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Abstract: 

A table of requirements is derived for local and global alignment of 
the GEM muon detector. Requirements are given for structural accuracy 
(to which the muon array must be constructed) and precision measurement 
(where dynamic measurements of detector position may be used to 
compensate the location of superlayer spacepoints). In order to facilitate 
the rapid updating of requirements as the detector definition evolves, 
details are given on the requirement derivation. 
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1) Introduction 

Several phenomena that impact muon system alignment are listed below: 

Intrinsic Smeans 
• Vertex distribution along z 
• Multiple scattering in calorimeter 

Needed Structural Accuracy 
• Dynamic range of local alignment system 
• Alignment of trigger roads 

Pm;j5joo Measurements 

• Stated momentum precision in bending plane 
• Align to precision of detector components (muon angle) 
• Extrapolate p1 from measured angle 
• Mass Resolution 

Pattern Recggnitjop 
• Muon tracking constraints 
• Track linking with central detector 

OtherEffech 
• Line-of-sight deviation from IP 

The "intrinsic smears" arising from the vertex spread along the bearnline and 

multiple scattering in the calorimeter can limit the required alignment accuracy in some 

coordinates. The accuracy of the structure itself (after it is servoed into position) is 

driven by the dynamic range of the straightness monitor system (used for local 

alignment), and the trigger road definition/width. The precision measurements set the 

needed accuracy of the alignment monitors (which will be used to correct the muon data). 
The major influence here is the muon P.L measurement. Some quantities will require 

determination of the muon angle; the needed resolutions are quoted here. Pattern 

recognition considerations may also affect some of these requirements, and track linking 

with the central detector will induce a limit on the angular error (such effects are not 

included in this report). Other considerations, such as the sensitivity to torque error in a 

straight-line alignment system pointing back toward the interaction point, are analyzed. 

Figs. 1-4 show simplified views of the GEM muon system, with relevant 

quantities labeled. Local coordinate offsets are given, plus a net translation of the hexant 
coordinate system (Axo, !!yo, l!zo). The angular errors ( 110, l!tp) arise from a rotation of 

the hexant about the IP before translation. Various quantities are assumed in these 
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derivations; these are listed where relevant, hence may be readily updated, and the results 

normalized accordingly. The simplified muon system depicted in this analysis has a 

barrel running from 0 = 90°.- 30°, and an endcap running from 0 = 30°• 10°. 

2) Intrinsic Smears 

a) Length of interaction diamond 

Assuming the interaction diamond to be of length er= 7 cm along the z-axis, we 

generate a probable error along the beam axis of Azo = ±4.7 cm. This error is only 

relevant to the static structure requirements (in Sec. 3); on an event-by-event basis, the 

vertex position is measured by the central tracker, hence this is corrected. Since this 

variation is only an offset along the z-axis, the perceived e angle is unchanged. The e 
accuracy of the structure (which assumes that all muons originate at the IP), however, is 
smeared by this distribution. In the barrel, the effective shift in 9 may be parameterized 

by A9 = (D sin20µ/Yc), where D = ±4.7 cm, and Ye= 8.53 m (for the outer RPC layer). 

This gives A9 = ±5.5 rnr@ 9 = 90°, and A0 = ±1.4 rnr@ 9 = 30°. For the endcap, this 

relation may be adapted; A9 = (D sin 9µ cos 0µ /Zc), where Zc = 16 meters. This yields the 

results: A9 = ±1.4 rnr @ 9 = 30°, and A9 = ±0.5 rnr @ 9 = 10°. Because of the projective 

geometry of the barrel and endcap structure, an effective smear in the y axis may also be 

inferred (mainly relevant when specifying the alignment of trigger elements). This 

parameterizes as Ay0 = Azo tan 9, and evaluates to Ay0 = ±00 @ 9 = 0°, AYo = ± 2.7 cm@ 

9 = 30°, and Ay0 = ±8.3 mm@ 9 = 10°. Since the beam diameter is very small (i.e. on 

the order of 10 µm), there is no significant primary smear generated in the radial axes. 

b) Multiple Scattering 

Another smear contributing to the global alignment accuracy is due to multiple 

scattering of muons in the calorimeter. Assuming a 2.5 meter long copper calorimeter 
(175 radiation lengths), and <Xms =(.015/P(GeV)) '/2/2,, (FWHM), we calculate CXms = 0.4 

rnr at 500 GeV momentum (4.0 rnr at 50 GeV). Assuming a maximum momentum of 

interest to be 500 GeV (these figures can be scaled for other momenta), this error 
translates directly into polar angle and azimuth: A9, A$ = ±0.2 rnr. Projecting onto the 

barrel yields: Az = (r A9)/sin 9, Ay = (r A0}/cos 9, Ax = (r A9), where the radius "r" is 

evaluated at the first chamber layer (since we are projecting back to the IP); r = y .Jsin 9. 

For the endcap, we have: Ay = (r A9}/cos 9, Az = (r A9}/sin 9, Ax = (r A$), where r is now 
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defined along z; r = z.Jcos 0. Plugging in Ya = 3.9 m, Za = 6.3 m, we get (for the barrel): 

(Azo =±oo, ~Yo =±780 µm, ~o =±780 µm) at0 = 90°, (~0 =±1.6 mm, Ay0 =±900 µm, 

Ax0 = ±780 µm) at 0 = 30°, and (for the endcap): (Az0 = ±2.5 mm, Ay0 = ±1.5 mm, 

~ = ±1.3 mm) at 0 = 30°, (Azo = ±7.3 mm, Ay0 = ±1.3 mm,~= ±1.3 mm) at 0 = 10°. 

For scattering at 50 GeV (the highest energy cut considered for the muon trigger), these 

factors may be scaled up by an order of magnitude. 

