy, while the
surrounding towers receive almost none. (2, 3] Since this algorithm must be run in “real time”, there is not
encugh time to decide whether the region is 1 x 2 or 2 x 1, and then sum the ten surrounding tower ener-
gies; these operation must be done in parallel. Therefore, an electron is considered to be isolated if the 2 x
2 “em” matrix contains most of the energy while the surrounding twelve “em” towers (in a 4 x 4 matrix)
and the 16 “had” towers contain little energy.

There exist several jet-finding algorithms. A Monte-Carlo simulation run at the SDC showed that for high
energy particies, the 8 x 8 matrix was more efficient, while for lower energy particles, the 4 x 4 matrix was
more reliable. [4] For this reason, both techniques are included in our algorithms.

Other informations regarding the first level trigger rate requirements have been learned from ref. [5, 6, 7
and 8].

29

3.1 Electronic channel information

The electronic channel information can be a single value prepocessed in analog form or a series of samples
at high rate converted into digital form upon which a digital filter will be applied.

3.1.1 Single value derived from analog filter

As has been dope in the previous experiments, analog filters, charge preamplifiers, shapers, etc. were used
to analyze the signal and geperate a single value proportiopal to the energy deposited in the calorimeter
element.

3.1.2 Digital filter upon receiving several sampling values from the input

Regardless of how the basic information generated from the calorimeter elements is treated, that is either
with an analog circuit or with digital filter algorithms, the information obtained will be a value proportional
to the energy deposited by the particle in that particular element. Furthermore the analysis of the signal
with a digital filter, will also help to recognize, from shape variable, the type of particle from which it was
initiated.

Assuming to have the signal from the calorimeter in one of the two form (the second will imply a short dig-
ital filter program described in chapter 6 to be put in frount of all the algorithm described in the following

chapters).

3.2 Total Energy

The total energy (em + had) is defined as:

n
Eror= Y, ¢, *E

imn]

where: E, is the energy of the calorimeter tower { and ¢, is the calibration constant for calorimeter tower i
and n = number of wigger towers. This is the case when the information is provided by an analog filter. In
the case where the basic information is obtained by a digitized sampling at high rate, for each calorimeter
signal, there will be an output result of a digital filter (e.g. as reported in section 6.3).

3.3 Transverse energy

Transverse energy is calculated by converting the 8-bit logaritmic EM and HAD values to a linear 12-bit
scale and multiplying by the sine of the tower angle of incidence found in the lookup table.

n
Ep= Z c;E;sin@

im]

where-©i is the angle of incidence for the calorimeter tower i and n is the number of trigger towers..
3.4 Local maximum identification in a 3 x 3 matrix

A local maximum is found when a cell’s total energy is greater than or equal to all eight of its neighbor’s
total energy in a 3 x 3 matrix (see Figure 2).

I I I
I C|I
I I I

FIGURE 2. Local maximum, a tower value greater than or equal to its neighbors
C>Lfori=1.8

The sum of the energy of a tower and its eight neighbors (in a 3 x 3 matrix) must be greater than a threshold
in order to be considered as a possible physics interaction.

Threshold< Y I+C
At

iwl

3.5 “EM?” cluster finding in a 4 x 4 matrix

The algorithm aimed at identifying electrons compare the sum of two adjacent towers (1 x2or 2 x 1
matrix) with a threshold.

“EMI"
— clt “HAD"

FIGURE 3. Front-to-back algorithm in cluster finding

61
5

Threshold < Cy + I om
Options to this methods include vetoing the candidate electromagnetic clusters if there is a measurable
energy in the hadron trigger channels behind the electromagnetic calorimeter.
(Cy+1y)

Threshold <
(c et EH)

Or, vewing the candidate if the electromagnetic cluster is not isolated from nearby energy channels,

0 1R8]

1
T
0

O Io

0
o
0

Vi [oN (oW il (o)

FIGURE 4. Isolation algorithm in cluster finding

3 12 12
Threshold< Cy+ Y Igy+ Y Opy+ 3. Opy

i=] iml ia]

3.6 Jet finding

The basic granularity useqd 10 find jets is four times bigger than for the electromagnetic case . Thus it will
be .64 An x .64 A® for GEM and 4 Any x .4 AD for SDC. The SDC experiment is stil} investigating the
basic granularity with .2 An x .2 Ad, 4 An x .4 A® and .8 An x .8A®. For the purpose of this simulation,
granularities of .4 An x .4 A® and .8 Arj x .8 AD are assumed.

FIGURE 5. Jet finding in 2 4 x 4 and an 8 x 8 region
Threshold < (C.n + Z1) +(Cx+ Z 1

b2
6

4.0 PROCESSOR ARRAY VERSUS CALORIMETER ARRAY.

A length-wise cross section and a side view of the end caps of the calorimeter (illustrated in Fig. 1), is shown
in Fig 6. In the experiments within GEM and SDC at the SSC, there is varying calorimeter type, segmenta-
tion, and granularity of the digitized informations for the Level 1 rigger While GEM is experimenting with
a.16 ¢ x .16 n calorimeter, SDC is developing a.1 ¢ x .1 n calorimeter. Although, in SDC, each individual
tower of the calorimeter is divided into four (barrel) to eight (end cap) “em” sections and two “had” sections
(see center right of Figure 6), for the purpose of the Lavel 1 trigger, the “em”™ sections are combined into one
value and also the “had™ sections are combined (ses below).

The geographical representation of the calorimeter can be related to a processor array. Each calorimeter
tower (consisting of an “em™ part and a “had” part) has a one-to-one correspondence with a processor cell in
the processor array (see bottom left of Figure 6). A description of both GEM and SDC towers as they relate
to the simplified towers are shown on the right of Figure 6. The size of the processor array depends on the
segmentaton and granularity of the calorimeter (see Table 1).

In bold on the tower matrix amray of Figure 6 is shown the types of possibie investigations that can be done

on such a processor array in order to identify particles and obtain the relevant information. A listing to the
right of the matrix is provided.

TABLE 1. Example of calorimeter segmentation

Total npumber of | Macro-granularity for Level 1
channels at full total pumber of towers = total
Experiment subsystem An x Ad granularity number of processors
SDC EM 05x.05 21,504 3584
HAD dx.1 7,168
GEM EM 032x.032 30,000 x 2 1250
HAD B8x 3 5000 x 4

CALOﬁLMETERlCROSS*SECTTON
WA
NNwilliiZ

A OV Y

(*F]
= BARREL

END CAP

-

%

s ’,".."-. O.,
Ty, 2% s

g

/ H
Il fl" / /! 13n ; N = 3
END CAP BARREL [/ /// 23 END CAP N\ Gk - ;
-— . NS S e e e S O O I A S ERET—— '\4 = 271 /
amm—————] Vol o i R TVURIT 1o L lad '\% -4 4
- Tl I IR |t [A Y ssee———1 pamsllLe o 5
e 1L b [[: Lo J Il I-i L e e \I‘Ower (SDQ
T i T ! i o0 oo b1t b mi?.‘h—-'ﬁ-_n“m“ identifleation \\ !
—_— T T T T T T T T T T T T T T T T T e e 1B 8 353 manx e /
= 1 ; it : I m:- ~w
—-——— e | [[T T . Ry - L=bhy=2 "EN" sums]
— | 1 [i | T L1 1 e e [+1.3 + FRONT
- |t | | N 1 I NENENEY] gk~ 2-by=1 "EM" sums TO=-2ACK AD
L —earti TR IR |] I 1 KR = M’ -——
- T IR | ! TR SOLATION Ll
- e) L T -—“.’{g- . : g3
e ——t S —— e — T Sm:phhed: Tower for
—_— s e T
—— TN | o TR IR s e ,’ N
P —ensen BTN I . o] . } iR wena— 3 Vg \\
—T ‘ T LS BRI o I — T - JETS in a 0zd matnr ’/ ~
—TT G b o | L N N _g 4 ~
————— gt] Py . s > " " ”
— maa CEo LT r——-r. Tower fGEM)
K [[[Yo T e ™ ML — P

e | i | [| RN —— s/
[e Ll . Lo I i | N ot EEREEERees——
- i boa . 1 P b . S0 TR s Y

———————
— . o [: T ;
- Lo k|] b . R] [T ——

Unrolled "Barrel’ +« unfolded END CAP = Towers processor array I level trigger granularity examples

Experiment An Ad Number of
ONE TOWER = ONE PROCESSOR|& Lzl o

FIGURE 6. Processor array versus carorimeter arrray

64

3

5.0. DATAWAVE ARCHITECTURE DESCRIPTION.

The architecture of a DataWave cell is shown in Fig, 7 (courtesy of ITT,. The processor cell is based on a
data driven principle. A clock, running at a frequency of 125 MHz synchronizes the operaton of the cells
Each cell consists of a multiplier accumulating cell (MAC), arithmetic and logic unit (ALUY), shift unit,
register block, and program storage surrounded by a system of three ring buses. The program storage can
store up to 64 instructions of 48 bits each. A “deep” pipeline structure allows new instructions to be started
at every cycle, and internal operations allow values in the MAC and ALU to be used in the next clock
cycle. An example of the use of the DataWave in 2 parallel processing system for calonimeter triggers is
described in ref. [9].

North

i"“ $|2

J,—H FIFO Hllamlshakeg—t FAM b}
\y [

[{
bl 9 L

],
Program
Pegistars 84 1 48 bt
tatie RAM
ro-rid talle
Canstant
x- 1
‘l.’ I s Qrd 5

A P
West — "B East
A ALU o>

MAC smn/‘neuu
hi mid_ ta |_—E-

AN I _C
{‘L'- 1 !)
be I_A Q

I3

FF‘]F()}G—[{-Iundshukeh—[7! m

Lj 7" ‘|__§|uandshake|_>| FIFO |

ol

lﬁ z"]_Hﬁlaltrlsl1akei—;[p[poﬂ
$|z ?12
South

FIGURE 7. DataWave cell architecture
5.1 DataWave instructions

Although new instructions can be started at every clock cycle, not all instructions require the same amount
of clock cycles to compiete. Some instructions (instructions involving storing a MAC operation in a regis-
ter, or sending a result to another cell) require more clock cycles than simpie instructions (register transfer,
MAC or ALU internal operations). The difference in completion steps does not affect the pipelining of the

operations.
go

The DataWave instruction set relevant to the cluster algorithms are as follows:

MAC operations, 6 clock cycles before resuit may be used
rS=n*rls
rl0=acc +15

Register Load, 2 clock cycles before result may be used
=w
0=0

Port Operations, 12 clock cycles before result may be used
n=w
w=n*rl5

ALUMAC internal operations, result may be used at the next clock cycle
acc = acc + 12

Branch on ALU, 6 clock cycles before the result may be used
alu =r5 - rl, bmi notamax*

*note: Due to the pipeline structure of the cell, the cell will execute the three consecutive operations after a
branch whether the cell branches or not. '

Multiple Operations per Instruction

The 48-bit instruction word allows for multipie instructions per clock cycle. Although the DataWave pro-
Cessor is capable of many types of multiple operations in one clock cycle, only a few of its capabilities are
relevant to this algorithm. The DataWave architecture allows each cell to receive a value from one cell and
store it in a register while sending the value to all four neighboring processors. The architecture also allows
the cell to use the ALU and the MAC simuitaneously. For exampie the cell can send a value from a register
10 a port and at the same time store a value into the MAC. The multiple operations per instruction also
results in being able to send or load and at the same time branch (conditionally or unconditionaily).

Waiting for an Input from a Port

If an instruction is not allowed to proceed due to lack of input at a port, the whole pipeline is stopped. If
two neighboring cells send values 1o 2ach other and both issue the instruction to receive the value from the
other cell before the send instruction finishes the pipeline, deadlock can occur. Therefore, it is necessary 0
finish sending values before issuing an instruction to receive from the same cell. This results in many
“pops™ in a program that primarily sends and receives from all four of its neighbors. A hardware optimiza-
tion to remove the pipeline between adjoining cells will increase the efficiency and timing of this algo-
rithm.

5.2 Optimization technigues on program speed execution in real-time computations

Due to the time factor in a Level 1 uigger, calculations must be modified to achieve reasonable throughput.

10

5.2.1 Threshold comparison and ratio calculation

Although threshold comparisons and ratio calculation use division off-line, division is too time consuming
for “real-time™ calculations. The following is the substitution for those equations,

(Cy+iy)

Ty Con ¥ i) > Threshold = (Cpp+ Iy} X Threshold < (Cpyy+ Ipy)

5.2.2 Precalculated constants

Trigonometric functions can not be calcular.ed in “real-time”. Due to ail cells always having the same @ and
N, the resuit of a trigonometric function can be calculated outside the algorithm and the result stored in a
cell's register t0 be used as a constant. The following is an example of this substitution.

E, = ¢, xExsin8, = Er = ;% E;

where ¢; is the calibration constant multiplied by sin 8,

5.3 Unique features of the DataWave assembly instructions

The pipeline structure of the DataWave processor allows for some unique programming techniques.
Branching.

Due to the pipeline structure, the next three lines after a branch will always be executed. However, instead

of wasting program code and clock cycles, in some cases the branch can be placed three instruction lines
before the branch needs to take place.

