
:
GEM TN-92-104

IEEE Standard 754 and You: What
the GEM Computer User Needs to
Know About IEEE Floating-Point

Arithmetic
Lee A. Roberts
SSC Laboratory

May 28, 1992

Abstract:

GEM computer users, for better or for worse, will interact with the
IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754). All of
today's popular RISC/UNIX architectures support the IEEE 754
standard-both in data format and exception handling. However, details of
the IEEE 7 54 exception handling vary among the RISC/UNIX
architectures. GEM code development efforts on these popular
RISC/UNIX systems can be greatly enhanced with proper understanding of
IEEE 7 54 exception handling. Suggestions for successful use of the IEEE
754 standard are presented for each of today's popular RISC/UNIX
architectures.

GEM TN-9.2-104

IEEE Standard 754 and You
What the GEM Computer User Needs to Know About IEEE

Floating-Point Arithmetic

Lee A. Roberts
Physics Research Division

Superconducting Super Collider Laboratory
Dallas, TX 75237

May 28, 1992

Abstract
GEM computer users, for better or for worse, will interact with the IEEE Standard for Binary

Floating-Point Arithmetic (IEEE 754). All of today's popular RISC/UNIX architectures support
the IEEE 754 standard-both in data format and exception handling. However, details of the
IEEE 754 exception handling vary among the RISC/UNIX architectures. GEM code development
efforts on these popular RISC/UNIX systems can be greatly enhanced with proper understanding
of IEEE 754 exception handling. Suggestions for successful use of the IEEE 754 standard are
presented for each of today's popular RISC/UNIX architectures.

1 Introduction

GEM computer users, some of whom are unfamiliar with today's modern RISC/UNIX environ­
ments, must successfully develop and use simulation and analysis codes on these RlSC/UNIX plat­
forms. An often-presented argument for these RlSC/UNIX systems is that, in addition to their
price/performance advantages, they conform to "standards" covering numerous aspects of the hard­
ware and software operating environment. However, some of these standards specify a flexible envi­
ronment which must be appropriately configured to satisfy the requirements of a given task. We must
beware the empty refrain, "It conforms to standards!", and learn to work within the standards
environment.

The IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754)[1] is one of the many
standards within which we as GEM physicists must learn to work. GEM physicists who are mov­
ing to the RlSC/UNIX environment quickly realize that the floating-point representations provided
by IEEE 754 are different from the implementations on VAX or IBM System/370 architectures.
(IEEE 754 representations match VAX F- and G-floating representations in exponent and fraction
bit counts, but different interpretation of the exponent field results in narrower (by one) and offset
(by plus two) exponent ranges for IEEE 754 values.) GEM physicists must become acquainted with
the requirements of IEEE 754 regarding floating-point exception handling and the specific imple­
mentations on today's popular RlSC/UNIX platforms. Proper configuration of the floating-point
exception-handling environment will enhance the code development environment and thereby assist
the GEM physicist in avoiding "inexplicable" program failures.

One of the complexities of the IEEE 754 standard for binary floating-point arithmetic is that
it provides choices. Choices are complicated things; correct selections often require a detailed
understanding of the options. Of course, IEEE 754 defines default behaviors, with a goal to

1

minimize for users the complications arising from exceptional conditions. The arithmetic
system is intended to continue to function on a computation as long as possible, handling
unusual situations with reasonable default responses, including setting appropriate flags. 1

In a code development environment, however, the GEM physicist may not want an incorrect compu­
tation to continue "as Jong as possible," but would rather have immediate notification of the incorrect
floating-point result. IEEE 754 provides appropriate choices for this environment as well-but these
are not, in my view, the default IEEE choices.

This paper will concentrate upon proper non-default IEEE 754 settings for the GEM software
development environment on each of today's popular RISC/UNIX workstations. Examples for Silicon
Graphics, Sun, Digital, Hewlett-Packard, and IBM workstations will be presented. A "general" GEM
floating-point software development environment interface will be presented which consolidates the
workstation-specific information into one convenient FORTRAN and C programming interface.

2 Features of IEEE Standard 754

Many features of the IEEE Standard for Binary Floating-Point Arithmetic (IEEE 754) are discussed
in the Numerical Computation Guide[2] written by Sun Microsystems, Inc. Please review this manual
for a detailed discussion of IEEE floating-point computation issues.

IEEE Standard 754 specifies:2

o Hardware storage formats for IEEE double precision (64 bits) and IEEE single pre­
cision (32 bits).

o Accuracy requirements on basic floating-point operations: add, subtract, multiply,
divide, square root, remainder and compare. These operations may not suffer more
than one rounding error.

o Accuracy requirements for conversions between formats.

o Five IEEE floating-point exceptions (invalid, division by zero, overflow, underflow,
inexact), and when these exceptions should be indicated to the user.

o Four rounding modes (round toward the nearest representable value, round toward
zero, round toward +oo, round toward -oo).

o Rounding precision (that is, if a computer delivers results only in extended precision
format, you should be able to specify that the result is nonetheless rounded to single
precision format, then stored with the trailing zeros).