3) Structural Accuracy 

a) Dynamic range of local alignment systems 

It is vital that the structure be designed such that its relative deflection will be 

within range of the local alignment systems and straightness monitors. In deriving these 

numbers, a series of assumptions must be taken. The LED/lens straightness monitors 

currently have a measurement range that (in the best case) is within ±1 mm, and a capture 

range (with a saturated measurement that indicates the offset direction) of ±3 mm, within 

which the chamber layers may be servoed into measurement position. After some 

development, these limits may be extended; i.e. by imaging a wide square on a large 

quadrant diode (or by using an imaging array), a dynamic range approaching ±5 mm may 

be attained for the precision measurement. In the current analysis, the conservative 

estimate of ±1 mm is used (this is also compatible with the present range of measurement 

obtained from stretched wire techniques). Bear in mind that a servo system or sensor 

range extension will increase these numbers (which can be scaled accordingly). 

For the barrel (Fig. 5), the local x-axis positioning is set directly by the range of 

the z-axis multipoint and inter-superlayer monitors, thus we derive Ax < ±1 mm (the 

situation is actually slightly more complicated; the maximum x-axis deviation from a line 

along the z-axis connecting the chamber packages in a superlayer is ±1 mm, while for a 

line connecting outer and inner superlayers [fixed at the inner superlayer], the middle 

superlayer offset is required to be within ±1 mm, yet the outer superlayer can be 

displaced by ±2 mm [this comes from the requirement of "straightness" along the muon 

path]). Within a superlayer, they offset between chamber packages must be within Ay < 

±1 mm, in order to maintain the range constraint on the z-axis multipoint monitors. 

Between superlayers, however, the alignment path at 0 = 30° applies the worst-case 

constraint (since the sensors are angled to be orthogonal to a ray inclined at 0 = 30°, ~ = 

11.25°), namely: Ayb < ±(1 mm) cos 30° = ±870 µm (at 0 = 90°, this measurement is 

limited by the A~ of a hexant, i.e. Ayb < ±(1 mm) cos 11.25°/tan 11.25° = 4.9 mm). The 
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z offset error is determined by the inter-superlayer monitors; i.e. Lizb < ± l mm @ 
0 = 90°, and Lizb < ±(l mm) cos 30°/tan 30° = ±1.5 mm@ 0 = 30°. For the inter

superlayer monitors, if the measurement is referenced to the inner layer, the upper layer 

tolerances (Liye, LiZc) are twice the (Liyb, L\zb) values (this is only true for the subscripted 

quantities; the L\y measured by the multipoint monitors along the z-axis must all be 

within ±1 mm to stay in range). 

For the endcap (Fig. 6), all monitors are considered to be of the 3-point 

inter-superlayer variety. As above, the measurements are assumed to be referenced to the 

inner layer; the numbers quoted here are thus relevant for the middle superlayer, and can 

be doubled for the outer superlayer. Translations along the x & y axes are directly 

measured (as the sensors are not inclined in these coordinates, and are orthogonal to the 

z-axis), thus L\xb < ±1 mm, L\yb < ±1 mm. Translations along z will project across the 

sensor, yielding: L\zb < ±(l mm)/tan 0, thus L\zb < 1.7 mm@ 0 = 30° and Lizb < 5.7 mm 

@0= 10°. 

b) Projective Constraints for the Trigger 

The other factor influencing the structural accuracy is the alignment of projective 

strips for the trigger system. In this analysis, a misalignment of trigger strips was 

tolerated that caused a loss of up to 10% in projective coincidence (as this loss factor is 

somewhat arbitrary, it may eventually prove desirable to scale these results to a different 

figure-of-merit). This analysis does not include effects of z-vertex smearing from the 

interaction diamond or multiple scattering (which will nonetheless have considerable 

impact; the effect on chamber alignment from each process is identified separately, and 

compared in the conclusion of this report). In the measured non-bending coordinates (z 

in the barrel, y in the endcap ), coincidences are required to be of single-strip width, while 

in the bending coordinate (x in the barrel and endcap), candidate muons are required to 

have their hits contained in a cone (defined from inner to outer superlayer) of 1° (barrel) 

or .45° (endcap). This constraint was vaguely derived from the various trigger schemes 

that are proposed for muons over 50 Ge V. This purpose of this analysis is to derive a feel 

for the alignment requirements for the trigger; it should be updated in a more precise 

fashion as the trigger definition improves. 

Measuring the z-coordinate of the barrel, pickup strips run in the local x-direction 

(Fig. 2) and are sized projectively, measuring 8.9 cm (at Ye= 8.53 cm), 6.5 cm (at Ye= 

6.08 cm), and 3.9 cm (at Ye= 4.15 cm). The nominal angular pitch of these strips is thus 
L\0 = 0.6°. Referencing the coordinates to the inner layer, a 10% loss results when 
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moving the middle layer by Azb = ±3.25 mm or the outer layer by AZc = ±4.5 mm. The 

relative scale of the strip pitch changes when the chamber layers are displaced radially 

(8h in Figs. 1 & 2) as: Az = 8h /tan 0. This gives essentially infinite tolerance to 8h at 

0 = 90°, but produces an effect at smaller angle; at 0 = 30°, a Ayb = ±1.9 mm or a 

Aye= ±2.6 mm will produce a 10% loss in projective overlap between the inner and 

middle strips. 