TABLE 2. Program example of optimizing ‘branches”

60 sendn: bra loop
61 n=1
62 n=23
63 n=rl0

The sample program in Table 2 sends the three values and executes the “branch”, even though the branch is
written before the send statements.

Another method of using the branching delay to an advantage is by using the delay to “pass a parameter™.
In Table 3 the code needs to set a flag according to the reading in the ALU and then branch.

67

TABLE 3. Program example of using “branch’ to pass a parameter

60 =0

61 aly=rl0-rll
62 nop

63 nop

64 nop

65 nop

66 bpl check
67 bmi check
68 nop -

69 nop

70 =1

The ALU is set and at the appropriate time the result is checked. If the alu is greater than zero, the program
branches to “check” executing all shown lines except for line 70; hence, r0 remains 0. If the alu is less than
zero, the program executes statement 70 before branching to “check” and sets r0 to 1.

MAC/ALU

Most of the statements using the MAC or ALU can be written using the other unit. The notable (to this set
of algorithms) exceptions are the multiplication of two registers (acc = r5 * rl1) which must use the MAC
and the summing of two registers (alu = r5 + rl1) which must use the ALU. Though the other instructions
may interchange the ALU and MAC, the number of clock cycles before a MAC result may be used is
greater than the clock cycles for the same ALU instruction. However, the MAC has a greater precision.

6.0 DIGITAL FILTER EXAMPLES

Several digital filter algorithms can be applied to the tower trigger signal. The analog signal is sampled and
digitized at the rate of 60 MHz and is sent to the DataWave processor.

The programmable filter capability of the DataWave allows physical information to be extracted. Typical
filters that should be done on the digitized samples are of the type:
outpur = 2 (input; x W)

im]
where: n can vary from 5 to 8 and W, are precalculated coefficients stored in lookup tabies.

In order to give an idea of the time required to realize a digital filter with the DataWave, the following three
examples are given:

6.1 Example of a transverse filter

A five tap FIR will input from east a value every 5 clock cycles and will output a result to the west with a
latency of five clock cycles. {1 clock cycle = 8 ns in the present version and 4 ns in the future Data-

68

12

Wave version). This § tap filter will sustain an input frequency of 12.5 MHz on the present version
and 24 MHz in the future version.

TABLE 4. Eample of s non-recursive filter

1 FIR: acc=rl *w, rl2=w
2 acc=acc+r2*rl2, rl3=rl2 bra FIR
3 acc=acc+r3*rl3, rld=rl3
4 acc=acc +r4 *rl4, ri5=rld4
5 e=acc+r5*rls
courtesy of ITT
6.2 Example of recursive filter

In the following code, due to internal pipelines, a new value is inputed from the west every 7 clock cycles.

TABLE 5. Eample of a recursive fiiter

1 IIR: acc=w
2 acc =acc +r12 *rl2
3 e=rll =acc+rl*rll
4 r12 =rll, bra IR
5 nop
6 nop
7 nop
courtesy of ITT

6.3 Example of a digital filter on calorimeter signais.

acc=0

acc = acc + data * coeffl + pedestal

Qutput results

FIGURE 8. Flow chart of a digital filter on calorimeter signals

69

13

An implementation with the DataWave of the filter flow-chart described Figure 8 will imply the following
code:

TABLE 6. Example of a digital filter

rll, r12,r13,r14,r15 are different coefficients and ri,r2,r3,r4.r5 are pedestal values

| DIR: acc=acc+w*rll

2 acc=acc +rl

3 acc =acc +w *rl2

4 acc = acc + 12

5 acc =acc +w *rl3

6 acc =acc+r3

7 acc = acc + w *rl4, bra DIR
8 acc = acc + ré

9 acc=acc +w™*rls

10 W =acc +r15

This filter algorithm will input data every two cycles (thus can sustain the 16 ns Input trigger rate)
and output results every 10 cycles.

Volt /\\

S samples
per calorimeter

signal

16 ns /]——4’1;
]]

FIGURE 9. Calorimeter signal digital filter

70

14

7.0 ELECTRON IDENTIFICATION IN A 3 X 3 MATRIX (1-CELL/CHIP).
7.1 Loading “EM™ data into 1-cell per chip

The purpose of this algorithm is to determine whether or not the calorimeter tower corresponding o a cell
is 2 Jocal maximum of a cluster.

Each cell on the Datawave array comesponds directly with a “tower” in the calorimeter array, Once the
value from the calorimeter has been loaded into the DataWave array, it will be referred to as a value of the
cell that relates to the tower the value was load from.

[t is necessary for each cell to recaive the energies refating to the surrounding cells (see Figure 10) while
routing data to other cells needing that value (see Figure 11). Once each cell contains aj} eight energies of
the surrounding cells, the cell begins 10 determine whether or not it is a local maximum. Because of the 1-
cell per chip packaging, all cells are loaded with the same code for routing data and finding the local maxi-
mum.

Receiving from the Calorimeter

Before the cell receives rigger 1, the cell is connected to the calorimeter by its north port. Once the trigger
is sent, the cell receives from the calorimeter the energy of the calorimeter tower corresponding to this cell.
The ceil then disconnects from the calorimeter and connects to its north neighboc

Cell 0,1,0 Cell 0,1, Cell 0,1.,2
010 t=0
a1t =0
G100 =13
092! tw—|
f.""i‘_‘::'l"i".'.‘::.._.‘ \L 012 =0
“!
Cell 0.2,1 \
{(010)=>r1 t=28"
Cell 0.,2.0 (011}=>e2 t=)5" 02 ™ lcell 0,2.2
(012)=>r3 t=28 o~

(020)=>r4 t=13" 012 =i

020 w=0 | {021)=>r5 t=0°

—3 (022)->r6 t=i4"
00 t=i6 | (0A0)=>p7 t=29°
(031)=>r8 t=18"
(032)=>r9 t=27"

Q30 =m0
431 w=0
032 wwi4
Cell 0,3,0 Cell 0.3.1 92«7 _[Cell 0,3,2
"*" = fetching time from program in Cell 0.2,1

all other timing is related to time sent

FIGURE 10. Routing of data to one cel} (1-ceil per chip assembly)

71

15

Receiving and Routing of Data

At the time the cell (cell 0.2.1) receives the value from the calorimeter (1=0), the cell multiplies the value
by the calibration coastant for that calorimeter tower, sending the calibrated value to the cell’s four imme-
diate neighbors (cells 0,1,1; 0,2.0; 0,2.2; 0,3,1). At the same time ail four of the cell’s peighbors send the
value of their calorimeter tower to the cell (cell 0,2,1) (see Figure 10). A delay of twelve cycles is required
between the communication ports of two neighboring cells; hence, a cell that is sent a value from its neigh-
bor at time t=0 will receive the value at time t=13.

At time t=13 through time t=16 the czll receives a value from its immediate neighbor and routes the value
to the neighbor counterclockwise from the sending neighbor; hence, the value received from cell 0,2.2 is
sent to cell 0,1,1 (see Figure 511) Since the cell’s neighboring cells are executing the same algorithm, after
twelve delay cycles (t=26 through t=29) the cell receives the values relating to its four corner neighbors’
(cells 0,1,0; 0,1,2; 0,3,0; 0,3,2) calorimeter towers. At ime t=33 (four cycles for the register load) the cell
is finished routing data between cells.

Cell 0,1,0 Cell 0,1,1 Cell 0,1,2

N

021 t=Q
022 t=1i4
Cell 0.2.1
Cell 0,2,0le= " Cell 0,2,2
aLf t=15%
021 t=
031 t=18
021 t=0
020 t=113
Cell 0,3,0 €ell 0,3,1 Cell 0,3,2

FIGURE 11. Routing of data from one ceil (1-ceil per chip assembly)

772

16

Finding Local Maximum

At time t=32, each cell begins comparing itself with all eight surrounding cells and also compared the total
energy in the 3x3 matrix with the threshold energy for an electron. If the value of the cell is greater than all
of these values, the cell sends its id number and the value of its energy to the North. Otherwise the cell is
not a local maximum and it sends null values to the North. All programs in all cells are finished by time
t=61.

72 DataWave assembly code and detailed timing description

Each processor is loaded with the same program code for receiving, routing, and determining if the cell is a
local maximum (see Table 7). In the case of routing the result of the local maximum finding, the result
should be routed to a common exit point, and therefore, in order to implement this additional feature the
code shouid be changed. Due to the limitations of the program storage of the processor, the routing of the
results of the local maximum search could not be implemented in this program. Increasing the program
storage area will allow to add this feature.

The program shown in Table 7 has been verified by the simulator as to the correct flow of the data and to
the correct timing of the instructions. All timings are shown in the program code. A “d” refers to the time
that the instruction was decoded. The “u” refers to the time that the result of the operation can be used by
another instruction. The “f” refers to the time that the operation is fully completed.

Register 15 is used as the threshold constant for determining whether or not the cell contains enough
energy to be an electron. Register 11 is used as a calibration constant for the individual calorimeter tower.

Line 4 of the program initializes r0. Since the processor cannot use a constant and a branch statement in the

same instruction. The null value 0, meaning the cell is not a local maximum, is loaded into a register during
a “nop” cycle. This allows line 59 to be executed as one clock cycle instead of two.

TABLE 7. DataWave assembly code for one cell (1-cell per chip assembly)

cell10,2,1
1 rls = 1024 ; THRESHOLD
2 rii=1 : Calibration Constant for Cell

; RECEIVE FROM CALORIMETER/INITIAL SEND

3 loop: s=n=e=w=15=n*rl5; d=0 u=7 =9,11
4 0=0 ;d=1 u=3 f=5 uses “pop” to initialize
0
5 nop ;d=2
6 nop ;d=3
7 nop ;d=4
73

17

10
11
12
13
14
15

16
17
13
19
20
21
22
23
24
25
26

27

28
29

30 .
31

32

33

35
36
37
38
39

41
42
43

45

47
48
49
50
51

Dnop ;d=5

nop ,d=6
nop ;d=7
nop ;d=8
nop ; d=9
nop ;d=10
nop »d=11
nop s d=12
+ RECEIVING/ROUTING DATA
s=r4=w, acc=15; d=13 u=15 f=1724
n=rh=e; . d=14 u=l6 =1825
w=12 =0, &C = acc + r4; d=15 u=17 £=19.26
e=r18 =5, aC = acc + 16; d=16 u=18 £=2027
nop ;d=17
nop ;d=18
nop ;d=19
nop ; 4=20
nop ;d=21
nop ; 0=22
nop ;d=23
nop .d=24
nop ;d=25
rl=n,acc=acc+12 ;d=26 u=28 f=30
9=s,acc=acc+r18 ;d=27 u=29 f=31
3=e¢, acc=acc+rl , ;d=28 u=30 f=32
17 =w, acc=acc+r9 ;d=29 u=31 £33
acc =acc + 13 ;d=30
;Sum of Cell + Surrounding Cells
ri0 = acc +17 ;d=31 =34 40
; DETERMING IF THE CELL IS A LOCAL MAXIMUM
aAlu=r5-rl ;d=32 =37
alu=r5-12 _ ;d=33 =38
alu=r5-13 ;d=34 =39
aAlu=r5-rd 1 d=35 f=40
au=:5-16 ;d=36 f=41
alu = r5 - r7,bmi notamax ;d=37 =42
alu = r5 - r8,bmi notamax ; d=38 =43
alu = 5 - 9,bmi notamax ;d=39 =44
alu =r10 - r11,bmi notamax; d=40 f=45
bmi notamax 1 d=41
bmi notamax ; d=42
bmi notamax ;d=43
bmi notamax ; d=44
bmi notamax ; =45
nop ; d=46
nop ; d=47 neccesary for the bmi
nop ; d=48

74

18

52
53
54
55
56
57
58
59

61
62

max:

; CELL IS ALOCAL MAX
; send cell id to north
n=021

; send cell energy to porth
n=rl0, bra loop

nop

nop

nop

; CELL IS NOT A LOCAL MAX

notamax:nop

.end

; send no cell id to north
n=r0 ’

; send no cell energy to north
n = (), bra loop

nop

nop

nop

. d=49

; d=50
; d=51
;d=52
;d=53

=60
=61

neccesary for the bra

neccesary for the bmi

send no id or energy

negcesary for the bra

73 Result analysis of electron identification in 1-cell per chip assembly

The total time required in all the arrays (considering also the dependency of data that must be exchanged
between processors) in “T™ cycles (1 cycle = 8ns in the present DataWave version and 4 s in the future
version} is the following:

TABLE 8. Total array algorithm execution time (1-cell chip assembly)

operation line no time (clock cycle) | time (ns)
finished routing data 32 33 132
finished summing snergies* 34 34 136
finished finding loca! maximum | 43 45 180
send tower id and energy 52;53 60; 61 240, 244

Hardware optimizations (i.e. improve the pipelining between adjacent cells and increasing the storage
area) might improve the timing of each processor.