As further explanation of the IEEE floating-point exceptions, the IBM AIX XL FORTRAN
Compiler/6000 User's Guide Version 2.2[3] states

The IEEE standard for floating-point arithmetic specifies that five types of exceptions
be signaled when detected. These are Invalid Operation, Division by Zero, Overflow,
Underflow and Inexact. By default, the signaling of an exception involves setting a status
flag and continuing. Optionally, an exception should generate a trap and invoke a handler
routine specified by a user .3

'IEEE Standard 754[1], p. 18
2 Numerical Computation Guide[2], Sun Microsystems, Inc., pp. 3--4
3 AIX XL FORTRAN Compiler/6000 User's Guide Version 2.2[3], International Business Machines Corp., p. 37

2

The following discussion will concentrate upon the user control and handling of the five IEEE
floating-point exceptions. The IEEE standard provides a variety of choices in addition to the de­
fault results. Correct choices are important to efficient and successful development of GEM physics
simulation and analysis codes.

2.1 Default IEEE Results

Sun's Numerical Computation Guide defines default results as follows:•

The term default result refers to the value that is delivered as the result of a floating-point
operation that causes an exception. IEEE Standard 754-1985 defines default results for
the five exceptions. The intent of the Standard, in specifying these defaults, is to allow
you to continue computing, with some sensible result, but also with a definite indication
that an exception occurred.

In fact, the IEEE Standard defines two sets of default results: those returned when the
exception is not trapped by a signal handler (the usual case), and those returned when
the exception is trapped by a signal handler. However, UNIX signal handlers have no
provision for specifying the latter results.

The following table5 presents the default IEEE result (when not trapped by a signal handler) from
various floating-point calculations.

I Calculation I Default Result I IEEE Exception I
big* big +Inf overflow
big* (-)big -Inf overflow
number/0.0 +lu. :for number > 0.01 division

. ··-
number/0.0 -Inf l for number < ·~: t' · division
0.0/0.0 NaN invalid
small/big subr,-ormal number underflow
2.0/3.0 2/3, rounded to inexact

destination precision

Table 1: Default results for IEEE 754 floating-point exceptions.

IEEE Standard 754 chooses gradual underflow as the preferred method for dealing with under­
flowed results. Gradual underflow uses subnormal values to extend the lower range of representable
floating-point numbers. Gradual underflow means that errors due to underflow are no worse than
usual roundoff error. Abrupt underflow, where the underflowed result is replaced by zero, is also
available on most modern RISC/UNIX systems. However, hardware implementation of underflow
varies among floating-point units; in some cases, software may be used to (partially) implement either
underflow scheme.

On most of today's popular RISC/UNIX workstations, the default IEEE behavior is provided
as the default programming environment. On these machines, floating-point exceptions produce
default results and hardware exceptions are raised, but no interrupts or traps are generated. Physics
calculations are continued with "numbers" such as ±oo and NaN (Not-a-Number) propagating through

4 Numerical Computation Guide[2], Sun Microsystems, Inc., p. 63
5 Numerical Computation Guide[2], Sun Microsystems, Inc., p. 2

3

many levels of calculation. Only the DECstation selects non-default IEEE behavior as the standard
programming environment.

2.2 Suggested IEEE Results for GEM Code Development Environment

Many GEM physicists are familiar and comfortable with the floating-point exception-handling char­
acteristics of VAX/VMS FORTRAN. In the non-IEEE VAX/VMS environment, floating-point ex­
ceptions corresponding to the IEEE overflow, division by zero and invalid exceptions are trapped and
cause program termination. Such an environment, although non-default, may be selected within the
IEEE 754 standard. In fact, Digital provides such an environment as the default DEC FORTRAN
environment on the DECstation. Similar environments are available on other RISC/UNIX systems,
often via compiler or loader option switches.

My suggested environment for GEM software development enables the following actions upon
IEEE floating-point exceptions. These actions make the RISC/UNIX floating-point behavior similar
to the VAX/VMS FORTRAN behavior. Development of GEM physics software will be greatly
simplified by signaling floating-point exceptions such that they can be caught and examined by an
interactive debugger.

I IEEE Exception I Action

invalid trap & abort
division by zero trap & abort
overflow trap & abort
underflow IEEE default
inexact IEEE default

Table 2: Suggested IEEE 754 Results for GEM Software Development Environment.

3 Implementation of GEM Floating-Point Software Development
Environment

GEM software developers must clearly understand the difference between the following actions:

<> Indication of a floating-point exception according to IEEE 754.

<> Generation of a program interrupt in response to a floating-point exception.

All systems which support IEEE 754 floating-point must detect and indicate floating-point exceptions.
On each of today's popular RISC/UNIX systems, floating-point exceptions are indicated by raising
an exception bit in the system's floating-point control and status register {fpcsr).

Generation of a program interrupt in response to a floating-point exception is an optional action
according to the IEEE 754 standard. {IEEE 754 requires the capability to generate interrupts; it does
not require generation of the interrupts.) On the SPARC(2], MIPS[4], PA-RISC(5] and POWER[6]
architectures, the fpcsr contains a mask of trap enable bits which must be raised to cause hardware
interrupts and generation of a floating-point exception signal {SIGFPE). On the POWER architecture,
an additional floating-point exception enable bit in the machine state register {MSR(FE)) must be
raised to enable floating-point exceptions and force the process to execute in serial (rather than
pipelined) mode. Due to the inefficiencies imposed by serial execution on a pipelined processor,

4

IBM supports (and recommends) software checking of floating-point exceptions and generation of
trap signals (SIGTRAP) as a more efficient mechanism for program interrupts. Whether hardware­
or software-generated, these floating-point exception signals may be caught and handled using the
standard UNIX signal-handling techniques_,,;ther with an interactive debugger or by a user-written
or system-default exception handler.