The x-measuring strips are sized at 1.3 cm in the barrel (this sizing is specified 

identically for all layers, hence they are essentially non-projective). Assuming that a 

trigger architecture maps three strips cm the middle layer) to 5 strips on the outer layer, 

the effective middle strip width is 3.9 cm, and the outer strip width is 6.5 cm. The 10% 

criterion will thus yield allowable bending offsets of Axb = ±2 mm for the middle layer 

and Axe = ±3.25 mm for the outer layer. Translating these into 8h errors at the edges of 

the hexant (i.e. Ax= 8h/tan 11.25° as was performed above), yields Ayb = ±1.0 cm and 

Aye= ±1.6 cm, both fairly loose tolerances. 
Looking at the global requirements for the barrel trigger in rq>, we see that an 

x-translation of the IP (by Axo) relative: to the hexant centerline (see Fig. 2) will create an 

angle of Axo!Ye at the outer chamber layer. If we translate this back to the inner chamber 

layer, we derive an offset of Ax8 =(Ye - y.) llxo!Yc- Using the 10% criterion, we require 

this shift to lose under 10% net projection, thus (referencing the outer strip width), 

Axa < ±3.25 mm, hence Axa < ±6.3 mm. Moving the hexant away from the IP along the 
local radial axis (y in Fig. 2) changes the aspect of the hexant edges (i.e. the qi angles 

spanned by the inner and outer superlayers relative to the IP are no longer equal [at 

22.5°]). This shift (difference in angle to IP from ends of outer and inner superlayers) 

causes a projective loss at the hexant edges for muons coming from the IP, estimated as 

Ax= tan 11.25° (Ye - Ya lYe + Ay]/[y8 + Ay]). Simplifying and rearranging (assuming Ax 

small with respect to y8) yields Ay0 = Ax/(tan 11.25° [(yJy.) - 1]). Ifwe assume our Ax 

to be the ±3.25 mm derived from the 10% loss criterion (which may be overly restrictive 

here), we derive Ay0 = ±1.5 cm; again, a liberal margin. 

A similar set of global constraints can be determined for the barrel in r0. 

Translating a barrel hexant by AZa produces a projective loss at the outermost layer of 

Azo [(yJy.) - 1]. As Ye is nearly twice y0 , the quantity in brackets approaches unity. 

Using the 10% loss criterion for AZc developed above, we derive AZa = AZc = ±4.5 mm. 

The effect of a radial (i.e. Ay) hexant shift can be determined by the same formula as used 

for rq>, which now becomes: Az = cot0 (Ye - Ya [Ye + Ay]/[y. + Ay]), and can be 

rearranged into: AYo = Az/(cot 0 [(yJy.) - 1]). If we plug in the familiar AZc = ±4.5 mm 
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from the 10% criteria (again, probably conservative), we get a worst-case /ly0 = ±2.5 mm 

at0=30°. 

The nonbending coordinate measured by the endcap lies along the local y axis 

(see Figs. 3 & 4). This is measured by groups of anode wires that span a 5 cm interval 

(since the chambers within a superlayer are offset by half of this distance, the effective y 

granularity is divided by -./2, yielding roughly a 3.5 cm span). If one desires to form a 

nonbending trigger in the endcap, they measurements (which don't necessarily line up 

projectively between superlayers!) must be aligned. If one assumes the 10% loss 

criterion here, mapping one middle-layer strip to two outer-layer strips (to become 

vaguely projective), we develop a tolerance of llyb = ±1.75 mm, !lye= ±3.5 mm. This 

can also be extended to the llh between layers, which now lies along the z axis. The 

major restriction is at 0 = 30°, which yields .llzb = (±1.75 mm)/tan 30° = ±3.0 mm, llZc = 

±6.0mm. 

The bending coordinate is measured by radially-directed 5 mm strips. To become 

efficient beyond 50 GeV, a trigger coincidence maps a hit in the middle layer to a range 

of ±6.5 strips, as extrapolated at the outer layer. Maldng this a bit more conservative & 

arbitrary (as we did in the barrel), we assume that we map a hit in the inner layer to a ±2 

cm range in the middle layer and a ±3.25 cm range in the outer layer, from which we 

derive requirements of .llxb = ±2 mm and .flxc = ±3.25 mm. Extrapolating this to a llh 

constraint, we get a worst-case llh = .flx/(sin 30° tan 11.25°), which produces flzb = ±2.0 

cm and .flzc = ±3.3 cm; certainly loose requirements. 
Applying the same relation as used in the barrel, the rci> projection gives a 

constraint on llx0 ; i.e. flxa = (Zc - z8 ) /lxo/ze. Plugging in .llx8 = ±3.25 mm gives 

.flxo = ±5.6 mm. A limit on .flzo can also be estimated from projective loss, as was seen in 
the barrel: llZo= .llx/(tan 0 [(Zcfz.)-1]). Setting llx = ±3.25 mm, we get .flzo = ±4.1 mm@ 

0 = 30°, and .flzo =±1.4 cm@ 0 = 10°. 

Adapting the r0 formulae developed for the barrel, we can calculate the projective 

loss resulting from a global y translation: .fly [(zJzJ - 1). Requiring this to remain under 

10% (and plugging in .fly = .!lye = ±3.5 mm) gives fly0 = ±4.8 mm, which results in a 
z requirement of llZo = ±4.4 mm@ 0 = 30° and .flzo = ±15 mm@ 0 = 10°. 

Since our angles .ll0 and .fl«!> are defined to be rotations about the IP (before 

applying the global coordinate translations), the trigger is essentially invariant to them; 

i.e. all stiff tracks will still be projective to the IP. Because a narrow (1 or 2 strip) road 

was employed in the nonbending trigger definition (which may not be necessary), the 

nonbending requirements have become more stringent than the requirements in the 

bending plane; depending on how the trigger is actually defined, this may not be valid, 
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and the nonbending position tolerances may be appreciably liberalized. Again, this 

analysis is admittedly based on somewhat crude assumptions, and should eventually be 

updated with a better-defined trigger scenario. 

4) Precision Measurements 

a) Stated momentum resolution in bending plane 

The figures summarized in this section are the alignment accuracies required to 

produce the stated momentum resolution i.e. Ap/p = 5% (11 = 0), 10% (11 = 2.5). The 

muon detector structure need not produce this precision; rather the alignment system will 

resolve a set of corrections to the chamber positioning for off-line analysis. 

