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Abstract:

Agenda, presentation, and attenders of the GEM Calorimeter
Meeting held at the SSC Laboratory on May 1, 1992. Agenda items
were: Baseline Status; Forward Activities; Discussion on April 21/22
Cost Review and International Contributions; BaF2 Activities;
SSCintCal Activities; LAr Activities; Quartz Fiber Calorimeter; SSCL
Test Beam Facilities; and Simulations and Test Beam Data.
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AGENDA
-~ of GEM Calorimeter group meeting on Friday May l-st at SSCL
2 am H.Gordon - Presentation of base line design status (60')
Forward activities (15') Dave Winn
- Discussion on April 21/22 cost review and intnl. contributions (30')
Ba:% ;;‘;:utlgr(;g*rm;‘wﬁ.‘r?;ﬁnan Mark  Rennich
$5CintCal activities (15') L.Sulak

-~ LAr activities (15°') H.Gordon
noon Lunch break (60')

> om Philippe Gorodetzky (CERN} - quartz fiber calorimeter (45')
G.Yost =~ SSCL test beam facilities (207)
Simulations and test beam data (H.Ma, J.Brau ...} (35"}
Next meeting, plans, AOB (")

3:00 p~  Adjourn
ZRNL>
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Cost Review of _Calorimetrjz Options

( SSCL
1. BaF2
ﬁ'b‘* 2.  Sci. Fibers ’
3. Forw.Liq. Sci.
4.  Sci.Tiles
'1-) 5. LAr e-m + hadr
A
5.1 LAr separate e-m
4 352 LAr e-m + hadr. forw
53 add accordion prerad
‘6. Forward LAr
7.  LKr parall plates + 7
A 8. Si prerad

April 21-22)

$ 803 M China $15m7
§ 557 M At $1m
$ 164 M China’l

$ 518 M

$ 1367 M (+4-5% 9saz %
Chita  ¢-ne 7
Russia  hadr. mo:
Koree Cryostat’

$~600 M
$~840 M
$>50 M~

$ 153 M

eryosiat, imda)). -

$ > 37.8 M7 (e-ic. not Cneluped
$ 160 M



Comments

v Baseline LAr (em + hadr + forw) $ 152 M
Y Alternative (BaF2 + SciFi + forw) $152 M

Y LAr hadronic @ R=360 cm and Z =550 cm

doesn't satisfy baseline parameters :

only 102 A at N=0. and .~ The problem ¢
[78:}45 f:’xed.
115 A at T = 3.

Y Alternative Opﬁon @R =330 cm and Z=470 cm

provides 12A at 1] =0. and
14A at 1] =3.

Y SciFi engineering progress was demonstrated

Y Cost of BaF2 can potentially go up if mdiﬁaud

crtystal treatment will be required

Y LAr e-m accordion end cap design - no progress

-



Procedure

Charge from collaboration management to develop the

decision process which should include considerations
how different cal. options impact the cost of overall

detector (via magnet, muen system, assembly etc.)

Engineering aspects of saving :

1. Direct cost

2. Detector size

3. Utilities

4. Engineering resources

Y We have set the requirements for two e-m options to
be resolved before the decision in August

Y Do we have any new information in hadron
calorimetry before August?

v Are the decisions on e-m and hadron calorimetry

‘are tightly coupled together? Why ?- Mixed options.
LF‘;{MG 2zns., cost, or others 7

Y Do we want NOT to make any decisions between
now and August?



GEM Liquid Argon Calorimeter
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Muon Chamber
_T_ Envelope
—4250H— Membrane
0 Y /_ 50% alr gap Tube 30 mm thick
A Longitudinal framing
7 - (fastened to t- wer extensions)
B0
...7L.
5500 —»
Laminated Copper Towers
1550
Joint
3600 Cableway
Cylinder 15 | l/ / Muon Chamber
ylinder 15 mm plate Envelope
—x— /_ P
S
Barlum Fluoride
1400 Forward Calorimeter
e ——
J - : —1
)[ 2300 e 1970 11' 350k 2200 ¥
# ’ 4620 4
Dimensions in millimeters

GEM Scintillator Calorimeter System

F. Aysr #203D270
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* More enpineering efforts (+7 momney)
areée needed -for LAr e-m accordeon

0p'l:(on

o Enj,‘neer{ng aspects of the separate
e-m LAr calorymeter op’h'on shou)d

be sruclied (M. Rennich | L.Mason )



A. Requirements for BaF2 technology :

1.