The following subsections discuss implementation of a GEM floating-point software development
environment on each of the popular RISC/UNIX workstations. In each case, the critical, machine­
dependent step is the enabling of the floating-point interrupts-whether by hardware or software.
Without the floating-point interrupts and the generation of SIGFPE or SIG'rRAP signals, the standard
UNIX signal-handling software is helpless.

3.1 Silicon Graphics

Silicon Graphics provides a simple, easy-to-use interface to control IEEE floating-point exception
handling. The same interface is supported for FORTRAN and C (and Pascal) programs. Two steps
are required to enable this interface, as follows:

o Load library libfpe. a when loading a binary executable by including the library specification
"-lfpe" on the compiler driver (f77,cc) command line.

o Set environment variable TRAP-FPE to be "DIVZERO=ABORT;OVERFL=ABORT;INVALIDsABORT".

These actions fully establish the GEM software development environment for IEEE 754 floating-point
exceptions suggested previously. No FORTRAN or C programming changes to GEM software are
necessary.

Silicon Graphics provides a rich IEEE floating-point exception-handling environment which may
be easily controlled by the TRAP-FPE environment variable. The value suggested above is only the bare
minimum to establish a VAX/VMS-like environment where floating-point exceptions cause program
interrupts. Please consult the fsigfpe(3F) and sigfpe(3) manual p;iges[7] for a full description.

With the above setting for TRAP-FPE, floating-point exceptions sign?J SIGFPE and are caught by
the various system debuggers, including dbx(l), edge(l) and cvd(l) (CodeVision Debugger). This
will enable the GEM software developer to immediately trace computational errors due to floating­
poin t exceptions.

If TRAP-FPE is not defined, program execution remains the default Silicon Graphics environment,
which corresponds to the IEEE 754 default.

For the advanced programmer, the fsigfpe(3F) and sigfpe(3) manual pages present FOR­
TRAN and C programming interfaces to handle_sigfpes, the floating-point exception handler pack­
age. Direct access to the floating-point control and status register (fpcsr) is provided by the fpc(3C)
interface, for the do-it-yourself programming fanatic.

3.2 Sun

Sun provides a simple, easy-to-use interface to create an IEEE floating-point exception-handling
environment suitable for GEM code development and testing. The same interface is supported for
FORTRAN and C programs. Two steps are required to enable this interface, as follows:

o Load the main program (either FORTRAN or C) with the compiler option "-fnonstd" on the
compiler driver (f77,cc) command line.

o When dbx(l) is invoked for debugging, enter the command "catch FPE" to cause dbx to listen
for floating-point exceptions.

5

One side-effect of the "-fnonstd" compiler option is the activation of abrupt underflow. This
underflow behavior does not correspond to the suggested GEM software development environment,
but may be viewed as a minor exception. This exception may be corrected via software modifications.
The following software modification may be used to correct this side-effect, if deemed necessary:

o In FORTRAN programs, insert the following as the first executable statement:
call gradual_underflov()

o In C programs, insert the following as the first executable statement:
gradual_underflov_();

These actions establish the GEM software development environment for IEEE 754 floating-point
exceptions suggested previously. No FORTRAN or C programming changes to GEM software are
necessary to implement an adequate software development environment; only minor FORTRAN or
C programming changes to GEM software are necessary to implement the full environment.

For the advanced programmer, f77 _ieee_environment (3F) [8] and ieee..handler(3M)[9] man­
ual pages present FORTRAN and C programming interfaces to ieee..handler, the floating-point
exception handler package. Please consult the f77_ieee_environment(3F) and ieee..handler(3M)
manual pages for a full description.

3_3 Digital

Digital's default environment for DEC FORTRAN[lO] has been configured to match, as closely as
possible, the standard VAX/VMS environment. As such, the default compilation options ("-fpeO")
provide IEEE floating-point exception trapping for division-by-zero, overflow and invalid exceptions.
In addition, abrupt underflow is enabled via the system-default trap handler. This underflow behavior
does not correspond to the suggested GEM software development environment. When debugging in
this environment,

o With dbx(1), SIGFPE is caught by default and underflow exceptions will cause interrupts. Use
the command "ignore FPE" to allow the system-default trap handler to perform its actions
upon SIGFPE, which include generation of SIGTRAP for IEEE divide-by-zero, overflow and in­
valid. Be aware that dbx(l) will stop inside the trap handler, but the stack trace will show
the exception location.

o With the FUSE debugger (fuse(l)), SIGFPE is ignored by default and underflow exceptions
do not cause interrupts. SIGTRAP signals·generated by the system-default trap handler are
caught and provide debugging locations for floating-point exceptions. Be aware that the FUSE
debugger will stop inside the trap handler, but the stack trace will show the exception location.