The local positioning requirements (within a hexant) are quite exacting. First 

consider the barrel. In the bending coordinate (referencing measurements to the lower 

layer), we have the classic figures: Llxb = ±25 µm and .rue.,= ±50 µm (the doubling of this 

figure at the outer layer is derived from the nature of this requirement; i.e. deviation of 

the chamber fiducials from a straight line). This also gives rise to a corresponding Llh 

requirement at the«!> extremes of the hexants (Ci> = ±11.25°): .rue= Llh tan 11.25°. The full 

±25 µm error budget is blown if Ayb exceeds ±125 µm or Aye grows beyond ±250 µm. 

This error is a function of tan( A«!>), and decreases nearly linearly to zero at the centerline 

of the hexant. As the subtended angle is small, the tangent is nearly linear, and the mean 

is readily taken (giving half of the maximum value). Thus, keeping the average 

contributed error from Llh a factor of 4 below the ±25 µm .rue error in the quadrature sum 

will result in a Llh limit of: Ayb = ±63 µm and Aye= ±125 µm. 

The situation is analogous in the endcaps, where again, Llxb = 25 µm & .rue., = 50 

µm. The Llh situation is now slightly different; since the endcap chambers are projective 

to the beam axis, and the lines from the IP to the hexant edges approach the polar (z) axis, 

the effective AC!> angle is smaller. The sagitta effect becomes: .rue= Llh sin 0 tan 11.25°. 

Plugging in the 25 micron maximum, we blow our budget at AYb = ±250 µm (0 = 30°) 

and Aye= ±720 µm (0 = 10°). Again, doing approximate averaging, and keeping the Llh 

error a factor of 4 lower than the 25 micron maximum .rue contribution yields the 

tolerances: Ayb = ±125 µm, Aye= ±250 µm (0 = 30°), & Ayb = ±360 µm, Aye= ±720 µm 

(0= 10°). 

Shifts in the local z axis have no significant effect on the precision momentum 

measurement. Local Ah shifts also affect the point along the particle path where the 
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measurement is assumed to be taken, but this error is comparatively insignificant (for a 

5% momentum resolution, this~ position requirement is at least ±10 cm). 

The precision momentum requirements are a function of relative superlayer 

displacement, and nominally do not involve global alignment. One caveat, however, is a 

desire to know the position of the beamline relative to the muon array in the rlj> plane, 

which increases the effective lever arm, thus provides enhanced momentum resolution for 

very high energy muons (circa 500 GeV and beyond) that scatter less in the calorimeter. 

This translates into a Axa constraint (see Fig. 2); i.e. dxa = ±200 µm. Physically, this 

may be interpreted as the desire to point the axes of the straightness monitors at the IP (in 
rlj>) to within 200 µm (this imposes no Alj> constraint, as 4> is defined in Fig. 2). If one 

looks at the requirement of dxa = ±200 µm as an angular constraint on the straightness 
monitor axes (as measured at the outer superlayer), we have pointing needs of 13 = 23 µr 

@ 0 = 90°, 13 = 12 µr@ 0 = 30° [worst case!]. This parameter is interpreted more as a 

"goal" than a requirement; i.e. it's not needed to meet the muon detector specifications, 

but would be a nice extrapolation. 

b) Aligning to the ultimate measurement precision 

There is no need to specify requirements on global alignment that are significantly 

more stringent than the possible measurement accuracy of the detector. Figs. 7 & 8 show 
calculationsl of the detector resolution in x,z,0,lj>, which were made by fitting a muon 

track through the 3 superlayers (using the quoted resolution), and extrapolating back to 

the IP. These results include multiple scattering in the calorimeter, giving rise to a family 

of curves, as shown. The ultimate precision possible occurs at high energy (i.e. beyond 

250 GeV for the z coordinate and above 2 TeV for the bending coordinate). Reading off 
these plots (and normalizing from u to half-width), we obtain best-case resolutions for the 

barrel of dxa = ±330 µm, dza = ±1.3 cm, A0 = ±2.7 mr (0 = 90°), A0 = ±0.67 mr (0 = 

30°), Alj> = ±0.13 mr. Doing the same for the endcap, we get: dxa = ±330 µm (0 = 30°), 

dxa = ±130 µm (0 = 10°), AZa = ±1.5 cm (0 = 30°), AZa = ±5.3 cm (0 = 10°), A0 = ±2.7 

mr, Alj> = ±1.3 mr. Using the dza or A0 resolutions, a limit for Ay0 may be estimated. 

Employing the former technique on the barrel, Ay0 = dza tan 0, resulting in the most 

restrictive limit at 0 = 30°, where Ay0 = ±1.6 mm. Doing this to the endcap, we see 

AYa = ±9 mm, essentially independent of 0. 
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c) Projecting the total momentum 

One of the major precision requirements on the polar muon angle (0) accuracy is 

generated by the projection from the measured transverse momentum to the total muon 

momentum: 

p =_EJ,_ 
sin 0 

Performing a tangent error analysis on this relation yields: 

(a8 in radians) 

As a rule of thumb, we decide to keep ( a 8 cot 0) a factor of four below ap)P .i. in 

order that angle error will contribute below 10% to the quadrature error sum. As 0 

approaches 90°, the muon momentum is totally transverse, hence Op is not sensitive to 

angle error. At 0 = 30°, however, we calculate the limit: a8 < 10 mr [A0 = ±6.7 mr] 

(assuming OpJ.IPJ. = 7%, as calculated at Pl. = 500 GeV), and at 0 = 10°, we see that 

Oe < ±4.4 mr [A0 = ±2.9 mr] (assuming ap)PJ. = 7%, as quoted). 