79

19

8.0 ELECTRONS IDENTIFICATION IN A 3 X 3 MATRIX (16-CELLS/CHIP).
8.1 DataWave chip assembly

The purpose of this algorithm is to determine whether or not 2 ceil corresponding 0 a calorimeter tower is
a local maximum of a cluster. The algorithm is implemented on DataWave chips assembled with 16-cells
per chip (see Figure 12). A Datawave inter<chip bus provides the paralle! /O ports of the Datawave chip
with access 10 the calorimeter and adjacent DataWave cells. Two bits allow each cell © connect to the
inter-chip bus. The algorithm assumes that only one cell will be linked to a given bus switch during a clock
cycle and ailows for one cycie 0 disconnect a cell from the bus switch and connect another cell.

North

L |

Inter— chm BUS |
Tl 1 1t

;L L . .
8 7T TL TT TLE >
o W gt
West 5| IT T IT T 3 East
< é;flkl T AT |

T O P A
[Inter—chip BUS |
/N

\V
South

FIGURE 12. DataWave chip assembly with 16-cell per chip

76
20

82 Loading “EM™ data into 16-celis per chip assembly

The purpose of the algorithm is {0 find the local maximums in an array of calorimeter towers. In order 1o
receive the values of the surrounding towers, data must be ransferred between chips on an inter-chip bus.
(see Figure 13). Because only one chip may be hooked up to specific bus switch at a time, this algorithm
wies 10 use the inter-chip bus as infrequently as possibie while taking advantage of the ease of communica-
tion berween cells on the same chip. Due to the differences in each cell’s location in relation to the four
inter-chip buses, each cell in a chip is loaded with different assembly code.

[T @ |
= S
= - =
= =)
[|
H %
—R=t21q B its12< 1] o . . Rs12<>1] B lt=izeo 1T
l Q00 < L — | 0011002{003|004< Bl =1005
/N 2 =T = a7
-] A ~ al - - ~
o v v v o~ EI v
) gl e} =2} & =1 3
t=-1<>2 M\, Wy w gl LA
- from Calorim.* - g :
| [nter—chip BUS| == om e om = = = Inter—chip BUS N3 [tnter-chip BUS|
: N :EI &
=2 = ISy v
1l 1 L™ e
- - -m-l ?I'
e £ 2431 t=8<>10 tE—1<>, :*:'-E“OWI.
010 @ 1011012101301 4 ey 015
P = t=B8«<>10} D -
— @ @ N
020 a 021(022]023|024 & 028
030 != 031{032{033[034 's , 035
—Tk=12¢>13 € lt=12¢>19 =12<>18 B =121y
|104o T3] 041[042{043 | 044 < L= 21045
TN L D SN SN DN e R
g N 0 ¢l & g8 g
b e+ g 2f =) 84 2
"'"2' " " u\]/ 1 }:—1(%2 gi‘i\
| Inter-chip BUS 55: | inter-chip BUS}A——E - | Inter-chip BUS|
= Y Y N7 N S
g EI N ~ A g /;
) &t g 8| 2| & 3
\ A AN A \ ity
SJt=8<>10 t.=a<>!ol_ TN e - - jt=tks10 t=8<>10f
050 @ =1051/052]053,054 %< 0535
. 2) ‘) , 2
) &
- =
o -]
H 1
[13
2 s
z E

FIGURE 13, Inter-chip data flow

Receiving from the Calorimeter

Within the 16 cells on the chip the cells are divided into four groups of four cells (see Figure 13). Each
group contains a “loader” (cells 0,1,1; 01.4; 0,4,1; angd 0,4,4) which receives from the calorimeter all the
values refating w0 the four cells in the group. Before Trigger 1 is sent. the *loader” cells are connected to
the inter-chip bus which is connected 1o the calorimeter. Once the trigger is sent, all four cells receive the
values of their group of four cell. For exampie cell 0,1,1 receives values for cell 0,1.1; 0,1,2; 0.2,1; and
0.2,2. Immediately following, the interchip bus disconnects from the calorimeter and connect to the adja-
ceat DataWave chip.

Receiving and Routing of Data for cell 0,1,1

Each group of four cells behaves similarly except for time fluncruations due to waiting for a connection to
the inter-chip bus. At ime t=0 through t=3 cell 0,1,1 receives the data from the calorimeter and routes the
dara w its south and east neighbors where the vajues will continue to be routed to the internal neighbors
(see Figure 14),

At ume t=7, cell 0,1,1 connects to the west bus switch and passes the values of ceil 0,1,1 and cell 0,2,1
through the inter-chip bus to the cell 0,1,0. At the same time c2ll 0,1,0 connects to its east bus switch and
passes the values of cell 0,1,0 and 0,2,0 through the interchip bus to cell 0,1,1{see Figure 14). At time

t=13, cell 0,0,0 sends its value through the inter-chip bus to cell 0,0,1 which routes the value to c2ll1 0,1,1 at
time t=26. :

After celi 0,01 loads the values from the calorimeter, it sends the values of cell 0,0,1 and 0,02 to cell 0,02
(at ime t=2 through t=3) which then routes the values through the interchip bus to cell 0,1,2. Cel1 0,1,2 (at
time t=29 through t=30) then sends the two values to cell 0,1,1. Ceil 0,1,1 finishes routing data betwesn
cells at ime t=41 (see Figure 14).

%] -
= E
! 21
2' Q02 t=2
Ll anE 601 =3
21 n uUI |
3 -o-E
clgsst | !
= ~ Y
000 > 001{002
000 =121 000 =13
@)
000 t=2 N quo-sr1 L=20 s 2=
rom Calorimeter | 001 -2 t=13 il pil
002~->r3 L=42 o wl =
010->rd4 t=22 SV a8
. Gil=->r5 t=3 -
Inter—chip BUS 012-5r8 t=2 Inter-chip BUS
gg?:irg t:?‘ % f—|2 from Calorimeler
- - 3 B oz t=-|
022->rg t=0 Sbslel oz Go
=) NS 012 =1
620 (=8 ¢ SN 011 L=2
050 tol0__020 L=8 —— — - — 1 — |- 002 =29
010 5 S| W - —.:,-F — = =~ |- o0t =30
~ ~ [3 (o0 o 01 T[012
QN:;I o= _
020228z A nparjo22z
—T {28! |3
ccgj L
- L]
Sbot3
—- =]
g =
21

FIGURE 14. Routing of data to one cell (16 ceils per chip assembly)
21

inter-chip BUS

000 001002
=/
o
‘I.l'
S
<
{nler—-chip BUS Inter-chip BUS
2/
o
5
2
o 022 =0
021 =0 021 t=8 1. L — L _ Hoz1 =1
010 |=< n < 011|012 012 t=2
ot1 t=1n| 2 joit =10 =4 o1 t=3
[=a] V S
=~
020 = 0210221~ 022 1=0
£ it 021 =1
I” ~ j|o12 t=2
£ o1l t=3
bt 020 t=21
s 010 t=23

FIGURE 15. Routing of data from one cell (16 cells per chip assembly)
8.3 DataWave assembly code and detailed timing description

Each cell in a chip contains different routing code. However, cells in the same location in different chips
contain the same code. Therefore, any amount of chips when connected by inter-chip buses can be loaded
with the same set of 16 programs.

The total lines of code of eight of the cells (maximum number of lines is 78) can not fit on the 64-word pro-
cessors. The simulator has verified the routing algorithm according to the assumptions made in Section 8.1.
The determining of the local maximum is identical to the algorithm in the 1-cell per chip program and was
verified during that simulation.

All symbols used in the program are defined in Section 7.2. Registers 2 through 15 are used to store the
calibration constants for each calorimeter tower that is loaded through the cell. All connections to the inter-
chip bus through a bus switch on the chip is described in the comments of the program and in figure 13.

The program example, cell 0,1,1 was chosen because of its location. As shown in Figure 13, this cell’s
eight neighbors are contained on four chips. Celi 0,1,1 must receive information from all of these chips
through the interchip bus.

79
23

U B

TABLE 9. DataWave assembly code for one cell (16-ceils per chip assembly)

cell 0,1,1
r12=1 ;
r13=1 ;
ria=1 y
rls=1 :
; RECEIVE FROM CALORIMETER
loop: e=s=r9=n"rl2 ;d=0
e=s=r8=n"*rl3 vd=1
e=s=rM=n%rld4 ,d=2
e=s=r5=n*rl5 ;d=3
ril=1 ;d=4
=0 ; d=5
s RECEIVING/ROUTING DATA
nop ; d=6
nop ; d=7
w=r8,acc=19 ; d=8
nop ; d=9
w =05, acc = acc + 8 ; d=10
nop 1d=11
nop ;d=12
nop ;d=13
nop ;d=14
nop ;d=15
nop ; d=16
nop ; 8=17
nop 1d=18
nop ; d=19
nop ; d=20
s=rl=wacc=ac+16 ; d=21
nop ,d=22
n=s=r4d=w,acc=acc+15 ;3d=23
nop ; d=24
nop 1 =25
nop ; d=26
nop ,d=27
nop ;=28
nop ;3=29
nop ;d=30
nop ;d=31
nop ; d=32
nop ; d=33
nop ;d=34
nop ;d=35
;Stop 1 d=36
;Stop ; d=37
80

24

cal constant for cell 0,2,2
cal constant for cell 0,2,1
cal constant for cell 0,1,2
cal constant for cell 01,1

f=5,11

f=10,12

=11,13

=12,14

f=8 THRESHOLD

=9 uses “pop” to initialize

u=7
u=8
u=9
u=10
u=6
u=7

connect to West Chip BUS
=19

=21
disconnect from West Chip BUS

u=23 f=2532
coanect to North Chip BUS
u=25 f=27,34

disconnect from North Chip BUS

»SOp ; d=38

rl=n, acc =acc +r17 ;d=39 u=41 =43
;Stop : d=40
,Stop ; d=41
r3=e, acc = acc +r4 ;d=42 u=43 =45
r2=e¢c,acc=acc+rl 1d=43 u=44 [=46
acc =acc +13 s d=44
ri0=acc+12 ; d=45 =48,54
: DETERMINING IF THE CELL IS A LOCAL MAXIMUM
alu=r5-rl ; d=46 =51
alu=r5-r2 . ; d=47 =52
alu=r5-13 ; d=48 =53
a=r5-rd ; d=49 =54
alu=715-16 ; d=50 =55
alu = r$5 - r7,bmi notamax ;d=51 =56
alu = r5 - r8,bmi notamax ; d=52 =57
alu = r5 - 19,bmi notamax ; d=53 =58
alu = r10-ri1,bmi notamax ; d=54 =59
bmi notamax ; d=55
bmi notamax ; d=56
bmi notamax ; d=57
bmi notamax ; d=58
bmi notamax ; g=59
nop ; d=60
nop ; d=61
nop ; d=62
;CELL IS A LOCAL MAX
; send cell id to north

max: n={011 ;. d=63
; send cell energy to north
a=r10,braloop ; d=64

;imits of existing chip

nop ; d=65
nop ; =66 necessary for bra
nop ; d=67

;CELL IS NOT A LOCAL MAX

68
69

70
)
72
73

potamax:nop

.end

; send no cell id to north
n=r0

; send no cell energy to north

n=r0, bra loop
oop
nop
nop

81
25

necessary for bmi

necessary for bra

8.4 Code differences between the different cells in the chip.

All “loader” cells (cells 0,1,1; 0,4,1; 0,4,1; and 0,4,4) contain roughly the same algorithm except for the
lines relating to the scheduling of the inter-chip bus. The “loader” cells route data to their immediate neigh-
bors on the same chip as well as o their immediate neighbors on adjacent chips (see Figure 13).

The cells 10 the left or right of the “loader” cells (cells 0,1,2; 0.1,3; 0,4,2; 0,4,3) receive data from the
“loader” cells at tme t = 13 <> 16 and are responsible for sending the loaded data to its north or south
neighbors (cells 0,2,2; 0,2,3; 0,3,2; and 0,3,3) and for sending information needed by the adjacent chip
through the inter-chip bus (see Figure 13).

The cells north or south of the “Joader” cells (cells 0,2,1; 0.2,4; 0,3,1; and 0,3,4) also receive data from the
“loader” cells at time t = 13 < 16. They then send the informarion needed by the adjacent cells to their
north or south. Hence, cell 0,2,1 sends data to cell 0,3,]1 and cell 0,3,1 sends information to cell 0,2,1.

The inner four cells (cells 0,2,2; 0,2,3; 0,3,2; and 0,3,3) contain almost identical code except for the direc-
tion from which a value is sent or received. Primarily the inner cells only receive information. This is due
to the fact that the cells do not begin receiving data until time t = 26. (Information send from the “loader”
cell 0,0,0 at time t = O will arrive at cell 0,1,2 at time t = 13 and will be seat to cell 0,2,2, arriving at ime ¢
= 26.) The only sending required of the inner cells is the exchange of data with one of its adjacent inner
cells.