Full compliance with the suggested GEM software development environment may be achieved
via program modifications. DEC provides functions for_get-fpe(3f) which provide user-control of
the trap enable bits in the MIPS floating-point control and status register. The following changes to
DEC FORTRAN programs may be added to implement gradual underflow:

o Add the following lines at the beginning of the FORTRAN program:
include '/usr/include/for_fpe-flags.f'
integer for_get_fpe, for-set-fpe
ifpe = for ...set_tpe (iand (for _get_fpe () , not (FPEJl_TRAP _UND)))

6

Gradual underflow is the IEEE default, therefore no SIGFPE signals are generated for IEEE under­
flow. Debuggers (dbx(1),fuse(1)) may catch SIGFPE for IEEE divide-by-zero, overflow and invalid
exceptions without difficulty, providing a direct indication of the floating-point exception, when us­
ing the full GEM software development environment. Advanced programmers should consult the
for_get..fpe(3f) manual page for more details.

DEC FORTRAN provides a selection of "-fpe" options which provide different levels of IEEE
floating-point exception handling and reporting. Compiler option "-fpe3" corresponds to the default
IEEE 754 behavior. Users should note the following conditions:

o The "-fpe" options are compiler options rather than loader options.

o IEEE floating-point exception-handling characteristics of a DEC FORTRAN executable are
determined by the "-fpe" compilation option of the main program. Only the main program
need be recompiled to change the floating-point exception-handling characteristics.

DEC C provides default IEEE 754 floating-point exception handling, which does not correspond
to the suggested GEM software development environment. No options to the compiler driver (c89)
are provided to change the floating-point exception-handling environment. The suggested GEM
software development environment may be created with the following programming changes:

o Include the following C source lines in the program's initialization code.
#include <mips/fpu.h>
union fpc-csr fpcsr;
fpcsr. f c_vord = get..fpc_csr () ;
fpcsr.fc..struct.en..invalid = 1;
fpcsr.fc..struct.en..divideO = 1;
fpcsr. fc..struct. en..overflov = 1;
fpcsr. f c_vord = set..fpc-csr (fpcsr. f c_vord) ;

Advanced programmers should consult the fpc(3)[11) manual pages for additional details.
These actions establish the GEM software development environment for IEEE 754 floating-point

exceptions suggested previously. No FORTRAN programming changes to GEM software are neces­
sary to implement an adequate software development environment; relatively small FORTRAN or C
programming changes to GEM software are necessary to implement the full environment.

3.4 Hewlett-Packard

Hewlett-Packard provides an interface to IEEE floating-point exception handling that requires the
GEM software developer to slightly modify the FORTRAN source code to obtain a suitable debugging
environment. The Hewlett-Packard FORTRAN/9000[12] debugging option "+T" provides a partial
solution; when applied to the FORTRAN main program, it causes the application to trap IEEE
division-by-zero, invalid, overflow and underflow exceptions. GEM physics software applications will
generate many underflow exceptions; such exceptions should be appropriately masked by gradual
(preferred) or abrupt (acceptable) underflow conventions and should not cause program abort.

The suggested GEM software development environment may be created with a slight modifi­
cation to the FORTRAN main program. Use the following two steps to implement the suggested
environment under HP FORTRAN/9000:

o Add the following FORTRAN statement as the first executable statement in the main program.
This statement will lower the trap enable bit for underflow in the floating-point status register.
ON REAL UNDERFLOW IGNORE

7

o Compile the FORTRAN ma.in program with the "+T" option to the FORTRAN/9000 compiler
driver (fort77,f77).

Use of the "ON REAL UNDERFLOW IGNORE" statement without the "+T" compiler option causes a
compilation warning and lowers the underflow trap enable bit at run time, but otherwise has no
effect on program execution.

Upon first glance, Hewlett-Packard provides neither a C compiler option nor a C programming
interface to change the floating-point control and status register trap enable bits. However, the
HP Pascal/HP-UX Programmer's Guide[l4] documents the HPENBLTRAP subprogram available in
libel. a, which provides the HP Pascal and HP FORTRAN run-time libraries_ HPENBLTRAP is an
MPE XL compatibility subprogram and its use in C programs is documented only in reference to
packed-decimal arithmetic and in a software status bulletin. HPENBLTRAP is, however, used by the
HP FORTRAN "+!" trap handler. The GEM floating-point software development environment may
be established using HPENBLTRAP within a C program using the following steps:

o Add the following lines to the program's initialization code:
int oldmask;
HPENBLTRAP(Ox00070000,ioldmask);

o Load library libel. a when loading a binary executable by including the library specification
"-lcl" on the compiler driver (cc,c89) command line.

Advanced programmers may wish to study the documentation on "Traps" in the HP Pascal/HP-UX
Programming Guide for more details.

Appendix A presents assembly-language interface subprograms which have been adapted from
examples provided by a Hewlett-Packard software engineer.(15] This C programming interface to the
floating-point status register may be used as follows to implement the GEM floating-point software
development environment under HP C:

o Include the following lines in the program's initialization code, using the header file defined in
Appendix A.
#include "float-traps .h"
enable..fp-traps () ;

o Load the program, including the hp..fpcsr .o object resulting from assembly of hp..fpcsr .s
presented in Appendix A.

o Default floating-point trap action will be to core dump, or if within the interactive debugger,
to break with a floating-point exception. A user-written signal-handler may be provided, if
desired.