Using the geometry of the muon array, y0 and Zo tolerances can be inferred from 

this 0 resolution (the projections were given in Sec. 2b on multiple scattering); the 

position of the innermost chamber layer is taken as the lever arm (producing the tightest 

requirements). At 0 = 30°, we get (Az = ±10 cm, Ay = ±6.0 cm), and at 0 = 10°, we see 

(Az = ±10 cm, Ay = ±2 cm); certainly loose requirements! 

d) Invariant Mass Resolution 

The invariant mass of a muon pair is a function of the 3-momenta and opening 

angle: 

m2 = 4 Pl P2 sin2 (1/20µµ) 

Performing a tangent error analysis will yield: 
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At this point, a series of assumptions must be made. First, as above, it is assumed 

that the angle error term will be a factor of four below the erplp term, in order to achieve 

under 10% impact in quadrature. Next we assume erp/p to be at its quoted best (i.e. 5% ). 

Finally, we must make assumptions about the opening angle. Nominally these will be set 

from decay kinematics, but we can make a few simplifications. For large angle, with 

muons nearly back-to-back, the angle error has no impact on the mass resolution. For 

small angle pairs, the angular term can dominate; however when the angle is below 22.5° 

(the qi span of a hexant), it becomes increasingly probably that both muons will stay 

within one hexant, thus the global alignment of hexant-to-IP will be of no consequence. 

The worst-case assumption (i.e. smallest opening angle) adopted here is thus 0µ µ = 

11.25°. 

Plugging these assumptions into the above relations will yield: erµµ = 2.5 rnr. 

Since we define 0µµ to be the difference between measured muon angles, the allowed 

error in each muon angle will be smaller by a factor of -.J2. Assuming the errors in 0 and 

qi to be equal (which may need some qualification ... ), we obtain ere= erq, = 1.8 mr, hence 

A0 = Aqi = ±1.2 mr. 

Once more, we can apply geometrical projections to estimate equivalent errors 

induced in the global axes, employing the assumptions (i.e. referencing to the inner layer) 

& relations explained in the previous section. This yields (Ax0 = ±4. 7 mm, 

AZo = ±4.7 mm)@ 0 = 90°, (Axo = ±9.4 mm, Ay0 = ±1.1 cm, AZo = ±1.9 cm)@ 0 = 30°, 

(Axo = ±7.2 mm, Ay0 = ±8.4 mm, AZo = ±4.8 cm)@ 0 = 10°. 

Again, the assumptions implicit in this analysis are somewhat rudimentary, and 

could stand refining. 

5) Pattern Recognition 

a) Muon Tracking Constraints 

No analysis of pattern recognition requirements has been attempted here for 

tracking in the muon system. Because of the low rate in the barrel, one would assume 

that pattern ambiguities would be fairly minimal, excepting difficulties from punch

through hadrons, secondary particles exiting the calorimeter together with a muon, and 
random neutron background. At small 0, the rate is considerably higher, thus pattern 

matching considerations may begin to impact the alignment needs. A positioning 

accuracy of Ax, Ay, Az on the order of ±1 mm has been discussed in this context, but no 

supporting analysis has been presented, thus more work is necessary at this point. 
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b) Track Linking with Central Detector 

A neat solution to measuring a precise muon angle is to find the muon track in the 

central tracker, where it is determined very exactly. In order to accomplish this, one must 

match a track in the central region (complete with its associated clutter) to a companion 

seen in the muon detector. One can thus define a fiducial angle around a muon track that 

determines a cone, within which a match is searched for in the inner tracker. The angle 

subtended by this cone would provide another driver to the muon alignment accuracy. At 

this point, no such analysis exists; the best one can ask for, however, is to have the muon 

system aligned to the limit expected from multiple scattering in the calorimeter, which 

was discussed in Sec. 2b. 

6) Other Effects 

a) Line-of-sight deviation from the IP 

The alignment accuracies that are quoted can (in some sense) be a function of the 

type of alignment system that is actually adopted. The baselined GEM alignment scheme 

(Figs. 5,6) assumes L3-type straightness monitors2 to measure the bend-plane 

misalignment between muon superlayers. If these straightness monitor lines-of-sight 

(LOS) are all projectively oriented toward the IP, "torque error" (in which one LOS is 

inclined about the z-axis relative to the other LOS) will not affect muon sagitta. This 

concept is illustrated in Fig. 9, and may be understood intuitively. Assume that a 

straightness monitor pointing to the IP claims that the chambers are perfectly aligned, 

although this line is rotated by an angle a about the z-axis. A straight, infinite

momentum muon track originating from the IP at the angle of the LOS will therefore also 

be fit by the superlayers as a straight line (thus no momentum error is introduced), 

although it will be seen to be rotated by -a about the z-axis. If the LOS is not pointing 

toward the IP, a sagitta error can result. 

A quantitative analysis, based on an earlier L * derivation, has been performed to 

ascertain the requirements on pointing the straightness monitor axes at the IP. The 

situation is illustrated in Fig. 9. Two straightness monitors are considered, one with a 

vertical LOS pointing at the IP, and another inclined at Bo to the vertical (they-intercept 

of the LOS is assumed to miss the IP (which is defined as the origin) by Ay). The muon 

from the IP is inclined at Bµ. First the bending (x) coordinates of the superlayer hits are 
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calculated for the muon, with the chambers rotated about the y-axis in accordance with 

the torque angle a between the LOS vectors. The bending coordinate of the inner 

superlayer (xA) is defined to be zero. We thus state: 

x8 = La sin a (zsfz'8 ) Xe = Le sin a (zdz'c) 

Le=Ye-YA 

Zs =ya tanBµ Zc =Ye tanBµ z'a =(Ya + Ay) tan Bo 

YB tan Bµ . 
xa=( •) B LBsma 

ye tan Bµ Le . xe sma 
YB+ "Y tan o (ye + Ay} tan Bo 

We can then defme the sagitta as the offset from a straight line between bottom 

and top layers, and substitute in the above expressions for x8 & Xe to find the sagitta 

error. 