8.5 Result analysis of electron identification in 16-cells per chip array.

The total time required in all the arrays (considering also the dependency of data that must be exchanged
between processors) in “T cycles (1 cycle = 4 ns) is the following:

TABLE 10. Total array algorithm execution time in 16~cell per chip assembly

1
cell id 011012 ,013(01,4 (021 |022]023]|024 (03,1032 {0'3.3 {0.3»4 04,1 | 042 0,43 |Cd4
Lines of code 73 61 60 7R 66 57 57 66 65 57 57 65 15 61 61 78
routing data 47 438 46 49 55 56 56 55 56 56 47 47 47 48 465 49
(ia dock cycies)

summing energics |48 {49 |47 150 [S6 |7 |57 [s6 |s57 |57 |48 |48 |48 {49 (47 |s0
{ia ciock cycies)
fipding local max 59 60 58 61 &7 68 &8 67 63 68 59 59 59 60 b1 61
(ia clock cycles)
sending id & encrgy | 75 76 T4 e 83 84 84 13 B4 B4 75 5 75 76 74 7
(ia clock cycles)

The maximum time for a cell to finish routing the data is time t = 56 (which corresponds to all four inner
cells). Due to the fact that all celis use the same algorithm for finding the local maximum and sending out
the result, all cells finish their algorithms 28 clock cycles after finishing routing the data.

Due 1o the time that it takes for a cell to send a value 10 an adjacent cell and for that cell to receive it (13
cycles), with the existing chip the algorithm can not increase in speed. The value for cell 0,2,2 is loaded
from the calorimeter to cell 0.1,1 at time t = 0. This ceil immediately sends the value to cell 0,1,2, which
receives the value at time t = 13 and promptly sends the value to cell 0.2,2 which receives it at ime t = 26,

)
Fr
26

Immediately cell 0,2,2 sends the value t0 0,2,3, which in return sends the value to 0,3,3 at tme t = 39. Cell
0.3,3 receives the value at time t = 52 and uses four clock cycies to load the value into a register, which
ends its routing algorithm at time t=56. Since the value of 0.2.2 must be sent to cell 0,3,3 and there is no
faster path between cell 0,1,1 (where the value is loaded) and cell 0,3,3 (where the value must be sent), the
timing of the algorithm will not decrease, unless the number of clock ¢ycles necessary to send information
berween two adjacent cells is decreased

9.0 “EM” CLUSTER FINDING (TWO “EM” SUMS + FRONT-TO-BACK)
9.1 Real-time algorithm description for two “EM” sums + front-to-back veto

The purpose of this algorithm is to find possibie electrons by searching 1 x 2 regions. Every cell checks the
1 x 2 region to the north and the 1 x 2 region to the east (see Figure 16). If the surn of the “em” energy of
one of the regions is greater than a threshold, the ratio of the *had” to the “em” energy is compared.
Although the ratio equation is

(HAD)

<THRESHOLD
(EM)

since the program is in “real-time” the equation was rearrange into
(EM x THRESHOLD) = HAD>(

If the comparison is greater than zero the cell is classified as a possible electron.

HAD 2
EM> EM >

> threshold \

4

QA

A A
>then

[F OR

check A
FRONT-TQO-BACK HAD $

EM: > threshold) ENI?
‘ | Lelr

FIGURE 16. Electromagnetic cluster algorithm

84

27

% Loading “EM™ and “HAD” data to check EM sums + front-to-back

After loading the two values (“em” and “had”™) from the calorimeter wwer, each cell multiplies the values
by the calibration constant for the individual tower and distributes the adjusted values to its south and west
neighbors. Each cell then disconnects with the calorimeter and coanects 1o its porth neighbor.

The “em” value of the porth cell arrives ar a cell at time t = 13 (see figure 17). The value is added (in the
aly) to the cell's “em"” vajue. Due to the internal operations in the alu, the result of the addition can be used
by the alu in the next clock cycle, even though the result will not yet be in the register. Attime t= 14, the
“em” ! x 2 sum in the alu is compared with the threshoid. Because the resuit of this comparison can not be
used until t = 19, the cell uses the pext four instruction ¢ycles for other calcuiations.

At tdme t = 15, the cell receives the “had” value form the porth, adds it w its own “had” value, and stores
the sum in the in a register. At time t = 17 the “em” value from the east is received and added to the cell’s
“em” value. Like the 1 x 2 sum, this 2 x 1 sum is compared with the threshold at ime t = 18§,

Attime t = 19, the resuit from the alu can be tested. If the “em” sum is greater than the threshold, the pro-
gram branches to check the ratio of “had” to “em”. In the three lines of code after the “branch” to the north,
the program sets the value of the ACC to be equal to the (“em”™ * threshold - “had™) value. Although the
ACC will be set regardless of whether or not the 1 x 2 north region is a possible electron, if it is not a pos-
sible electron, but the 2 x 1 east region is a possible electron, the code will store the east (“em™ * threshoid
- “had™) value in the ACC before the ACC is tested.

“em {001} \=—1

“had (001) t=20
from_Calorimeter_
-3
Cell 0.0,1
“emn {00t} t=0
Tem (011) t=-| “had’(o01) =t
“had’{011) t=0
from Caiorimeter “em’(012) tx-t
"1, “had (012} t=0
from Calorimeter
Ceil 0,1,1 N
“em’(011)->r1 t=0" =00 lcelt 0,1,2
“had (011}->r2 t=1" “hed"(012) ta1
“em (001)+rl—=>r7 t=13
“had {001)+r2~>r8 t=15"
“em (012)4r1=>r9 t=17"
“had (012)+r2->r10 t=20
* = fetching time from program in Cell 0,2,!

all other timing is related to time sent

FIGURE 17. Routing data to two “EM"™ cells

84

28

At time t = 19, the “had” value from the east cell is received, it is added to the cell’s “had” value, and the
sum is stored in a register. The cell then waits until the result from the comparison of the 2 x 1 “em” value
is ready to be tested. At time t = 23, the result is tested; if the east “em” is greater than the threshold, the
program branched to check the “had’ to “em” ratio, while issueing statemeats to place the east “had” to
“em” “ratio” in the ACC.

If the 1 x 2 (north) “em"” region was greater than the threshold, at time t = 31, the ACC result is compared
with zero. If it is greater than zero (hence, the rario of “had” to “em" is small) the cell is identified as a pos-
sible electron and the program branches to the code that sends the tower id, the “em” sum, and the “had”
sumn to the north (time t = 36<>38). Otherwise the program branches to code that sends null values to the
north.

9.3 DataWave assembly code and detailed description.

Each processor is loaded with the same source code that performs the operations of receiving the “em” and
“had” values from the calorimeter tower, receiving the “em” and “had” values of the neighboring cells, and
comparing both 1 x 2 regions with the threshoids. The ratio of “em” t0 “had” is only checked if the “em”
values are greater than the threshold.

Each cell connects to the calorimeter through its north port before the program begins. Afler it finishes
loading from the calorimeter the values of the “em” and “had”, the cell disconnects fom the calorimeter
and connects to the cell to the north.

Registers 14 and 15 are used for the calibration constants for the “em” and “had” values from the tower,
Registers 5 and 6 contain the threshoids for the “em” and (“em” - “had”) resuits.

TABLE 11. DataWave algorithm for “‘em” cluster finding (two “‘em’ sums + front-to-back)

celil,1
h connect the rorth port to the calorimeter
I rld=1 3 calorimeter constant for "em"
2 r1is=1 ; calorimeter constaat for "had"
3 5=16 ; “em” threshold for 1x2 cell region
4 =16 ; ("em - “had") threshold for 1x2 cell region
5 loop: rl=s=w=n*rl4 ;d=0 load "em" value from the calorimeter,

; multiply it by the calorimeter constant
; and send it to west and south neighbers
6 R2=s=w=n*rl5 :d=1 load "had" value from the calorimeter,
; multiply it by the calorimeter constant
; and send it to west and south neighbors
disconnect the north port from the calorimeter

7 nop d=2
8 nop =3
9 nop d=4
10 nop ;d=5
11 nop :d=6
12 nop d=7
13 nop ;d=8
14 nop d=9
15 nop ;:d=10
85

16
17
13
19
20
21
22
23
24

26
27
28
29

31
32
33

36
37
38
39

41
42
43

45

47
48
49
50
51
52
53

55
56
57
58
59

61
62
63

65

north:

east:

sendn;

sende:

nop

nop
7T=rl+n
alu=alu-r5
S=r2+n
nop
PO=rl+e
alu=alu-r15
rl0=12 +e,
nop
acc=17*r15
acc =acc-r8
bpl east
bmi nosend
acc=r19*r5
acc = acc - r8
nop

nop

nop

nop

nop

nop

nop

nop

nop

bpl sendn
bmi nosend
nop

nop

nop

nop

nop

nop

nop

nop

nop

bpl north

nop

bpl sende
bmi nosend
hop

nop

nop

bra loop
p=10
n=17
n=18
bra loop
n= 10
n=r9

d=11
d=12
d=13
:d=14
;d=15
;d=16
:d=17
;d=18
;d=19
=20
d=21
d=22
d=23
;=24
;d=25
;d=26
d=27
;d=23
id=24
d=25
3=26
d=27
1d=28
=29
:d=30
;d=31
;d=32
d=33
;d=34
;d=35
d=27
:d=28
1d=2¢
;=30
=31
;d=32
:d=13
d=34
;d=35
:d=36
:d=37
:d=38
:d=39
1d=35
:d=36
:d=37
=38
:d=39
:d=40
d=41

86

30

r7 = "em" sum of cells 0.1 and 1.1

compare "em" sum with threshold

r8 = "had" sum of cells 0,1 and 1,1

required for 3-"nops” after “branch” in line24

9 ="em"” sum of cells 1,1 and 1,2

compare "em" sum with threshold

if "em"” sum (cells 0,1 & 1,1) > thrshid goto north
necessary for the 2nd branch instr.

“em” * “threshold” (1 x 2)

“em” * “threshold” - “had” -- tested in line 41,42
if "em" sum (cells 1,1 & 1,2) > thrshld goto east
if the “em” sum is not > thrshid send null values
“em” * “threshold” (2x 1)

“em” * threshold - “had” — tested in line 54,55

if “em” * threshold - “had’"goto sendn
else goto nosend
3-"pops™ after a branch

if “em™ * threshold - “had” > O goto send
else goto nosend

branch to loop but do next 3 lines

f=47 send out tower id
f=48 send out "em" energy
f=49 send out "had" energy

branch to loop but do next 3 lines
f=51 send out tower id
f=52 send out "em" energy

66 n=rl0 ;d=42 =53 send out "had" energy

67 nosend: bra loop ;d=28,36,0r 40 branch to loop but do next 3 lines

68 n=0 :0=29,37,0r 41 {=40,48,0r 52 send cut muil tower id
69 n=0 ;d=30,38,0r 42 f=4149,0r 53 send cut ol em”

70 n=0 :d=31,39,0r 43 {=42,50,0r 54 send out null "had”

9.4 Result analysis of two “EM” sums + front-to-back in 1-cell per chip array.

The total time requited in all the arrays (considering aiso the dependency of data that must be exchanged
between processors) in “Tcycles (1 cycle = 8 ns in the present dataWave version and 4 ns in the future
version) is the following:

TABLE 12. Total algorithm execution time for ‘“‘em’ clustering (two “em’* sums + front-to-back)

number of lines of code 70

minimum time for 1 x 2 decision (in clock cycles) | finish sending tower id 40
finish sending “em”™ value 41
finish sending “had™ value 42

maximum time for 1 x 2 decision (in clock cycles) | finish sending tower id 52
finish sending “em” value 53
finish sending “had™ value 54

If the northern 1 x 2 region is a possible electron, at ime t = 36<>38 the values of the tower id, the “em”
energy 1 x 2 sum, and the “had” energy 1 x 2 sum will be sent out to be received at time t = 47 < 49.

10.0 “EM” CLUSTER FINDING (ISOLATION) IN A 4 X 4 MATRIX (1-CELL/CHIP)
10.1 Real-time algorithm description for “EM™ cluster isolation

The purpose of this algorithm is 1o further enhance the electron-finding algorithm by requiring a possibie
electron to be isolated from surrounding energy. To accomplish this goal a 4 x 4 matrix is used (see Figure
18). The inner 2 x 2 matrix containing the energy is considered to be the possible electron, The outer
twelve towers of the 4 x 4 matrix must contain small amounts of energy in order 1o confirm the tower in a
2 x 2 matrix as a possible electron, Our isolation algorithm consists of summing the 4 x 4 matrix energy
(both “em” and “had™) and except for the 2 x 2 “em” energy.

10.2 Loading “EM™ and “HAD” data and routing criteria to check isolation

In order to find the (4 x 4) matrix “em” + (4 x 4) matrix “had” - (2 x 2) “em” sum, each cell must receive
the “em” and “had” values of the 4 x 4 matrix (see Figure 19). The received values are added to the alu
unless the value is a part of the 2 x 2 “em™ matrix; in which case the value is routed to a neighboring cell.
While each cell is being sent the values of the 4 x 4 matrix, its own “em” and “had” values are being sent to
each cell in the 4 x 4 matrix that requires its value (see Figure 20).

The main criteria used to develop this algorithm on the DataWave chip, was to always pass the value that is
farthest away as soon as possible. As seen in Figure 18, the cell 0,0.5 is the farthest away from cell 0,2,3.
Therefore, the data from that chip (as it flows from cell 0,0,5 to cell 0.2.3) is always sent out at the time that

87
31

a cell receives it, while other values might need 10 wait a few Cycles if more than one value arrives during
a clock cycle.

¢ x 4 simplified trigger TOWERS
HAD 2

FIGURE 18. Isolation cluster algorithm

The routing of the data is not unique, many other routes can be taken between two cells. However, since
the last dara arrives at time t = 52 which is the first possible time for it to arrive (assuming 13 cycles to
transfer data between cells), no other routing procedure would take less time.