Advanced programmers may wish to carefully study Appendix A for details on this HP C program­
ming interface.

3.5 IBM

Like the SPARC, MIPS and PA-RISC architectures, the IBM POWER[6] architecture provides a
floating-point status and control register, including trap enable bits for floating-point exceptions.
However, support for floating-point exception handling differs substantially from the other architec­
tures due to the POWER architecture's heavily-pipelined implementation. Floating-point exception
handling on the RISC System/6000 is explained as follows.

8

For trap-enabled exceptions, two methods are available to transfer program execution
from the application to the appropriate trap handler when an exception occurs: software
polling and hardware interrupt. Software polling has its advantage in performance. Soft­
ware can select when to poll for a possible enabled exception. For example, if the Divide
by Zero exception is the only trap-enabled exception, the compiler can place the polling
branch and link on exception instruction after each floating-point divide instruction. This
method can be used if the kind of exception handling can be determined at the time a
program is compiled.

In order to provide a precise hardware interrupt (precise in that the address of the ex­
cepting instruction is saved in a register accessible by the trap handler) on a floating
point exception on such a heavily pipelined implementation, the entire processor is put
in a mode of executing only one instruction at a time. All instructions must complete
before the next instruction is dispatched, including fixed-point instructions. This method
allows traps to be enabled or disabled at run time. 6

Under AIX 3.2, IBM provides high-level programming interfaces for both software polling and hard­
ware interrupt mechanisms for floating-point exceptions. (Previous versions of AIX provided either
software polling or no high-level language support.)

3.5.1 Software Polling

AIX XL FORTRAN Compiler/6000 2.2 and AIX XL C Compiler/6000 1.2 support software polling
of floating-point interrupts via the "-q flttrap" compiler option. This causes the compiler to
generate code which will generate a trap signal (SIGTRAP) to flag the occurrence of any enabled
floating-point exception. All of the code which might generate floating-point exceptions, not just the
main program, must be compiled with the "-q flttrap" compiler optioa to allow proper traceback
of floating-point exceptions for debugging purposes. Ac~ording to IBM, "The code required to detect
floating-point exceptions will reduce the performance of programs compiled with the FLTTRAP
option." 7

Implementation of the suggested GEM software ci·•velopment environment on the IBM RISC
System/6000 using software polling requires the following steps:

o Add the following lines to the FORTRAN main program.
include '/usr/include/fpdc.h'
include '/usr/include/fexcp.h'
fpstat(fpve) = .true.
fpstat(fpoe) = .true.
fpstat(fpze) = .true.
call fpsets(fpstat)
call signal(sigtrap,xl_trce)

o Add the following block data subprogram.
block data
include '/usr/include/fpdc.h'
include '/usr/include/fpdt.h'
end

6 RISC System/6000 Floating-Point Unit, IBM RISC System/6000 Technology[l6], pp. 41-42
7 AIX XL FORTRAN Compiler/6000 User's Guide Version 2.2(3], p. 37

9

<> Compile all code which could produce floating-point interrupts with the "-q flttrap" compiler
option.

Similarly, C programs may implement the suggested GEM software development environment using
software polling with the following steps:

<> Add the following lines to the program's initialization code.
#include <fptrap.h>
fp_enable(!RP-INVALID I TRP..DIV..BY..ZERO I TRP_OVERFLOW);

o Compile all code which could produce floating-point interrupts with the "-q fl ttrap" compiler
option.

Advanced programmers should consult the IBM RISC System/6000 manuals[l 7] for fp_any-enable,
etc., for more details.

The above steps successfully create the suggested GEM software development environment on
the IBM RISC System/6000. Users must be aware of the following problems:

o Use of the fpsets or fp_enable subroutines without the "-q flttrap" compiler option causes
incorrect results. IEEE floating-point exceptions do not cause interrupts and the values re­
turned are neither reasonable nor the IEEE default values.

<> All of the code which might generate floating-point exceptions, not just the main program,
must be compiled with the "-q fl ttrap" compiler option to allow proper traceback of floating­
point exceptions for debugging purposes.

Software polling of floating-point exceptions requires a substantial amount of effort by the program­
mer. Not only are software modifications to GEM main programs required, but large amounts of
code-including many subroutine libraries-need to be compiled with the "-q flttrap" option.
Furthermore, setting the IEEE trap enable bits with fpsets or fp-enable produces incorrect results
when not using "-q flttrap," requiring separate main program versions for software development
and production.

3.5.2 Hardware Interrupts

Under AIX 3.2, generation of hardware interrupts in response to floating-point exceptions is supported
on the IBM RISC System/6000. The fp_trap subroutine may be used to change the floating-point
exception enable bit in the machine state register (MSR(FE)) to enable floating-point exceptions and
force the process to execute in serial (rather than pipelined) mode. Use of the hardware interrupts
will allow easy access to floating-point exceptions and generation of SIGFPE signals throughout the
executable, but will impose a substantial performance penalty.