L tan Bµ sin a ( ya ye ) 
s = 8 tan Bo YB + Ay - ye + Ay 

As can be plainly noted in the above expression, s ... 0 as Ay ... 0, and the error is 

largest at high B. Since, in general, Ay <<Ye , Ye, we approximate: 

s = Le tan Bµ sin a A (..1.. -..1..) 
tan Bo y Ye Ye 

Assuming a maximum Bµ; then (from Fig. 9) Bµ = B0• Plugging in barrel 

parameters (ye = 6.3 m, Ye= 8.7 m, La = 2.4 m), we then obtain: 

s(mm) = 0.1 Ay sin a 

For small Ay, we can readily substitute a misalignment angle (between the LOS at 

B0 and a line from the outer layer to the IP [distance R]); Ay = R 89/sin Bo. This yields: 

s(rad) = 0.1 sin a R(mm) AB/sin Bo 
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The above relation can be used to balance torque errors against LOS 

misalignment errors; i.e. it shows that if 3 mr of torque rotation is present, a LOS 

misalignment of 3 mr to the IP will generate a worst-case sagitta error of 18 µm (at 

0 = 30°). Endcap parameters should be similar. 

Finally, this analysis can be generalized to account for the misalignment between 

two projective lines-of-sight and the IP,, as shown in Fig. 10. The leftmost LOS makes an 

angle with the vertical (at the IP) of B1 and misses the IP with a y-intercept of Ay1. The 

rightmost LOS makes an angle with the vertical (at the IP) of B2 and misses the IP with a 

y-intercept of Ay2. Following the steps outlined previously, it becomes simple to produce 

the following complicated expression: 

One can simplify this for the c:ase of small Ay, and hopefully result in a more 

compact expression, but I'll leave this as an exercise for the reader. 

One way to look at global alignment of the muon system to the IP is to consider 

all of the global quantities quoted in this report to be relative to the straightness LOS. 

The entire global alignment problem then becomes the need to point the straightness 

monitors at the IP. 

7)Summary 

Tables l - 4 show a summary of the tolerances calculated in this report. Tables 1 

& 3 show the requirements for the structure. The width of the smear processes (scattering 

in the calorimeter and the interaction diamond length) have been divided by a factor 4 

(such that the alignment accuracy would be negligible in a quadrature sum). The multiple 

scattering is taken at 50 Ge V, which will probably represent the maximum desired trigger 
threshold. Table I & 2 show values at each 0 extreme covered by the detector 

component, separated by a "I" character (30°1 90° for the barrel; 10°1 30° for the endcap). 

Tables 3 & 4 list the smallest of these values over the barrel or endcap 0 range. An 

undefined tolerance (i.e. a quantity in a column that has no dependence on a coordinate 

specified in the row) is labeled with "oo", while an undefined smear (i.e. uncertainty 

projected along they axis due to a smear along z) is labeled with "x". 
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The rightmost column of these tables shows the final tolerances for superlayer 

alignment; again, Tables 1/3 give the allowance to which the structure must be 

constructed, and Tables 2/4 give the measurements needed for position correction. This 

column consists of the most exacting requirement, or the largest smear contribution (if 

this surpasses the smallest requirement), taken across each row. The "Ultimate Detector 

Resolution" column of Tables 2/4 shows the (unscaled) prediction of the best detector 

resolution, as taken from Figs. 7 & 8. This column is not used in assigning the 

"summary" resolution column; it is presented only for comparison. 

One can see that much of the structural requirement is driven by the limited 

dynamic range of the straightness monitors. If this range could be extended by a factor of 

2 to 3, the constraints on the structure could be loosened in many cases to 2-6 mm. In all 

cases, the dependence on the z-coordinate is fairly loose. This is due to the large 

interaction diamond, coarse detector resolution, and irrelevance to the momentum 

measurement in this coordinate. Since there is no quoted range on the local Zb,c 

tolerances for the momentum measurement (Table 2), such limits have been taken from 

the dynamic range of the straightness monitor system (Table 1 ). Since none of the 

drivers considered for structural alignment have any bearing on 0 or cp, no tolerance is 

given for them in the summary of Table 1. In reality, some limits are necessary, 
particularly on 0, which has considerable effect on detector rate (at small angle) and 

bending/B _field projection. 

In some cases (i.e. global alignment of the endcaps), the required structural 

alignment is more precise than the need arising from precision measurement. This is 

driven by the trigger assumptions, which prefer a projective geometry (as the trigger 

requirements are derived in a very approximate fashion here, these quantities should be 

investigated further). The 200 µm enhanced-resolution requirement for Xo alignment is 

presented as a goal in these tables, and has not been propagated into the "Summary" 

column. 
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• ' 
1 Intrinsic Smears (+4) 1 1 Structural Accuracy 1 

All±mm Interaction Diamonc Scattering in Dynamic Range of Trigger Roads :lummary 
and±mr (I cm) Calorimeter Local Alignment ·. (10% Loss) 

. 150 GeVl 
90°130° +4 +4 . 