Each ceil connects to the calorimeter through its north port before the program begins. After it finishes
loading from the calorimeter (the “em” and “had” vaiues), the cell disconnects from the calorimeter and
connects to the cell to the north.

After receiving the vajues from the calorimeter, each cell multiplies the values by the calibration constant
for the individual tower and stores the “had”™ value in the alu (which will be used to sum the energy of the
4 x 4 matrix). Then the cell distributes the adjusted values to the east, west, and south. Once the cell dis-
connects from the calorimeter and connects to its northern neighbor, the ceil sends the values north.

88
32

H

- i
3 -
- = -
- - -]
Cell 0,0,2|3% Cell 0,0,3{ =80 = ICell 0,0.4 2 ICell 0,0.3
A E 3
s 2 2
L 3 w3
'T——%-L g g
_;" (0A3T e’ tx=0; “had tm L. e .
3 {0027 em™ t=(7: “haa" tmil {0047 am” t=d; “had” twt
- {0081 em” t=28; “had” =227 -
i O
3 T <
. W/ #2 ;
i ¢1 $
Cell 0,1,2 3 Cell 0.1.30= ==1Cell 0,1.4 = iCell 0,1.5
i ‘g 'z g
o - o
- v - :
fd 23 s
o~ — -
3 |
(013 em” t=0; “had” t=t . e
(m;sr::' :215: “nad aia (004F em” t=30: “had® =31 (0147 em” t=0; “hud” t=1
{012 em” etx17: "had” t=18 | (0027 em” t=32: “had” ia33
(0037 em” t=39: “had’ =40]
from Calorimeter . 72
(023)"em” tm=|; “had” t=0 q- \ "' .
- a
= -
: / "
Cell 0,2,2| = 3 Cell 0.2,4 ::lCell 0.2,5
3L |Cell 023 <
g i = el]
- D s ada S D
'3 ' -2.3‘ .4‘-5 A
s Esaa
N 58 kLS /
a8 a - -
/ L
ey
{012} am® ltwi7; “had® t=18 83355
{0127 era” tmi}: “had™ tm18 {0347 em™ tw?; “had® w8 {0351 em” tw7: “haq” t=8
Cell 0,3,2 Cell 0,3.3 Cell 0.3.4 Ceil 0.3.5

{023 ern”™ t=0: "had” tmi

{024V am” t=m(3; “bad” tml4

{0137 em” tm135; “had’ tmls

{0237 em” tm17; “had” ix(8 H : : ‘
(8337 om’ 1n20: “hag a2y Fetching time from program in Cell 0.2.3
" waz8; Thad ta
OIT o a28: et o all other timing is related to time sent
(014F em™ 1u20; “had" tm3; e

(012Y em” t=32; “hed” tw3l

(0327 em” t=d4: “had” tmas

{0347 em” t=38: "hed t=37

(GLSY emn” t239; “had” tma0

(004 emn” tmad; “had” twes

(0027 em” tw4S: “had” Lmas

(035 em”™ t=49: "had” imS0

(005) em” tmS52: “had” t=a3l

FIGURE 19. Routing data to one cell for ISOLATION check

89
33

L=21

5 ¥ 3
i - =
= - i1
Cell 0.1,1 : Cell 0,1.2 _JCell 0,1,3 had Cell 0,1.4
& 2 ‘s
W n 2
-t : . g
== 1l - g g -
3 = Loe / ~
) ig E 2 (023 em™ [t=7; "had” t=8
8 Z a2 Tl
— t = H
i’. -t
Ceil 0,2,1 - C 0.2.2 ﬁ :"':;
e 2, = {Cell 0,2.2 = = _Cell 0,2,4
> ~{Cell 0,2,3 |
] @ =)
i i 1l
3 3 -
s) €
-Q
(023 em| t=26; "had" (=27 (023)"em” t=0: 'had” t=1 S
@ / (023 em” t-;w; "had” t=18
[t}
Cell 0,3,1 Cell 0,3,2 = Cell 0,3.3 Cell 0,3.4
iy
- :
v}
{023) em” |t=39: "had" t=40 u {023)"em” t=32; [had” t=33
023Y em” t=304" " t= ‘a2 . .
(023) em had’ t=31 £ (023)|em t=15: "had" t=16
=
N
2

Ceil 0,4,! Cell 0,4,2 Cell 0,4,3 Cell 0,4.,4

FIGURE 20. Routing data from one cell for ISOLATION aaiculation

At time t = 17 each cell begins receiving the “em” and “had” values from its neighboring cells and adding
the value to the alu. If the values are needed by other cells the cell sends them out Figure 20 shows the
routing of all cells in relation to cell 0,2,3).

At time t = 60, all distribution is finished and the alu contzins the sum of the 4 x 4 “em"” and “had” matrix
except for the 2 x 2 “em” matrix. This sum is then compared with 2 threshold. If the sum is less than the
threshold then the energy is isolated and the tower id and sum is sent to the north, otherwise nuil values are

sent.

90
34

103 DataWave assembly code and detailed description.

Each cell is loaded with the same program that accomplishes the task of distributing the “em™ and “had”
values and comparing the 4 x 4 matrix sum with the threshold. Because the code can not fit in a 64-word
space, the code was tested in segments: one test for the distribution algorithm and one test for the compar-
ison algorithm.

Registers 14 and 15 are used as the calibration constants for the “em” and "had” portions of the towes relat-
ing to each cell, Register 11 is used as the threshold constant.

All values that are received and added to the alu are marked in the commeants. If a value is received, but not
add to the alu because it is an “em” value of the 2 x 2 matrix, the line of the receipt is marked with “(2 x
2"

TABLE 13. DataWave assembly code for 4 x 4 matrix isolation

.cell 0,23
: connect to the calorimeter through the north port
1 rld=1 ; calorimeter constant for cell 2,3 "em”
2 ris=1 ; calorimeter constant for cell 2,3 "had”
3 ril=1 ; threshold constant
4 loop: e=w=s=rl=n*rl4 ;d=0 fetch & send 2,3 "em” value e,w,s
5 e=w=s=r2=n%*rl5 ;d=1 fetch & send 2,3 "had” value e,w,s
; disconnect from the calorimeter and connect to the north neighbor (1,3)
6 nop d=2
7 nop ;d=3
8 nop ;d=4
9 nop ;d=5
10 nop ;d=6 _
11 n=rl :d=7 send 2,3 "em" valuen
12 n=r2 ;d=8 send 2.3 "had" valuen
13 alu=r2 ;d=9 set alu to the "had" value of cell 2,3
14 nop ;d=10
15 nop ;d=11
16 nop d=12
17 w=e ;d=13 receive "em"” value of cell 2,4 (2x2)
18 w=e, alu=alu+e ;d=14 receive "had” value of cell 2.4
19 w=s=n ;d=15 receive "em" value of cell 1,3 (2x2)
20 w=s5=n alu=alu+n ;d=16 receive "had" value of cell 1,3
21 §=w, alu =alu + w :d=17 receive "em" value of cell 2,2
22 s=w, alu=alu+w ;d=18 receive "had" value of cell 2,2
23 nop ;d=19
24 e=w=s, alu=alu+s ;d=20 receive "em” value of cell 3,3
25 e=w=s, alu=alu +s ;d=21 receive "had" value of cell 3,3
26 nop ;d=22
27 nop ;d=23
28 nop ;d=24

91

35

29

31
32
33

35
36
37
38
39

41
42
43

45
47

49
50
51
52
53
54
55
56
57

58
59

61
62
63

65

67
68
69
70
71

nop
s=e, alu=alu+e
s=e, alu=alu+e
alu=alu+n

alu=alu+n

s=¢

s=ze, alu=alu+e

s=n, alu=alu+n

s=n, alu=alu+n
alu=alu+w
aly=alu+w

w=e, alu=alu+e
w=e, alu=alu+e

nop

s=n, alu=alu+n

s=n, alu=alu+n

nop

nop

alu=alu+n

alu=alu+n

alu=alu+n

alu=alu+n

nop

nop

alu=alu +¢

alu=alu +e

ncp

alu=alu+n

rl0=alu+n

alu = alu - rll

nop

nop

nop

nop

bmi noimp

nop

nop

nop
imprint:bra loop

n=23

n=riQ

nop
notimp:bra loop

receive "em" value of cell 2,5
receive "had” value of cell 2,5
receive "em” value of cell 0,3
receive "had” value of cell 0,3
receive "em” value of cell 1,4 (2x2)
receive "had” value of cell 1,4
receive "em” value of cell 1,2
receive "had" value of cell 1,2
receive "em"” value of cell 3,2
receive "had" value of cell 3,2
receive "em” value of cell 3.4
receive "had” value of cell 3,4

receive "em" value of cell 1,5
receive "had"” value of cell 1,5

receive "em" value of cell 0,4
receive "had" value of cell 0,4
receive "em” value of cell 0,2
receive "had” value of cell 0,2

receive "em" value of ceii 3,3
receive "had" value of cell 3,5

receive "em"” value of cell 0,5
£=56,62 receive "had” value
of cell 0,5 and place sum of 4xdem +
4x4h - 2x2em in rl0

compare the value of the sum with
the threshold

if the thrshid >then goto noimp

if the sum > the threshold
f=75 then send tower id & energy
f=76 found to the north

if the threshold > value then send null

72 n=0 ;d=64 =75 values to the north
73 n=0 ;d=65 =76

74 nop ;d=66

.end

10.4 Result analysis of “EM” cluster isolation in 1-cell per chip array.

The total ime requited in all the arrays (considering also the dependency of data that must be exchanged
between processors) in “Tcycles (1 cycle = 8 os in the present DataWave version and 4 ns in the future
version) is the following:

TABLE 14. Total array analysis for 4 x 4 isolation algorithm

number of lines 74
finished routing “em™ and “had” values (in clock cycles) 56
finished sending tower id and energy (in clock cycles) 76

Reducing the time to send between cells as well as the time to test the result of an alu or acc result will sig-
nificandy reduce the final timings of this algorithm.

11.6 JETS FINDING.

11.1 Real-time algorithm description for jet finding

The purpose of these algorithms is to find possible jets by searching 4 x 4 and 8 x 8§ calorimeter tower
matrixes. Every cell must receive the “em” and “had™ values of each cell in its 4 x 4 matrix, while sending
and routing other “em” and "had” values to its neighboring cells (see Figure 21).

After the 4 x 4 mafrix values have been received in the 4 x 4 algorithm the sum of'the values is compared

with the threshold. In the 8 x 8 algorithm, each cell sends the 4 x 4 energy sum to a center cell which com-
bines the 4 x 4 sums into the 8 x 8 sum and compares the sum with the threshold (see Figure 21)

11.2 DataWave assembly code and detailed description for the 4 x 4 jet finding algorithm
Both the 4 x 4 and the 8 x 8 algorithms behave similarly to the algorithm for the electron isolation. The dif-

ference is that in the jet-finding algorithms all “em” and “had” in the 4 x 4 matrix are added to the sum of
the energy (see Table 15)

93
37

TABLE 15. Differences between the 4 x 4 electron isolation and 4 x 4 jet finding code.

11 n=rl ;d=7 send 2,3 "em” valuen

12 n=r12 :d=8 send 2,3 "had” valuen

13 alu=rl :d=9 set alu to the "had" value of cell 2,3
14 alu = alu + 12 :d=10

15 nop ;d=11

16 nop ;d=12

17 w=e, alu=alu+e :d=13 receive "em"” value of cell 2,4 (2x2)
18 w=e, alu=alu+e :d=14 receive "had" value of cell 2,4

19 w=s=n, alusalu+n :d=15 receive "em" value of cell 1,3 (2x2)
20 w=s§=n, alu=alu+n :d=16 receive "had" value of cell 1,3

21 S$=W, alu=alu+w :d=17 receive "em"” value of cell 2,2

22 s5=w, alu=alu+w :d=18 receive "had"” value of cell 2,2

23 nop ;d=19

24 w=s, alu=alu+s :d=20 receive "em" value of cell 3,3

25 w =5, alu=alu+s - :d=21 receive "had" value of cell 3,3

26 nop ;d=22

27 nop ' ;d=23

28 nop :d=24

29 nop ;d=25

30 s=e, alu=alu+e .d=26 receive "em" value of cell 2,5

31 s=e, alu=alu+e :d=27 receive "had" value of cell 2,5

32 alu=alu+n :d=28 receive "em" value of cell 0,3

33 alu=alu +n ;d=29 receive "had" value of cell 0,3

34 s=e, alu=alu+e ;d=30 receive "em" value of cell 1,4 (2x2)
35 s=e, alu=alu+e :d=31 receive "had" value of cell 1,4

Attime t = O0<>1 each cell loads the “em” and “had” value from the calorimeter and sends the values to its
east, west, and south neighbors. After disconnecting from the calorimeter and connecting to its north
neighbor, the cell sends the value north

Each cell receives and routes values from other cells between time t = 17 <> 59. At ime t = 59 all cells
contain the sum of the 4 x 4 “em” and “had” mamix. This valuz is comparad with a threshold. If the value
is greater the tower id and the total 4 x 4 energy of the jet is sent to the north.