No FORTRAN-callable interface for the hardware interrupt mechanism is provided by IBM.
However, the following steps may be used to implement a FORTRAN interface:

o Add the following line as the first FORTRAN executable statement:
CALL FP-ENABLE_TRAP

<> Create and compile the following C interface subroutine for use as a FORTRAN-callable inter­
face.
#include <fptrap.h>
void fp_enable_trap_()
{

10

int oflag;
fp_enable(TRP-INVALID I TRP..DIV...BY...ZERO I TRP_OVERFLOW);
of lag = fp_trap (FP _TRAP ..SYNC) ;

}

<> Load the FORTRAN program, including the fp_enable_trap_.o object on the compiler driver
(f77,xlf) command line.

Similarly, C programs may implement the suggested GEM software development environment using
hardware interrupts with the following steps:

<> Add the following lines to the program's initialization code.
linclude <fptrap.h>
int oflag;
fp_enable(TRI_ -·:VALID I TRP..DIV...BY...ZERO I TRP_OVERFLOW) ;
oflag = fp_tra>c , FP _TRAP ..SYNC) ;

Advanced programmers should consult the IBM RISC System/6000 manual pages for fp_any_enable,
fp_trap, etc., for more details.

The above steps successfully create the suggested GEM software development environment on
the IBM RISC System/6000. Hardware interrupts eliminate the requirement to recompile all code
using special compiler options, but require the sacrifice of pipelined execution. According to IDM,
"System performance with the MSR(FE) bit set to 1 can be significantly degraded. "8

4 Summary

Successful development of GEM simulation and analysis codes will depend upon efficient use of to­
day's popular RISC/UNIX workstations. GEM physicists need to understand the IEEE Standard
for Binary Floating-Point Arithmetic (IEEE 754) to better enjoy its benefits (and to avoid its con­
sequences for the unwary).

A GEM software development environment for IEEE floating-point exception handling has been
defined and can be implemented on each of today's popular RISC/UNIX workstations with vary­
ing ease or difficulty. For ease in code development and debugging, the suggested GEM software
development environment handles floating-point exceptions in a VAX/VMS-like manner. IEEE 754
divide-by-zero, overflow and invalid exceptions are configured to cause program abort with core dump
and may be efficiently caught and examined by an interactive debugger. Use of IEEE gradual under­
flow is recommended, but abrupt underflow is acceptable for many debugging purposes on machines
which select this option by default.

Implementation details of the GEM software development environment for IEEE floating-point
exception handing are provided for today's popular RISC/UNIX workstations. In the easiest case
(Silicon Graphics), no FORTRAN source modifications are necessary and the IEEE floating-point
exception-handling environment can be changed from default IEEE to GEM software development
by simply changing an environment variable. On Sun, Digital and Hewlett-Packard systems, full
implementation of the suggested GEM software development environment requires slight FORTRAN
modifications and requires a recompile/relink of the main program to change from default IEEE to
GEM software development environments. On the IBM RISC System/6000, both software polling
and hardware interrupt mechanisms require FORTRAN code modifications; software polling requires

8 IBM RISC System/6000 POWERstation and POWERserver Hardware Technical Reference-General Information
Manual(6], International Business Machines Corporation

11

-
the recompilation of all source to implement the GEM software development environment; hardware
interrupts sacrifice pipelined program execution and imply a significant speed reduction.

A common FORTRAN and C programming interface for the GEM floating-point software de­
velopment environment using hardware interrupts may be constructed for all of today's popular
RISC/UNIX workstations. With this general programming interface, GEM computer users need
only add a single line to the FORTRAN or C ma.in program to implement the GEM floating-point
software development environment. However, it is strongly recommended that GEM computer users
understand the implementation of this general interface on the RISC/UNIX workstation of interest.
Use of this general interface implies a heavy performance penalty on IBM RISC System/6000 work­
stations. Other vendors are developing superscalar and/or superpipelined RISC implementations
as well; control methods and efficiency on these future processors will be determined when these
machines are generally available. Implementation details for this general programming. interface are
presented in Appendix B.

Features of the general programming interface presented in Appendix B are minimal. Users
may select between default IEEE floating-point and GEM floating-point software development en­
vironment behaviors at run-time; no complex options or controls are provided, unlike some of the
vendor-written interfaces. Only basic trap-and-abort exception handling is provided; some of the
vendor-specific trap-handlers provide traceback information. Features of the general programming
interface include:

o Common programming interface across today's popular RISC/UNIX workstations. Interface
is available for both FORTRAN and C programs. Invoke this interface using the following
procedures:

- FORTRAN programmers should add the following line as the first executable statement:
CALL GEMFPE

- C programmers should add the following line as the first executable statement:
GEMfpe();

o Load programs including the GEMfpe. o object and any other required objects or libraries, such
as the hp..fpcsr.o object under HP-UX.

o Select between default IEEE 754 floating-point and GEM floating-point software development
environments with the GEMfpe environment variable. Run-time environment selection is per­
formed as follows:

- GEMfpe undefined =? default IEEE 754 floating-point environment

- GEMfpe defined =? GEM floating-point software development environment

GEM computer users are invited to test both the vendor-supplied IEEE floating-point interfaces
and the common GEMfpe interface provided in Appendix B. Comments, suggestions and enhance­
ments are welcome!