Harrel 

6xlh\ 111 212 111 
6x<c) 111 3.2513.25 111 

6z•ft• 111 3.25 13:" 111 
6z<cl 212 4514.5 212 

avlOl 110.9 -11.9 110.9 
avrcl 111 -12.6 Ill 

dX• 212 6316.3 6.316.3 
av. xi 6.8 212 ' 1512.5 1516.8 
az, 12112 xl4 4.514.5 12112 

ae xl0.~5 0.5105 
alb 0.5105 

30°110' 
~:ndcan 

6xlhl 111 212 111 
6x<cl 212 3.2513.25 212 

' 
• I I I L" 11 7~ I 11 

avrcJ 212 3513.5 212 

6z•ft• 1.715.7 3110 1.715.7 
6z(c) 3.4110.4 6120 3.4110.4 

ax 3.3133 5.615.6 5.615.6 
aY11 6.812.1 3.8133 ' 4.814.8 6.814.8 
nl 12112 1.816.3 4.1114 12112 

AH 0.3s1n1'::t o.~ 1n< ' 
alb 0.510.5 

Table 1: Alignment factors impacting structural accuracy 
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' ' 
1 Precision Requirements I 

All±nun Scattering in Ultimate Detectotj Precision Momentum Mass Resolution :>ummary 
and±mr Calorimeter Resolution ~ Momentum Vector 

1500 Ge VI 
90° I 30° ""' I 
Rarrel ! 

' ' Axlb\ ! O.Q25 I 0.025 0.025 I O.Q25 
llx.tc' ! 0.0510.05 0.0510.05 

! 
--~ 

' ii I J\ 

Ai'<> ' (212\ ' i 
,\.vlb\ i 0.063 I 0.063 0.063 I 0.063 
,\.v(c\ 0.125 I 0.125 0.12510.125 

AX'-' 0.210.2 0.33 0.33 0.2 I 0.2 IQoaJ!' 4.719.4 4.719.4 
AY'·' 0.210.2 x 11.6 -160 -111 -111 
.,,_, x 10.4 13113 -1100 4.7119 4.7119 

A9 o.os 10.05 2.710.67 -16.7 1.211.2 1.2 11.2 
., O"'"'ln .... ~ ~ ..... 1.?I~" 

'·' 11 , 

300 I JOo 
o:nncan 

Ax'b' 0.025 I 0.025 0.025 I 0.025 
4;_;~:;; 0.0510.05 o .. ~ 10.05 

6,ulb\ fl I J\ 
ii.;~r<' (212) 

! ·c_,., ' " 1n. 0.12510.360 ' L1Z1;;1 l 0.2510.72 0.2510.72 
! 

AX'·' 0.3310.33 0.3310.13 i 0.2 I 0.2 !Goal!\ 9.417.2 9.417.2 
AY'"' 0.3810.33 919 ! 60120 1118.4 1118.4 
lli.'""' 0.1810.63 15153 ! 1001100 19148 19148 

i 
A9 O.OS I 0.05 2.712.7 ' 6.712.9 1.211.2 1.211.2 
•• o.os 10.05 1.311.3 ! 1.211.2 1.211.2 

i 

Table 2: Alignment factors impacting Precision Measurements 
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I 

1 Intrinsic Smears (+4) 1 1 Structural Accuracy 1 

All±mm Interaction Diamond Scattering in Dynamic Range of Trigger Roads ;summary 
and:l:mr \I cm) Calorimeter Local Alignment (10% Loss) 

<50 GeVl 
+4 +4 

Harrel 

.dx(b) 1 2 1 
.<U<cl 1 3.25 1 

dz'" 1 3.25 1 
A•fc) 2 4.5 2 

.1,v1bl 1 1.9 1 
.1.vrcl 1 2.6 1 

ax 2 63 6.3 
.1.Y 6.8 2 2.5 6.8 
l!.Z 12 4 4.5 12 

.1.0 0.35 0.5 
nm 0.5 

Endcao 

,Ufhl 1 2 1 
.<U<cl 2 3.25 2 

""'"' 1 1 ,~ 1 
Av1cl 2 3.5 2 

dz•n• 1.7 3 1.7 
.ll(c) 3.4 6 3.4 

ax 3.3 ! 5.6 5.6 
a Yr, 2.1 3.3 i 4.1 4.1 

"' " 12 6.3 ; 4.4 12 
i 

A0 nn i 
.1.$ 0.5 ! 

; 

Table 3: Most Restrictive Alignment Factors (Structural Accuracy) 
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I ' I Precision Reauirements I 

All±mm Scattering in Ultimate Detectorl Precision Momentum Mass Resolution Summary 
and±mr Calorimeter Resolution ' Momentum Vector 

' (500 GeV\ ! 
"'4 I 

Barrel f 
! 

4x(bl ! 0,025 0.025 
axle) ' 0.05 0.05 

! 
4z(b) ' 1 

llz'c' ' 2 

' ' 4v(b) ' 0.063 0.063 
Av1cl ! 0.125 0.125 

' ax 0.2 0.33 ! 0.2 <Goal!\ 4.7 4.7 
4Y 0.2 1.6 ' 60 11 11 ' ta. 0.4 13 100 4.7 4.7 

All n.o5 '·' < '·' '·' 4~ 0.05 0.13 1.2 1.2 

End cap 

4xtb\ 0.025 0.025 
ax(c) 0.05 0.05 

dylb) 1 
4v(cl 2 

n>lDJ 0.125 0.125 
4z(c) 0.25 0.25 

aJC(o\ 0.33 0.13 0.2 <Goal!J 7.2 7.2 
4Y'•' 0.33 9 20 8.4 8.4 
ta.•• 0.63 15 i 100 19 19 

! 
49 0.05 2.7 ! 2.0 1.2 1.2 
M 0.05 1.3 ' 1.2 1.2 ' 

' 

Table 4: Most Restrictive Alignment Factors (Precision Measurement) 

18 



30° 

---~----},_--,, 
l Y• h .. 

/ _______ _ 
/ Y• 

/ 

/ 

z 

t..z,, 

Figure 1: Barrel Requirements Definition; r8 

y 

r ~,-•••\·· ........ ! _ }· --,, 
~ \ . I ___ }·, 

\, __ " .. --. ·. I 
t:..y'.j \. '. I ' : -------- __ : ____ _ 

IP 
amlin• I I 

X-HeXJJnl referencttl to B• ~ 
dxo 

Figure 2: Barrel Requirements Definition; r+ 

19 

Y• 



....... t..~:.~ ........ 

llzo 

... 

y 

Zc 
~--=-llbo---i ·"~~~ 

·········· 

.... 