11.3 DataWave assembly code and detailed description for the § x8 jet finding algorithm.

After the 4 x 4 sum has been totalled, the 8 x § algorithm routes the sums to their final destinations, the

center of the 8 x 8 matrix (see Figure 21). Table 16 shows the final 8x8 routing code, which can be inserted
between line 56 and line 57 of the 4 x 4 jet finding code.

38

b | .l
Cell 0,0.2 Cell 0,0.1 Ceil 0.0.4 Cell 0.0.5 Ceit 0.0.6 CeH 0.0.7 Cell 0.0.8 Cell 0.0.9
Cell 0.1.2 Cell 0,1.3 Cetl 0.1.4 Cell 0.1.5 Cell 0.1.8 Cell 0.1,7 Cell 0,18 Cell 0.1.9
2]
w1
ll‘
-~
g
Cell 0,2,2 Cell 0,2,2 Cell 0.2.4 Cell 0.2.5 Ceil 0.2.8kcamd Cell 0,2,7 Ceil 0.2,8 Cell 0.2.9
-
~ -
-] (- —
" o=
- i
(4x4)(023)] t=53 =y -~ f4x4){027) t=68
Y & . =
2 3
Cell 0.3.2 Cetl 0.2.3] T |[Ceit 0.3.4 Ceil 0.3.5 Cell 0.3.6 Ceil 0.3.7 Cell 0.3.8 Cell 0.3.9
M T .
- ad
i =
(4:4,;0271 t=92
(4x+4)(023) t=80 & o
{] =
L|Cell 0,4.5|7;
Celt 0,4.2 Cell 0.4.2 Cet! 0.4.4{~ < Cell 0,4.8 Ceil 0,4,7 Ceil 0,4.8 Cell 04,9
o« E, +(087) t=(o08 ‘:
E_‘ £, «{027) t=i08 g
‘;" £, «(023) ta (09| =T
2] e wosn i %
x > (4x4(087) =79
(4x4){083 fP1=93 3
n
Cell 0.5.2 Cell 0.5.3 Cell 0.54| 2 |Cell 0.5.8 |Cell 0.5.8 ~ ICell 0.5.7 Cell 0.5.8 Cell 0.5.9
n ‘;_‘ R
-d
- 3
[x] =
3 :
- <
»
Cell 0,6,2 Cell 0.8.3 9 |cell 0.8.4 < lceul 0.8.5 Cell 0.8.6 Cell 0,67 Cetl 0.6.8 Call 0.8.9
LI'
=
-]
2
-
5
Cell 0.7.2 Ceil 0,7.3] ~ [Cel! 0.7.4 Cell 0.7.5 Cell 0,7.6 Cell 0.7.7 Cett 0.7.8(Celi 0.7.9

FIGURE 21. Routing data for JET finding in 2 8x8 matrix

TABLE 16. Routing code for the 8 x 8 jet finding algorithm

57

58
59

61
62
83

ROUTING OF 4x4 JET VALUES

n=e=s=w=rl0=alu+n

nop
nop
nop
nop
nop
nop

;d=53 receive "had” value of cell 0.5
place sum of 4xdem + 4x4h inr10
and send to all four neighbors

d=54
d=55
:d=36
;d=57
:d=68
;d=59

65

67
68
69
70

71

73
74
75
76
77
78
79
80
81
82
33

85
86
87
88
89

91

93

95
96

97
98

100
101
102
103
104
105
106
107

op
nop

nop
nop
nop
w=§,s=¢€

e=nn0=w

nop
nop
nop
nop
nop
Dop
nop
nop
nop
nop
n=¢,w=n

nop
nop
nop
nop
nop
nop
Dop
nop
nop

nop
w=s,5=¢

e=nN0=Ww

nop
nop
nop
nop
nop
nop
nop
nop
nop
nop

(=60
:d=61
1d=62
;d=63
=064
;d=05
;d=060

a=67

;d=68
;=69
d=70
d=71
=72
d=73
d=74
=75
:d=76

& W
op!

send "jet 4x4" value of cell 3,20 w &
send "jet 4x4" value of cell 2,3 to s
send "jet 4x4" value of celi 1,2 w0e &
send "jet 4x4" value of cell 2,1 ton

send "jet 4x4” value of cell 3,30 &
send "jet 4x4" value of cell 1.3 to w
send "jet 4x4" value of cell 1,1 105 &
send "jet 4x4” value of cell 3,1t e

send "jet 4x4" value of cell 3,4 tow &
send "jet 4x4" value of cell 1,3 w0 s
send "jet 4x4" value of cell 1,3toe &
send "jet 4x4" value of cell 1,300

108 Dnop d=104

109 Dop ;d=105

110 adlu=e +n ;=106 receive "jet 4x4" value of cell 4,4
111 alu=alu+w ;3=107 receive "jet 4x4" value of cell 0,4
112 alu=alu+s :d=108 receive "jet 4x4" value of cell 0,0

Between time t = 57 and t = 166 all four 4 x 4 matrix sums are routed to the center cell of the § x § matrix.
After all sums are received and the 8 x 8 sum is calculated the 8 x 8 sum is compared with the threshold. If
the value is greater than the threshold, it is assumed to be a jet and the tower id and energy is sent to the
notth.

11.4 Result analysis of two “EM™ sums + front-to-back {n 1-cell per chip array.

The total time required in all the arrays (considering also the dependency of data that must be exchanged
between processors) in “T cycles (1 cycle = 8 ns in the present DataWave version and 4 ns in the future

version) is the following:
TABLE 17. Total array algorithm execution time for “em” sams + front-io-back

4x 4 8x8
oumber of lines 73 129
finish routing “em”™ and “had” valnes (in clock cycles) 56 i12
send tower id and energy (in clock cycles) 76 132

The timing of these algorithms can be considerably shortened by decreasing the amount of time it takes ot
send and receive from different chips. For the routing of the 4 x 4 sums of the 8 x8 jet-finding algorithm
(Table 16), 70% of the lines contzin “nops”. If the “nops” could be deleted the time of the algorithm would

dramatically decrease.

For the information of the transverse and total energy, the energy from the § x 8 jet should be sent to an
external logic unit to sum the 8 x 8 epnergies. In the case of the GEM experiement the unit will totai 20 8x8
sums, while in the case of the SDC experiment, the unit will total 56 8x8 sums,

12.0 “EM” CLUSTER FINDING (ISOLATION) AND JET FINDING.

12.1 DataWave assembly code and detailed description.

The purpose of this algorithm is to show how different algorithms can be combined without the total time
being the sum of the indivicuat algorithms’ sum, but only a fraction of it In this study the two “em” sums
+ front-to-back + electron isolation + 4 x 4 jet finding have been compiled together, The fiow of the result-
ing algorithm is shown in Figure ?

As one can see, if a cell does not qualify as an electron in phase 1, the cell does not execute the code for the
ratio or isolation, but only executes the jet-finding algorithm. Howeves, if the cell passes the “em™ thresh-

37

41

old and front-to-back tests, the electron isolation test and the 4 x 4 jet finding algorithms are executed in

parallel.

Phase 1:

Phase 2:

set code

Y

yecs

output resuits

FIGURE 22. Flow diagram of the “em cluster and jet finding

12.2 Result analysis of “EM” cluster finding (isolation) and jet finding.

Due to the length of the code and the repitition of code in other chapters, the code for this algorithm is not

listed. However, the results of the algorithm are shown in Table 18

TABLE 18 Combination of two “em’ sums + front-to-back + isolation + ¢ x 4 jet finding

minimum tire maximum time
. (in cycles) (in cycles)
lines of code 154
finish ume for decision to dismissing cell as a possible 91 il4
electron or jet
- send out null values**
finish time for decisicn of possible electron 112 114
~ sends out the tower id + “em’™ value**
finish time for decision of possibie 4 x 4 jet 94 114
« send out the tower id + (4 x 4) energy sum
finish time for decision of possible electron and possible jet | 112 116
— sendd out the tower id + “en” vilue of cell + (4 x 4) energy
~ sum

** timings given are the time that the last value is sent from the cell

98

42

Given that 1 clock cycle = 4 ns in the future version of the DataWave chip, the iongest time to make a deci-
sion using these algorithms would be 464 ns. Although this timing itself is not acceptable for the Level 1
Trigger, with a few optimizations to the DataWave chip, becomes feasible.

13.0 PROGRAMMABLE I LEVEL TRIGGER SUSTAINING 16 NS RATE
13.1 Suggested modifications of the DataWave to Front-end-processor (FEP)

From the experience of using the DataWave and from the specific requirements of the first level trigger
algorithm, we can suggest an architecture that will solve the problem of having a fully pipelined program-
mabie first level trigger sustaining the rate of 16 as more efficiendy.

The 16 ns rate can not be achieved by a single processor ceil executing at a clock speed of 4 ns per clock
cycle; however, 2 pipeline of 4 or more processors, can allow each cell 64+ ns to output its result. It is pos-
sible 10 make use of the existing DataWave with the pipeline stages described in the conclusion (Table ?),
but the timing for routing data between cells and each cell’s internal pipeline make the existing DataWave
c=ll less efficient. With modifications to the DataWave, the DataWave will not only become more efficient,

but also become a suitabie choice for the Leavel 1 trigger.

Figure 22 shows the suggested modificatons of the DataWave to the Front-end processor (FEP) for the
Level 1 rigger algorithms.

Top

Progra
84 x 48 WY

FIGURE 23. Front-end-processor

stages (see Figure 23), eliminating the routing of data o the different pipelined stages through more expen-

addition to the north, east, south, and west ports). These ports allow for easy data flow berween different
sive and less reliable connectors and multipiexers.

Two new ports are added to the existing DataWave processor, one for the top and one for the boaom (in

FIGURE 24. General scheme of the pipelined parallel processing architecture using the FEP.

100

Since the algorithms only use a small fraction (22%) of the DataWave instruction set, the modified version
will simplify the DataWave instruction set by only allowing for instructions that are foreseen to be used in
the triggering algorithms (see Table 19). This not only makes the DataWave simpler, but also more eco-
pomical by dropping 78% of the instructions.

TABLE 19. Instruction set suitable for trigger algorithms

aop Do operation alu=A-B

hi=B load hi from B bra branch

lo=B load lo from B bmmi acc <0

mid=B load mid from B bmpl ace »= ()
“acc=+A*B - beq ain=0

“acc=acc+ B bne alp >0
“acc=acc-B bmi alu<0

Aacc=acc+A*B bpl alu>=0
Malu=A+B

A note: a port can be used in place of acc, alu, A, B except in when the acc or alu is used twice in the same
instruction, which then it can only be usedas an output and not as an input..

In addition to reducing the instruction set, removing the pipeline of instructions (resulting in output that
can be used after 1 clock cycle) and removing the delay of data between processors (data sent from one cell
can be received after 1 clock cycle)} will remove all nops from the algorithms. A modification in the num-
ber and size of registers is shown in Figure22. It is forseen that it might be necessary to receive more val-
ues from the calorimeter tower, or that it might be necessary to have more calibration constants (for
different E;, Etor. E;, E,, etc) or different thresholds. Therefore the number of registers should be
increased as well as the size of the registers (at present 12-bit) to fulfill the precision requirement of the
Leve! 1 trigger.

Due to the frequency of use of the 6 ports, a buffer at the receive unit for each port is needed, that will
allow data that is received from z port to be sent to both an internal unit (ALU, register, etc.) and on the
same internal bus be sent to another port. At present these operations require two different buses, and with
the npew ports the buses become overloaded.

132 Differences on the real-time algorithm and data loading with respect to the earlier algorithms

Since the new assembly instruction pipeline is different from the present one, the programmer is not lim-
ited by extra cycles between the time a value is received, or between the time an alu instruction is executed
and the time its flags are set. Also, since the “branch” instructions will branch immediately, the three
instructions following a “branch” statement are no longer executed.

Due to the staged architecture design which the earlier algorithms did not include, the new algorithm must
include pipelining data through the different stages of the processors (see Fig. 24 and 25).

At each input port of the FEP processor (as it is also on the present DataWave design) there is a FIFO that
is derandomizing the data from the calorimeter (0 the processor array. This will allow the calorimeter to

101

45

send two data (“em” and “had™) every 16 ns, and the processor fetching the values whenever the program
executes the fetch instructions (a 4 ns cycles). The program execution at stage ! must not only route the
new incoming data from the calorimeter (one “em” and “had” value every 16 ns) to the next stage in the
pipeline staging (stage 2), but must also execute its rigger algorithm in parallel. All progessors must like-
wise pipeline data. When the stage 1 processor has finished its algorithm (in the first example reported in
Table 20, this occurs at time = 63 and in the second example reported in Table22 will happen at time t =
127), it then sends its results to the stage 2 processor, which passes it on. At this point the stage 1 processor
begins to re-execute its algorithm: receiving the “em™ and “had” values from the calorimeter and process-
ing those values.

The output results from all procsssors flow (like the input data) through the different processor stages. The
last processor will ouput the results from all processors at a rate of 16 os.