12

A Appendix A

Hewlett-Packard provides an MPE XL compatibility subprogram in the Pascal and FORTRAN run­
time libraries which may be used as a C programming interface to the PA-RISC floating-point
status register. This appendix presents a collection of subprograms which provide a more general C
programming interface to the PA-RISC floating-point status register. This set of assembly-language
subprograms has been adapted from examples provided by a Hewlett-Packard software engineer.(15]
The C programming interface is defined via the float_traps .h header file reproduced below.

I•
* float_traps.h prototype
•I

#ifndef __ FLOAT_TRAPS_H __
#define __ FLOAT_TRAPS_H __

'* • codes for kinds of floating-point traps.
*/

#define ASSIST_TRAP OxOe
#define FP_INEXACT_RESULT Ox01
#define FP_UNDERFLOW Ox02
#define FP_OVERFLOW Ox04
#define FP_DIVIDE_BY_ZERO Ox08
#define FP_INVALID_OP Ox10

#ifdef __ STDC __

extern void enable_fp_traps(void);
extern void disable_fp_traps(void);
extern void set_fp_traps(unsigned int);
extern int get_fp_status(void);
extern int get_fp_traps(void);

#else

extern void enable_fp_traps();
extern void disable_fp_traps();
extern void set_fp_traps();
extern int get_fp_traps();
extern int get_fp_status();

#endif /• __ sroc __ •/

#endif /• __ FLOAT_TRAPS_H __ •/

Assembly-language subprograms from hp-fpcsr. s for manipulation of the PA-RISC floating­
point status register are reproduced on the next page.

13

These routines make up an interface for manipulating the FP status
register on an hp9000 sSxx machine.

get_fp_status returns the contents of the FP status register as is

.SPACE $TEXT$

.SUBSPA $CODE$

get_fp_status
.PROC
.CALLINFO
.ENTRY
ldo 4(1,sp),Y,sp
fstws Y.frO,O(Y.sp)
ldw -O(Y.sp),Y.retO
bv Y.ro(Y.rp)
ldo -4(Y.sp),Y.sp
.PROCEND

set_fp_status blindly sets the FP status register from argO. It's a
dangerous routine, and is not exported.

set_fp_status
.PROC
.CALLINFO
.ENTRY
ldo 4(1,sp),Y.sp
stw Y.argO,O(Y,sp)
fldws O(Y.sp),Y,frO
bv Y.ro(Y,rp)
ldo -4(1,sp),Y.sp
.PROCEND

get_fp_traps returns the trap enable bits from the FP status register
in the lowest 5 bits of retO

get_fp_traps
.PROC
.CALLINFO
.ENTRY
stw Y.rp,-20(1,sp)
bl get_fp_status,2
nop

14

ldv -20(%sp),%rp
bv %r0(%rp)
dep 0,26,27,%ret0 zap out top 27 bits
.PROCEND

set_fp_traps sets the trap enable bits in the FP status register from the
5 lovest bits in argO.

set_fp_traps
.PROC
.CALLINFO
.ENTRY
b set_fp_status
dep 0,26,27,%arg0
.PROCEND

zap out top 27 bits

enable_fp_traps calls set_fp_traps vith a reasonable default value to
enable the "common" FP traps (invalid operation, divide-by-zero and overflov).

enable_fp_ traps
.PROC
.CALLINFO
.ENTRY
b set_fp_status
ldi Ox1c,%arg0
.PROCEND

VZOui

disable_fp_traps calls set_fp_traps vith a zero mask to disable all
floating-point traps.

disable_fp_traps
.PROC
.CALLINFO
.ENTRY
b set_fp_status
copy %rO,%argO
.PROCEND

vzoui

.EXPORT get_fp_status,ENTRY,PRIV_LEV=3

.EXPORT get_fp_traps,ENTRY,PRIV_LEV=3

.EXPORT set_fp_traps,ENTRY,PRIV_LEV=3

.EXPORT enable_fp_traps,ENTRY,PRIV_LEV=3

.EXPORT disable_fp_traps,ENTRY,PRIV_LEVz3

.END

15

B Appendix B

The following C subprogram implements a common interface for the GEM floating-point software
development environment. Use an ANSI C compiler when compiling this subprogram.

GEMfpe A general implementation of the GEM floating-point
softvare development environment vithin IEEE 754.

The GEM floating-point softvare development environment is characterized
by the folloving actions on IEEE floating-point exceptions:

invalid trap t abort
divide by zero trap t abort
overflov trap t abort
underflov IEEE default (gradual)
inexact IEEE default

GEMfpe provides both the default IEEE floating-point environment and
the GEM floating-point softvare development environment. Selection
is based upon the existence of the environment variable GEMfpe.