Zb 

Za .... 
·················· 

········· 

: ... 1-..,.------1.,_ ......................... . 
llab ............ i!:ly c ·········· * ············ l1yb 

* ........... 
······ ................................. .. 

.. ::::::::;;;;;;;;;;;;;;;;;:::::::::::::::::::::::::::::::::::::::::::::: ..... ~~::::~::::::::::::~:~:~:~::: ........................ 11•· 

-------~~:---:s~0 
z 

Figure 3: Endcap Requirements Definition; r0 

y 

~yo J 
. .................................... _ ..... !. ... x __ ........................................................... . -, 

XH. °S ~$ 
• t!XQnr referenced to Betmr/ine 

Figure 4: Endcap Requirements Definition; r• 

20 

. ....... 
10° 



• 

Non-Exansive 
Glass Spacers 

---- ---- -

I 
Redundant 

I Alignment Path 

, 
' Alignment Paths , 

'~ 

z 
a)r8View 

lr;l:::;::::::;i==llJD Alignment Paths 
(along beam) 

\ - I 
G•81**'9 

\ I 

\ I - Alignment Paths 
\ -- / {ln1er-Super1ayer) 

r---. 
b)r~View 

5.oom 

Figure 5: Possible scheme for aligning muon barrel 

- -- = Alignment Path 

• = Alignment Mount 

fJ = Bubble Level 

Bending Direction ® 
Figure 6: Possible scheme for aligning muon endcap 

21 



.., 
G 
I... 

E 

Cu Calorimeter 11($) versus 1\ for constant Pt -e-10 GeV/c 
I I I ' " 

l-t-t<tl--i::::'H·--t--t-H-t--1 -t-+-+-+--r-+-r-t-+-i,.-+-t--t-tt --11-25 GeV /c 'L'I ·~·1 ',1 l I 

I I rti-r- I , I i i I i i i I I I i i i ; 
i· 1 I I i i I 1"'1 ! I ~11tt-11 i i i i i --50 

GeV/c 
' I I ' I ''-.. I 1 ---100 GoV/c 

10 +-i I ! 1 • . • 

0 

0.002 

0.0016 

0.0012 

0.0008 

0.0004 

0 

-+--250 GeV/c 

-w-500 GeV/c 

-+-750 GeV/c 

-B-1 ToV/c 

-e-2.5 TeV/c 

. ' ' 1-rl 1 ' .. --• ' ' . ' ' 
1-•--+--+-+1 --+-5.0 Te VI c . . 

0.5 1.5 2 2.5 
1\ 

Figure 7a: 8 resolution in muon detector 

-

- -

' 

0 

PHI RESOLUTION INCLUDING 
ENERGY LOSS FLUCTUATIONS 

' 

~ZSOGtYlc I . I 
-e-1000.vtc __ ,l __ J -7•aa.vtc 
-10DDQeV/c 

--- t ZIOOeVtc y! -11oooeY11 i ---...-111oaev1c 
~ZOOOGtV/o . ! 

' I i 

I l 

·--1 
I 
' 
i-4 ! 

; 

I - i 
I I ! - ~ 
' 

I 
. I ' ' ! ; ; . . . ' 

0.5 1 . 1.5 

PSEUDORAPIDITY 

·-

Figure 7b: • resolution in muon detector 

22 

. 
! 
' ' ! 
' : 
I 

I 
.J 

I 
j 

__ ,_ 

! 
I 
~-

.. 

I 
l . 
2 2.5 



.. 
~ • -• E -

-.. 
~ • -• E -x 
i<S 

0.1 

O.OB 

0.06 

0.04 

LONGITUDINAL COORDINATE RESOLUTION INCLUDING 
ENERGY LOSS FLUCTUATIONS 

i 
j ; ~ZIOO•Ylc 
i t _.,__IGDOeYlc 

··--·-·-··-····-·····:··---·-·-----!. .. - 7SDG•VJc 
! I -1aooaev1c 
! i ! i -1ZIOC1V/c 
1 • --1sooa.v1c 
! I --e-1 raoc.v1e ----r·----··--·---i- --2000C:eV/O 

' i 

I ' i -·--··-·---1------t-··----+-·--
J l ' 
\ j I 

--·-···l·-·-i 

i 
0.02 

j ! -----+-----

0 

0 

0.004 

' 0.5 1 1.5 2 

PSEUDORAPIDITY 

Figure Sa: z resolution in muon detector 

TRANSVERSE COORDINATE RESOLUTION INCLUDING 
ENEROV LOSS FLUCTUATIONS 

I l r -.-2sao.v1c 
I L ----·••O•YI• 

-----~------· --·---1-TIOGI VIC I j -10000•Yte 
f I --+- 1ZSOO•Yfc 
! ; -1100Q0Ylc 

0.003 4---·---·+-·--· : --111000¥/e 
! j -9-20000eY/e 

L--.1 I 
----·--i-----1-----~-.:----! I 

0.002 

0.001 

0 

0 0.5 1 1.5 2 
PSEUDORAPIDITV 

Figure Sb: x resolution in muon detector 

23 

2.5 

2.5 



·. 

.. View 

Z'c 

Zc 

- --------=====~~16;-J· 
LOS 1 "" 

ye 

zb ;;1' LOS2 
•' 

Zb I ,,/ 

- -- ---~;;;;;;;~~;;;;;;;;~~·,., 

....._ __ .!!lllp •' 
""" " A /' 

ya ,i" 
l' 

,/ 
,l 

,l 
,l 

Ay h,,l -1 ' ~ ..... .... 
: l 
~,,, 

- --0 LOS Points here 

re View 

•' •' 
,i" 

,/ 

B,/ 
,/ 

•' 

Figure 9: Analysis of sagitta error from superlayer torque 

µ 

Figure 10: General analysis of sagitta error from superlayer torque 
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