Demonstrate substantial improvement in radiation resistance of

large BaF2 crystals (20-25 cm long) towards the GEM specifications -
reach absorbtion. length of at least >60 cm at 220 nm after 1MRad
irradiation with photons, and if possible high energy hadroms.
Present a detailed plan to obtain final GEM quality crystals,

along with evidence of manufacturability and cost, including

vork required to prepare crystals after delivery. .
by August 1, 1992

As proposed by the expert panel, produce small radiation-hard
crystals to demonstrate there are no fundamental limitations in
making rad hard BaF2 crystals. ( eg. absorbtion length >= 95 cm

at 220 nm after 1 MRad)
by August 1, 1992

Address in detail questions of preradiation, wrapping, residual
non-uniformity, etc in crystals we can practicably expect to manufacture.
Cosmic ray transverse measurements in produced crystals could provide
useful data. Provide detailed practical plan for calibration of BaF2
system in-situ :describe calibration strategy, RFQ layout, regquired
calibration time for each proposed technique to achieve necessary

accuracy.
by July 1, 1992

Show by MC and by lab.tests that the following effects do not dest y the
resolution of the BaF2 system (maximum tolerable constant term is 0.6%) :

- residual non-uniformity (as installed);

- non-uniformity developed by possible further radiation damage of
"saturated” crystals and/or by possible annealing;
(note - the expert panel and executive committee are not convinced
of the proposal to preradiate the crystals)

- accuracy of intercalibration (see point 3);

-~ short term instabilities of readout system;

~ linearity, linearity calibration and dynamic range of readout system.

by July 1,1992



Requirements for LAr-Kr technology :

Demonstrate by beam tests stochastic term in resolution for non-projective
geometry <= 7%/sqrt(E). Determine angular dependence of this resolution.

by August 1,1992

Produce detailed mechanical design/analysis of e-m barrel and end caps with
optimization of gap between barrel and end cap, wall thicknesses, etc.

by July 1,1992

Demonstrate by MC simulations for realistic projective geometry and full
angular range (between 90 and 5.7 degrees) the resolution

<= 7%/sqrt(E) + 0.4%

and physics consequences of the gap between barrel and end cap, wall
thicknesses, etc.

by July 1, 1992



Had ronsc section

®  Hadronic LAr cost :

$ (136.7 - 60) - 1.04 = 80 M

I—F [ambcla s%ar'l'age will be fixed

cost  most |ike |)r will 80 wp

4 Ha.dmw.,'c seim 4, coit:

$ s2-56 M



3400 mm

Structural Rib
Filled with Cu Shot

PMT Readout

+—— 1500 mm ——»

a—————— 2000 mm
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G.03.SC.00080

5300 mm

Spaghetti Hadron Calorimeter
Copper Fill/0.12 Segmentation
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Readout and Electronics

e Feedthru (TBD)

Feedthru (TBD)

3450

1500

- . 5400 >

GEM Detector
Plastic Tile/Copper
Llla%lﬁn l:?rrel Ca!orhgeter, 4
Ar - Hadron End Cap nn
G.03.T.018 LKr EM Barrel Calorimeter Rennich



/ Structural Framing
A Joint / Cableway
Feedthru Difficullies Need to be Studied
3300

-~ ?000 ‘ t

ot 2300 >

- 5300 ~-

GEM Detector
BaFFiLAr Calorimeter

G.03.CuU.017

Rennich
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SCCintCAL Forward Calorimetry

STRATEGY:

[1] Fiber Geometry:

No Active Elements, No HV in high radiation environment
Fast - Scintillator,Cerenkov+no WLS+optics -> 40 ns Eh,15 ns em
PMT survives > 100's MRad, also shielded by calorimeter

Replacement possible: fibers exit back of calorimeter



TYPICAL COPPER LAMINATED
- TUBE AND PLATE TOWER

AS ASSEMELED, BEFORE FINAL MACHINING
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r >

BIDE VIEW

As Asasmblad

NOTTO SCALE

"NUMBER OF LAMINATIONS
REDUCED FOR CLARTY)

Figure 15a,b: Schematics of SSCintCAL Cu hadron towers - example only for use of the fibers.