- £
- electrons | .
- Jets LSLage 4| l ISLage 3] [Stage 21 LSLage L] < RaW da La
< SIS EOR S, S
————— e e L
N [| a2 bt 0 ns
Algorithm | | B)
execution : e 716 ns
LatenC time \ b‘. : . .
d .\' ‘et =& 732 ns
| Fage i T Y] -
| * i . s
| R | =+ 48 NS
jonierom i e T
e BT T - = T 64 ns
:‘W?-F_'Uf |+H_ = -:"' : | |
1—7 lk___qo._!] .]
<.m—--i_’.'§‘.§r:':r:::5“— LT e e T80 ns
v gz L L [r_ﬁ"r'ﬁﬂ
H : - o |
2_..%_;_,'__%;.-..:3_1':[‘_ - !g - TTETTY 96 ns
L onE A — e 112
| ! . TP T
a:'n'::lk 1 — - S r e il JLIg nS
g—'i‘b(_'_.r___‘.“—ZEs: ‘[- i
-‘-j.”’u' 5— _i?_— EJ:5: :lt<~— VLS -j I‘_—-—-——'_ﬂl‘- 1 2 8 1‘13
=1 e |
g o ol = e 7 144 ns
IeEro TR R
! i |
———— T T e T T T —— TS 160 ns
2 SULPuL :4* —— e 1
| I ! ‘q_ﬁ-_
Soooone = it =27176 ns
' ' ! ' : /192 ns
Time
%€ Oichye Lz

One board of the programmable first level trigger with FEP array

102
46

Local maximum
Cluster energy
(.4 X .4) energy, Transverse energy Raw data

etc. Stage 4 Stage 3 Stage 2 Stage |

i

— |
i

16 Optical
— Fibers
(.4 X .4)

_L 8 pemacaed

"""“?‘f’iA_f‘“"
L
T

A

T oo TTT

|
N
)
!
t
T

i : |: | (1 Fiber/Tower)
A A A A A (1Gbit/Fiber)
[Digitalf Pipelrine / Di‘gital
e 2 Stages (layers) Filter
iming diagram of four stages pipelined programmable first level trigger

13.2.1 Assembler code of the modified DataWave for the four stages of chapter 9.0 algorithm

Table 20 shows the assembler code for the “two” sum + front-to-back algorithm (found in Sectioa 9.1) are
loaded with the same algorithm for finding electrons, but the routing between different stages (the top-to-
bottom instruction) depends on its stage position. Assembler code for the routing between stages are
shown for all stages needed for this algorithm. A graphical representation of the input and output data rout-
ing between the stages, the algorithm execution time at each stage, the latency between input data and out-
put results and the data low in the pipelined architecture, is shown in the timing diagram of Figure 25.

103

47

All pipelining is explained in parenthesis after the “b=t" instruction. The number is the stage number
where the data that is being pipelined will be processes or where the outputed data was originally sent
from. The codes are as follows:

a0 o P

“em” value
“had™ value
tower id

“em” sum (either 1 x2or2x 1)

TABLE 20. New FEP assembler code of the four pipelined stages algorithms of chapter 9.0

32
.end

<el Q1,2

loop:rl =s=w=1t"rl4
R=s=w=t"rl§

r7=rl +nm,

M=r2+n,

MP=rl+e,

rib=12 +e,

alu =7 - r5,

bpl north,

alu =9 - 15,

bpl east,

bra nosend,
northrace =17 * 15,

ace = acc - 18,

bmpi sencln,

bra nosead2,
east acc =19 * 5,

ace = ace - rlQ,

bmpl sende,

bra noscod3,
ssadn:nop,

nop,

nop,

b=23

b=t7, bra loop
sende:nop,

b=23

b = r9,bra loop
nosend1:pop,
nosend2:nop,

nop,
posend3d:b =0

b = 0, bra loop

STAGE4

(4a)

(4b)

b=t(lc)
b=t(ld)
b= t{4a)
b =t (4b)
b=t(2c)
b=t(2d)

b =1t(3c)

b=1t{3c)
b=t (3d)
b=t(3c)
b=t(3d)

b=1t(3d)

(4c)
(4d)

(4c)
(4d)

(4c)
(4d)

STAGE3 STAGE2

(3a)
{3b)

b=t(3a)
b=1t(3b)
b=t(lc)
b=t(ld)

b=t(2c)

b= t(2)
b =1 (2d)
b=1(%)
b = t(2d)

b = t (2d)

(3e)
(3d}

(3¢)
3d)

(3¢)
(3d)

(2a)
(2b)

b=t {2a)
b=t(2b)

b=t{4a)
b=1t(4b)
b=t(lc)
b=1t(4a)
b=1(4b)
b=t(lc)
b=1(1d)
b=t(lg)
b=t(1ld)

b=t(ld)
(2c)
(2d)
(2¢)

(2d)
b=t{1d)

(2¢)
(2d)

STAGE 1

(1a)
(1b)

b=1(3a)
b=t(3b)

b=t(3a)
b=t(3b)

b = t(4a)
b=t (4b)

b=t(4a)
b =t (4b)
(1c)

(1d)
b=1t(b)
(le)

(1d)

b=1t(4)
b=t
(ic)
(1d)

; receive “em” value from calorimeter
; receive "bad” valve from calorimeter
inorth 1 x 2 "em” sum

;north 1 x 2 “had® sum

;east2x1 "em” sum
;east2 x 1 "had® sum

; compare | x 2 "em” sum to Threshold

; compare 2 x 1 "em" sum to Threshold

;"em" * Thresbhold (1x2)
"em” * Thresbold - "bhad”

;“em” * Thresbold (2x 1)
; "em” * Tareshoid - “had®

; send oat tower id
vsendout 1 X 2 "em” energy

; seod out tower id
:sendout 2x 1 “em” energy

; send out null value
; send out oull value

The tower “id” + “em” energy is sent out at t=31 and 32 (56 - 60 ns after the processor fewches the data).

132.1 New coding of the two “em” sum + front-to-back + jet-finding algorithm

This code uses the above code for the two “em” sum + front-to-back, but changes the algorithm for isola-
tion and jet-finding from the one described in Chapter 10 - 12. The flow of the program is modified from
the previous algorithm and is shown in Figure 27.

104

48

Phase 1:

set code

Phase 2:
Phase 3: ' no .
isolated? possible jet?
yes
set code set code
Y ;
output code

v

FIGURE 27. Flow chart of the two *“em’ sum + front-to-back + isolation + jet finding

The earlier code was limited by cells waiting for input from their neighboring cells for both the isolation
and jet-finding algorithms. Because of this wait, it was more efficient t¢ send data one by one to each cell,
only adding the vaiues that need to be added (all values except the 2x2 “em” values). Because of this flow
of data, the algorithm did not have to calculate the 2x2 “em” sum and subtract it from 4x4 sum, once the
cell added the last data set, the sumn was already the (4x4) - (2x2 “em™).

Since this limitation does not apply to the modified DataWave, a new algorithm (see Figure 28 and 29) was
developed to take advantage of the FEP speed.

105

49

PrresYdaceneas - - - —

“ et 0.0.2) ; - lceit 0.0.3) S icenl 0.0.4} . |cent 0.0.8) :

)

“leens 0.1.21

L ICell 0.1 4ke=t®2 3™ (eaiy 005 ¢

222 tum 212 sum

'
)
)
'
[
1
\
'
1
5
1
1
]
]
¥
1
-
H
R
|
yn
Ll
1
1
1
i
1
1

..

SRR

oo mt e g e e e ———————

r-
]
1
]

Dlcen p.3.2l =tz sum leoy 03,3022 #9T lce 0.3,4[152 M leay g.3.5]

2x2 sum 212 um

r 1

' '

H T Eeme—a—- -—— -
I osrertanansssna L B I L I 1
N P : : it
1 |Cell 0,2,2]) S [Cell 9,2.4] . [Cell 0,251 '
' : Cell 0,2,3 |11 : : oS
[B M|
[-|=. :
1. R .
‘e dx4 sum T 1
[PRI T M
[st o
1. R I
i AEE 3
1 32 sum o o
[(v .
i - / szsun?..: T
[LU |
I [[
t pum !
] LI |
[P o
1. L |
[T 1
[N =
| « 18]]
1 A 1
[']
[N - .

r

FIGURE 28. Routing 4x4 sum for eiectron isolation and 4x4 jet finding

Cell 0,1.3 Cell 0.1,4

. y
Cell 0’2'3 é__Cell 0.2,4

2x2 sum

FIGURE 29. Routing 2x2 *em’ sum for electron isolation and 4x4 jet finding

106
50

Each cell begins the isolation algorithm by first summing the “em™ and “had” in its own tower and sends
resuiting sum to the south (t=13). On the next cycle each cell receives the energy sum of its northern cell
and calculates the 1x2 sum, which it sends east. At time t=15, each cell receives the 1x2 sum from the east
and adds its own 1x2 sum creating the 2x2 sum for that cell. After the 2x2 sums are calculated, the sums
are sent to the middle cell, which adds them together to form the 4x4 sum, see Fig. 28.

The ceil now neads to subtract the 2x2 “em” sum. It begins by sending its own “em” value south. After a
cycle it receives from the porth, its northern celi’s “em” value, which it adds to its own to form a 1x2 “em”
value and sends it east. At the next cycie the cell receives the 1x2 “em” sum from the west and adds it to
it's own, creating the 2x2 “em” sum, which is then subtracted from the 4x4 sum. At time t=24, the (4x4 -
2x2) “em” is compared with the threshoid.

Since each cell already has the 4x4 value, for the jet algorithm it only needs 10 compare the 4x4 sum with
the threshold and tests the result

The new code for the two “em” sum + front-to-back + isolation + jet finding is listed in Thble 22. Since the

code must check for all these criteria, at the end of its algorithm, each cell ends out a code that has encoded
the result of its test. The encoded output codes are listed in table 21

TABLE 21. Qutput codes for two “em” sum + front-to-back + isolation + jet-finding algorithm

1 two “em” sum {(north 1 x 2} > threshoid
2 two “em”™ sum (east 2 x 1) > threshold
4 “had”/"em” (north 1 x 2) < threshold

8 “had”/"em"” (east 2 x 1) < threshold

16 isolation acheived

32 possibie jet found

Combinations of these codes are allowed. For example, a cell may return codes 1,4, and 32 stating that the
a possible electron was found. but it was not isolated from surrounding energy and that the cell may be part
ofad x4 jet

Each cell also outputs the 4x4 sum which will be used to calculate the E; (78 values should be added exter-
nally in the case of GEM calorimeter and 224 values in the case of SCD experiment)

The assembly code for finding Ey, electrons, isolation and jets is shown in Table 22. Due to lack of space,
only the code for the stage 1 processor is shown. The numbers on the left of the algorithm is the instruction
line number, while the right-most number is the clock cycle the instruction is executed (assuming the first
instruction is executed at time t = 0).

All lines that refer to the outputed codes (defined in Table 21) are marked with a “A”. All stage pipelining

code is explained to the right of the comments in parenthesis (using the symbols as explained above Table
20).

107

ENON--IO\MAUJM-—O

o) B R B b o et
ahRURBREesasaRonS

[}]

SGELBEBBEUERREBEEER

cell 0,1,2

=t*rl4
=t*rls

rl=s=w
R=s=w
f7T=rl+n
=2+n
O=rl+e,
rl0=12 +e,
au=r7-r5 -
bpl north, alu =19 -5
bpl east,
bra nosendl, r0=0,
acc=r7*r5, =1,
acc = acc - 18,
bmpl sendn
bra nosend2
acc=r9*r5,10=2,
acc =acc-rl
bmpl sende
acc =rl,bra iso,
M=r0+4
acc =11, bra iso,
sende: 0 =10+ 8, acc=rl, braiso,
nosendl:nop

nop
posend2:10=0, acc=rl,
iso; § = acc=acc +12,
w=acc+n
p=s=acc+e
w=e=S85,
w=e=10,
du=e+w
alu = alu + w

loop:

north:

sendn:

S5=alu=alu+e,s=acc=rl,

$=acc=acc+n,
=acc+e
=r5-r6
alu = alu - r3,
bmi sendiso,
bra cont
sendisor0 =10 + 16
cont; alu=r5-
bpl jet,
bra send.
jet: 0 =10+ 32,
send: b=t
b=15

oo
nn

~ o~

T oOTT
nonnu
~ =~ o

o
H
-

oo
i n
- -

oo
ne
- -

[~ -
nu
LA,

oo
nu
~ o

> o
nn
-~ -

oo o
non
- .o~

108
52

; recieve "em” value from calorimeter

; receive "had" value from calorimeter

;north 1 x 2 "em” sum

;oorth 1 x 2 "had" sum

;north2 x 1 "em” sum (2a)

;oorth 2 x 1 "had” sum (2b)
s compare 1x2 "em" sum to Threshold
; compare 2x1 "had” sum w Threshold

; {3a)

; (3b)

A"em" * Threshold (1x2) (3a)

: "em" * Threshold - "had” {3b)

A'em" * Threshoid (2x1) (3b)

; "em" * Threshold - "had"

; set acc="em" for iso algrthm _(4a)
A

;set acc="em" for iso algrthm {4a)
;Aset acc="em" for iso algrthm (4a)

; set acc="em" fos iso algrthm (4a)
; add "had" and send s (4b)
; add o tower for 1x2 sum, send w
;add e 1x2 for 2x2 sum, send n
; routing 2x2 sums (5a)
; routing 2x2s, store aw 2x2 sum(5b)

; add sw 2x2 sum to acc

; add pe 2x2 sum o acc

; add nw 2x2 to ace, "em"->alu (6a)

; add a "em" -> alu {6b)
;add e 1x2 "em" -> alu
; (4x4) - (2x2)
i (4x4) - (2x2) - Threshold (7a)
; (o)
;A
; compare 4x4 with jet value
V (8a)
: (8B
i (8b)

send out code
; send out 4x4 energy value

TABLE 22. New FEP assembly code of the four pipelined algorithm to find Et, electrons, isolation, jet

B B bt i et gk Pk ek b b e bt b b fadd b P et
W RN R RO R B R O R EG O EERRERED

The result of the algorithm is a fully programmble 8 processor stage desiga for the Level 1 wiger which
identifies possible electrons and jets as well as outputs 4 x 4 values for calculating the Ey.