GEMfpe undefined ==> IEEE default environment
GEMfpe defined ==> GEM floating-point environment

Operating systems supported include:

IRIX 4.0.1
ULTRIX 4.2A
HP-UX 8.07
AIX 3.2
SunOS 4.1.1

FORTRAN interface:

CALL GEMFPE

C interface:

Author:
Location:
Date:

GEMfpeO;

Lee A. Roberts
Superconducting Super Collider Laboratory
May 27, 1992

16

#include <stdlib.h>
#if defined (__ sgi)
#include <sys/fpu.h>
#include <signal.h>
#elif defined (__ ultrix)
#include <mips/fpu.h>
#include <signal.h>
#elif defined (__ hpux)
#include "float_traps.h"
#include <signal.h>
#elif defined (_AIX)
#include <fptrap.h>
#include <signal.h>
#elif defined (sun)
#include <math.h>
#include <floatingpoint.h>
#endif

void GEMfpe()
{

if (getenv("GEMfpe") == NULL) {
lif defined (__ sgi) II defined (__ ultrix)

union fpc_csr fpcsr;
fpcsr.fc_vord = get_fpc_csr();
fpcsr.fc_struct.en_invalid ~ O;
fpcsr.fc_struct.en_divideO = O;
fpcsr.fc_struct.en_overflov = O;
fpcsr.fc_struct.en_underflov • O;
fpcsr.fc_struct.en_inexact = O;
fpcsr.fc_vord = set_fpc_csr(fpcsr.fc_vord);
signal(SIGFPE,SIG_IGN);

#elif defined (__ hpux)
disable_fp_traps();
signal(SIGFPE,SIG_IGN);

lelif defined (_AIX)
int oflag;
fp_disable_all();
oflag = fp_trap(FP_TRAP_OFF);
signal(SIGFPE,SIG_IGN);

#elif defined (sun)
int i;
i = ieee_handler("clear","all",SIGFPE_IGNORE);

#endif
} else {

#if defined (__ sgi) II defined (__ ultrix)
union fpc_csr fpcsr;
fpcsr.fc_vord = get_fpc_csr();
fpcsr.fc_struct.en_invalid = 1;

17

fpcsr.fc_struct.en_divideO = 1;
fpcsr.fc_struct.en_overflov = 1;
fpcsr.fc_struct.en_underflov = O;
fpcsr.fc_struct.en_inexact = O;
fpcsr.fc_vord = set_fpc_csr(fpcsr.fc_vord);
signal(SIGFPE,SIG_DFL);

lelif defined (__ hpux)
enable_fp_traps();
signal(SIGFPE,SIG_DFL);

lelif defined (_AIX)
int oflag;
fp_disable_all();
fp_enable(TRP_INVALID I TRP_DIV_BY_ZERO I TRP_OVERFLOW);
oflag = fp_trap(FP_TRAP_SYNC);
signal(SIGFPE,SIG_DFL);

lelif defined (sun)
int i;
i = ieee_handler("clear","all",SIGFPE_DEFAULT);
i = ieee_handler("set","common",SIGFPE_ABORT);

lend if
}

}

void gemfpe_ ()
{

GEMfpe();
}

18

•
References

[1] IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985 (IEEE 754),
published by the Institute of Electrical and Electronics Engineers, Inc., 345 East 47th Street,
New York, NY 10017, 1985.

[2] Numerical Computation Guide, Sun Microsystems, Inc., Mountain View, CA. Part No. 800-
3555-10, Revision A of 16 March 1990.

[3] AIX XL FORTRAN Compiler/6000 User's Guide Version 2.2, International Business Machines
Corporation, Armonk, NY, September 1991.

[4] Assembly Language Programmer's Guide Version 1.0, Silicon Graphics, Inc., Mountain View,
CA. Document 007-0730-010, 1987.

[5] HP Precision Architecture and Instruction Set, Hewlett-Packard, USA. HP Part No. 09740-
90014, April 1989.

[6] IBM RISC System/6000 POWERstation and POWERserver Hardware Technical Reference-­
General Information Manual, International Business Machines Corporation, Austin, TX. 1992.

[7] IRIX 4.0.1 Operating System, Silicon Graphics, Inc., Mountain View, CA. 1991.

[8] Sun FORTRAN Reference Manual, Sun Microsystems, Inc., Mountain View, CA. Part No. 800-
3418-10, Revision A of 16 March 1990.

[9] SunOS Reference Manual, Sun Microsystems, Inc., Mountain View, CA. Part No. 800-3827-10,
Revision A of 27 March 1990.

[10] DEC Fortran for ULTRIX RISC Systems User Manual, Digital Equipment Corporation, May­
nard, MA. Order Number AA-PElCA-TE, March 1991.

[11] ULTRIX Reference Pages, Digital Equipment Corporation, Maynard, MA. Order Number AA­
LY16B-TE, 1990.

[12] FORTRAN/9000 Reference, Hewlett-Packard Company, USA. HP Part No. B2408-90003, June
1991.

[13] HP- UX Operating System 8.07, Hewlett-Packard Company, USA. November 1991.

[14] HP Pascal/HP-UX Programming Guide, Hewlett-Packard Company, USA. HP Part No. 92431-
9006, January 1991.

[15] Private communication. Stuart Jarriel, Hewlett-Packard, Austin, TX.

[16] IBM RISC System/6000 Technology, International Business Machines Corporation, Austin, TX.
1990.

[17] AIX Technical Reference: Base Operating System and Extensions, International Business Ma­
chines Corporation, Austin, TX. January 1992.

19