TOP VIEW
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[2] Two General Rad-Hard Alternatives to Plastic Fibers

-Liquid Core Scintillator Fibers

Liquids:
- Existing liquid scintillators rad-hard to >200 MRad
- pumpable/replacable
- Isopropyl biphenyl: reactor coolant, no plating, n=1.58
- methyl naphthalene, n=1.62; benzyl alcohol, n=1.55

Claddings:
-radiation damage -> Labs, not to refractive index

- PEEK ~ 0.5-1 GRad, n~1.5

- Kapton ~ 0.5-1 GRad, n~1.55

- Halar ~ 200 Mrad, n~1.43
-PUR ~ 200 Mrad, n~1.5

- Quartz or glass tubing, n~1.5

- Viton, Polysiloxanes, n~1.4-1.5

Commercial Technology - Oriel Inc.
N.A.=0.47, Labs=5m, 3 mm fiber polymer spaghetti
Sealed optical end plugs
Flexible (can be bundled)
Rugged
Replace Claddings & Liquids as above
Optical surface obtained by standard die extrusions
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N Excelient light gathering - large cores, no
packing losses, high N.A.

B High UV transmittance - from 270 nm

& Flexible tubing

Liquid Light Guides transter ulraviclst and visitle radiatien
very effidenty. Thesae light guides funciion in 3 similar manner
to fber aptic Hundles, using internal reflection to guide energy
along their length, but they have higher transmittance fan
fused silica bundles of eguivalent core size and are more
flexible. (See Fig. 1 lor a transmittarce curve.) Liquid light
gwdesarausablahomﬂb!o?zonm

CONSTRUCTION BT ma :
Uiguid Light Guides consist of a plastic tube covered by a R e ﬁ o b
protective aluminum spiral and cevered by a PVC jacket. The 5 77534 Liauid Oght Tulds | ...E‘lf_“f:‘_’??_fm""}'“

inner tube is filed with a propretary, transparent, anaercbic
non-toxic fluid. The tube is sealed at both ends with palished
fused silica windaws and prolectedbyanmtenodung stainless
steei sheathing.

Like owr fiber bundles, these guides have 11 mm ferule
adapters that mount to any Oriel Fber Qptic Catle Accessory
found on pages 8-20 to 8-23.

Qur liquid light guides are robust and long fived in normal
w8, To ensurs long 5le the wemperature at the input face
should not exceed 60 *C,

LARGE CORE DIAMETERS
We affer liquid ight guides in larger core diameters than
our fiber bundies. The guides use the full inpu! aperure and
:na;n mn: :;hm h:n‘:;’onlosses.me lamge core diametsrs,
mum aperture aflow afficient coupling to i
large light sourcas, Core diametars of 3 and S mm are stan- hhaduasivaduio/
dard; 8 mm core diameters are available on special order. ' "’\ |
LIGHT ACCEPTANCE P avamemom
The acceptance angle a for these guides is 28 degrees, wa e
mﬂ\mspondmNAofﬂ‘T.Themmmmm
2a is 56 degrees. Tha geomatrical extant, 2 measure of fber
aptic ight gathering capakifity, is 14.4 mm? sr for the 5 mm
guidas. This compares with 3 for the 3.2 mm diamater fused

oaEL
[—— - -]

30 noES O]

y

_4

TRAHAMTTANCE (%)

3 % & 5 &8 & 3 K 3

Fig.1 Transmittanca of Criel Liquid Light Guides.

silica bundles and 7 for the 3.2 mm dlameter glass bundles. ' {'&ﬁ . . -1%2?[- N
BEND RADIUS T it L ,gh
The mirimum bend radius for the 2 mm core guides is 3 [} - ey
mammm}.ﬂﬁdsmnzzmjformaSﬂmm

es.

Changing the position of the guids will change the output Dimensians in inches {mm}.
beam distibution and power. Care shouk! be taken to aveoid
appreciabie movemnent of the guide during 3 measurement. Fig-2 Oriel Liquid Light Guldes.

Figure 8: Oriel spec sheet for liquid oprical light guide. Note sample in photograph is armored.
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April 1, 1;'99}2 : ' o A

i
i
)

* Dr. Dav:dswmn .- . - . .
- Fairfield University - _ E A

. . Dear Dr. W'r:n.

Physics Departrnent
Fa:rﬁeld Connectxcut 06430

‘via fix: 254-4-1 26

.,

" We are lookmg forward to our participation with your team in the deve(apmem: eﬂ'ort
- for the 3SC fcrward calorimeter based on liquid light guide scigtillator concept.

- The project will be charged at cost for matena!s, components, and 'consul'mnt :’.lme .
_ - Engineering and assembly time will be charged with 35% corporate overhead rate

" detector systems, is included in the overhead rate. We plan o trilize the ccnsultmg -
services ¢f Mr. Clyde Hinman for 120 hrs, at an hourly rate of $40.00, for.a total

The time 'scales I‘sted in your proposal, even though somewhat ambitious, appear to .
be feasxble and we would exert every e rt to help you meet them. The w1l budget " -

for our part of the effort, with some ext « contributions of our engineering team time,
appear to be appropriate for the scope of the project. We would like to offer to
ccrrmbute extra effort as needed, up 10 20% of that planned below, to he!p achieve
the goais of this work. .