14.0 CONCLUSIONS

The simulation of trigger algorithms on the DataWave chip has demonstrated that even a simpler processor
than the DataWave (implementing only 20% of the instructions, making it both more economical and eas-
ier to program) can offer the possibility of a flexible programmabie Level 1 trigger (sustaining 16 ns clock-
ing).

The new discovery as a reult of this smdy was that the combipation of a very few instructions, a number of
simple algorithms, and specific hardware can meet the needs of the Level 1 trigger Since modifying the
existing DataWave can be shown to allow for ail three of these conditions, the most natural way to imple-
ment the ful programmable Level 1 trigger would be a modification of the existing DataWave,

TABLE 23. Fully programmabile Level 1 trigger sustaining 16 ns clocking

PRESENT DATAWAYE MODIFIED DATAWAVE

algorithm time (in | number of algorithm time(in | number of
Algorithm clock cycles) processor stages clock cycles) Pprocessor stages
Filter 10 3 10 L I
3x3 cluster 61 16 22 6
identification '
{1-cell per chip)
3x3 cluster 84 21 26 7
identification
(16-cells perchip)
“em’ < threshold | 52 13 15 4
+ front-to-back
electron isolation | 76 19 17 5
jet-finding (4x4) 76 19 14 4
jet-Bnding (8x8) | 136 Y 20 8
Ep EropEx,Ey | 64 16 11 3
“eny’’ < threshold | 116 29 31 8
+ front-to-back
+ isolation
+ jet-finding (4x4)

With a processor running at 250 MHz, an algorithm for “em” + front-to-back could be implemented in 4
stages (to sustain the rate of 16 ns) resulting in a total of 5000 processors for the GEM experiment and
14,336 for the SDC (for the “em” + fornt-10-back + isotation + jet-finding the number of processors will

109
53

double). With the cost of a chip being estimated by ITT at a few dollars, the DataWave solution not only
offers flexibility but also affordability.

The flexibilty of this solution can be demonstrated by the ease of programming a DataWave cell.. Any
physicist can change the algorithuns of the FEP by coding a simple program, consisting of less than 64
operations and using an instruction set of 17 inszuctions. Due to this simplified instructon set, the effort to
learn to program the DataWave is minimal.

Experience shows that trigger algorithm tuning usually begins after acquiring a few full events. The possi-
bility of a flexible. programmable system at an affordable cost (compared with cabled logic), makes

exploring this solution not only be benefitial to the GEM and SDC experimems, but also to other experi-
ments as well.

ACKNOWLEDGEMENTS
We would like to acknowledge Jim Siegrist, Craig Blocker, Pal Trivan, Ed Wang for their encour-
agement, suggestions, constructive criticism, helpful proofreading. }
REFERENCES

1. D. Crosetto, “A fast cluster finding system for future HEP experiments”, Nuclear Instruments
and Methods in Physics Research, A311, (1992), 49-56.

2. N. Bains et all, “The UAl upgrade calorimeter trigger processor”, Nuclear Instrument and
Methods in Physics Research, A292 (1990) 401423

3. K. Caesar, U. Schmitdt. S. Mehrgardt and T. Himmel, Elektronik Magazine 12 (June 8, 1990).
4. Solenoidal Detector Collaboration. Technical Design Report, SDC-92-201, 1 April 1992,

5 Gamma (photons), Electron and Muon.Letter of intent, SSCL-SR-1184. GEM TN-92-49. 30
November 1991.

6 G. Jarlskog and D. Rein. “Large Hadron Collider Workshop” CERN 90-10, ECFA 90-133. Vol.
I, O, I Aachen, 4-9 October 1990.

7 W. H. Smith et all, “Isolated electron pattern logic design and performance at SSC” Solenoidal
Detector Notes SDC-91-00087. November 11, 1991

110

54

8 A. J. Lankford, Issues for Trigger processing at High Luminosity Colliders, ECFA study week
on Instrumentation Technology for High-Luminosity Hadron Colliders, Barcelona 14-21 Sep-
ternber 1989.

9 D. Crosetto. “I and II level architecture, data acquisition/compaction system” North-Holland

Physics publishing. Proceedings of the 3rd International Conference on Advanced Texhnology
and Particle Physics. Como, Italy, 22-26 June, 1992. NUPH-B. Ed. E. Borchi et all,

111
55

gem

GEM CSC Readout

113

Comments on GEM CSC Readout

Requirements:
e Low noise (~ 2000 ™)
e ~ 10 bits dynamic range
e < 10 us conversion time
e Time resolution ~ BX (for rejection of neutron hits)

e Low cost (~ $10. — $20. per channel)

Radiation hard? F, ~ 103 cm—2 571 ?

115

Neutron Rates

Currently very uncertain
Product of three factors

R=ec, FroA=rA
where .
£, = detection efficiency
F, = fluence

A = strip area
The efficiency

2%x 107 %<, <5x1073

the fluence

10° < F,, < 10% cm ™35!

the area
A= fw~ 300 x 0.5 =150 cm?

vielding a rate per strip (assuming ¢, = 0.5% of
0.73 < K < 75 kHz
note that the corresponding rates per unit area are

2.-1

5<r, <500 cm™"s

116

Analog Pipeline (SCA) Option
—~ = at

aﬁx_//\\,_)@x‘

s

tp = pulse peaking time = 300 ns

Assume

At = sample clock period = 100 ns

I I I N B

—

— Spoilage
bL—"" Region

@
o
ol

-y =

L

t_-_ e

100 ns

If accidental pulses falling within the indicated region in the
space-time grid shown above are considered to spoil the signal
pulse, the maximum unspoiled rate is given by

_ Pmax _ 0.1 _
Fmax = 97N = T x 107 - o0 KH2

(corresponding to r = 320 cm™%s71)

117

SCA-Based Readout

Preamps Shapers e to Leve! 1 Trigger &
| 30 ns Di LA Control Logic
' |~ Fast ISC
300ns o ¥
ipe .
>—Slow P FIFO
Preamps
L IN30ns Diec
‘ H ' | " Fast
300ns T
>ﬁ Pipe ' FIFO .
Slow i_ Analog
o o ® e | MUX
i: ® o [®
e
Prez?mps * ¢ o
I \30 ns Disc
! |~ Fast .
I > ’ I 300ns T ADC lFIFO
>—— Pipe | FIFO .
Slow
Muon System
Cathode Strip Chamber Level 1

AMPLEX Option

—— t

In _f\ ¢

. P
: . tp = peaking time
: ; ¢ T1 = Level 1 Delay
Hold ___ | e LA
) 1 CC
Level 1. e ‘ . 27 AMPLEX TIMING

Spoilage Scenarios:

1) Accidental pulse comes early by At <717 —t,, causing the
hold to be issued too early.

2) Accidental pulse comes late by At < t,, possibly overlap-
ping with the true signal.

Thus the effective total time aperture for spoilage is

AT=T1—tp+tP=T]_=2/.LS

. R
> Ao ™ neoN N = # strips in readout group.
(Currently N = 16)
9
. (N=-2).. 2_..
Neﬁ' = TI’V -i--ﬁle = N.+.2
If we allow

Pmax = maximum hit spoilage = 10%

then
» { 2.8 kHz, N =16
Rpox = —2_={¢50kHz, N=238
NegAT | g3kHz, N =4

119

Front
End

OR

| Delay &
Width

— (]

FF

\\
W)

MUX Addr.

q_AnﬁlDQ Qut

OR

Front
End

| Holdq-

Delay &

Widlh

FF

MUX Addr.

Analog Out

"‘ll.._.&

16—

OR

Front |
End

| Delay &

Width

FF

Hold -

MUX Addr.

A

e
| Analog Qul

< Clear

Scan
Logic

ADC

T

—< Laval 1 Accept

Sparse Scan
Readout

to Readoul

-

Data & Address

F:(c)wﬁ A"q Cl

DAQ System

121

DAQ System

Philosophy
DAQ includes any component which affects deadtime
Two trigger levels

Low Latency Trigger
Buffering on FE chips
< lusec

Cable logic, Datawave, ?

High Latency Trigger
Off-chip buffering
"no limit"

General-purpose processors
($200 -> $10/ UP)

Send all data after L1 accept
123

|

12
A
o
>~
=
o
e

|

]

vel

| L1 _ace
i - () gating logic
11 4 L3 _conatrol
L2_control
| throitle
e constants
t)
S =
1C3-{ son | @” @’ @‘ ;
v '
= N " ‘;\\ "rk l
= _ h[::/ DCN ‘,\\.\ / L2/3

39 ¢

"= e feto)
CAL t:‘:%“: -: ::::}}j I’I' \‘\‘ \‘\

= SOB

|
1]

[,
i&x-
™
M

arm] pmimimimind

% \

Front-end Multiplexing

RCVR FIFO XMTR
1 Gbps
8
X
100 Mbps
X 200 (Cal
X 223 (Trk
X 40 (Si)*
X7 ()

* assumes 16 wafers/front-end link or 16:1 premultiplexer

125

DAQ System

i

FE Boards
MUX1
MUX2
8]
8
/
Low Rate System
FE Boards
MUX1

512

/

High Rate System

126

\Builder
64

\
8
/J }\S}fi%gr Processors

Event Processors

L]

Serial Links

Data Rates
P1394, "FDDI" 100 Mbps
Fiber channel 150,600 Mbps
SONET 50,100,200,400,... Mbps

Error Rates

10E-12 -> 10E-14

Cost
100 Mbps Copper $100 -> $50
Fiber $300 -> $100
1 Gbps Copper $800 -> $200
Fiber $2000 -> $400

127

Serial Links

Error Rates
MTBF = 500 seconds (50 Million Events)
@ BER = 10E-14
Assumptions
Common clock for Transmitter & Receiver
Multimode fiber

-> reduced PLL dropout -> low error rates

Suggestions
CRC on header (block error correction?)

CRC or Checksum on data (error detect only)

No lateral ECC on data

Flush & Reset on error
No attempt to resynchronize

Could lose 10,000 events (0.02%)

128

Packet Format

Fixed Length Packets
SClt - 16 Byte Header, 16 or 64 Byte data
ATM - 5 Byte Header, 48 Byte data

Simplifies switching

Destination must sort packets (not ordered)

Variable Length Packets

Event Fragment determines size
(Header includes WC)

Ordered data

Larger buffers

129

Event Builder

Requirement
512 X 512 (X 500 Mbps)
approx 20 GB/sec

Commercial Switching Network
Example: Ancor

64 X 64 (single stage)

up to 4096 X 4096 (two stage)
Fiber-channel I/O

ATM switch

Non-commercial switching Network
Unidirectional

Simplified control (no arbitration)

130

Control Links

Front-end (4 signals)
Clock (63 MHz)
L1A / L1Sync (31 MHz synchronous)
DIN / DOUT - 100 Mbps (e.g., P1394)

DIN
Download, control messages, handshake
L1Sync

Synchronization of start,stop,test control messages

L1A L1Sync

131

TTR DAQ System

133

(Window)

Show) Event
C Dala Dump [Process
. Control - — —
Event Panel Event
Display Comment
L — Real-Time
(Crate)_» X Window \ Tapa MXI/Elhernel VLManager
Ed'_loi Manager | Panal / ~
———— - ; . ___L — e —
Tape Command |+ Dala Data
P _Lontrol_ | . Control __——"""1 Coanlrol . Read Oul
CaS . - ’W__,--/"‘ TTTT TTW T ’“'/’V# _"'
on . e . —
Data Ethernet Buffers
Callaction ?/
J MV147
'SPARG

Figufa 3.1 TTR Software Configuration

(Ethernet Event Data Link)

|

g

TIR DAQ System -

modular [VME]DAQ

MXi
l----------- ---—-l
1
~ ! o |~ !
» | = ol | = g !
— m —-— [a— [-
W= Q wile 1
HMEINEHIEE 3
>0 =| i>| <
=|° Sl1|=]e
| I . w
_; T
I VfME

VME/VXI

BACKBONE

e Y L T Ty R N]

SPARC TAPE
—
CSIL
. DISK
ETHERNET

=

HV/

frontends “ 8'

frontends (|m
L CAMAC

FastBus

=
A

CAMAC

frontends (|m
LL

frontends

FastBus

136