‘

added. We are pro;ectmg that materials and fixtures will consurne. $29,200. Use of
the equipment located in Oriel"s test laboratories, such as the light sdurces and

. expendxtnre ‘of $4,800. A total of 400 hrs of labor is planned for. the assembly.and

. 250 LONG BEACH BLVD, P.O, BOX 872, STRATFORD, CT U.S 406497 X TEL 203 377:8222 »TWX 710-453-8719 m FAX 203 T78-2457 . ...

testing of the 800 fibers for the Calorimeter Tower. 600 hour effort is planned for

adapting our light guide technology to this ne appl‘cat:on and asmstance in matena's‘

testir~ and optical properties determination. ) .
: .

£ .

e B —we
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Figure 4: Liquid spaghetti E-M calorimeter using teflon tubes filled with liquid scintitlator,
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Pb block encased in SS containment vessel with glass windows for PMT, The resolution was
about 17%/B**(.5 at low enerpy (1-3 GeV).



» Quartz Fiber Cerenkov Sampling
-[ Developed for NA38 - Ph. Gorodetzky]

- Potentially hard to 10's GRads

- 1 mm Quartz fibers w/ PEEK cladding: $5/m
- 3 mm Quartz tubes: $9/m

- Energy: 34 p.e./GeV hadrons; 35-40%/NE em
- Resolution: ~8-10% constant term hadrons

- Exceptional Speed
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Figure 10: Schemarc of the the 5x5x20 cm quartz fiber Cerenkov sampling calorimeter module
read out by 2 PMT, tested at CERN in an Sulphur-32 (160 GeV/nucleon) or e- (10-30 GeV) beam.
Note that the 1mm quarez fibers (20% p.fraction) are arranged to maximize at least some of the

Cerenkov emission along the fiber meridional ray. The tungsten is to partially develop the hadron
shower before the calorimeter. [Courtesy of P. Gorodetzky].
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PMT Specifications DRW - 5/1/92

Photocathode:
Photocurrent: 2% linearity for 107 p.e. in 10 ns
Lifetime: 1 mC for 50% gain loss
Uniformity: £10% over 25 mm circle

Multiplier:
Gain: ~6,000-10,000
Pulsed Current: 25 mA in 10 ns with <0.5% non-linearity

200 mA in 10 ns <2% non-linearity

Risetime (delta f? pulse, 20%-80%, 10ma in 50 Q):  <4ns
Falltime (delta f pulse, 80%-20%, 10ma in 50 Q) : < 6ns
Width at Baseline (5%): < 12 ns
Pulse Shape Change: < 20% for pulses between 0.1 -100 mA
Average Anode Current: 1 pA
Lifetime: 2 C w/ 50% loss
Anode Capacitance: < 10 pF to all other electrodes combined
Anode Inductance: < 45 nH

Noise:
Single p.e.: <100 kHz at 0.5 pe peak
Afterpulsing: < 0.1%/p.e for afterpulses > 10 p.e.
Pre Pulsing: Arrival < 5 ns early
amplitude< 0.5% of signal
Stability:
Long Term: < 1%/month
Hysteresis: <1% gain shift within 100 ns after pulse of 10 ma x 10 ns

Magnetic field: Operates parallel to 0.7 T
Full Scale: 5 TeV jet

Min Scale: 0.1 min ionizing ~ 50 MeV
Gain: Max Charge = 200 mA x 10 ns=2 nC, 100 p.e./GeV-> Gain = 12,000



SSCintCAL CALIBRATION DRW- 5/1/92
1. Absolute:

» Radiosources, cross calibrated with beam tests
- Cs or Co source capsules on wires in tubes (like CDF)

 Landau Distributions
- See SPACAL reports; detailed difference S0<Eu<200 GeV

» Pion Punch-thru

- Tracker + min. ionize in BaF2 + isolation -> E pion known.

- Neutron Generator Activation, cross calibrated
- 14 MeV D-T neutron generators (10**9/s) (like UA-1)
- Generator: 6 terminal metal-ceramic 5 cm dia x 25 ¢cm long
- 1 psec pulses, 1% D.F.

2. Relative:

« Light Injection on Fibers
- Achieved <0.5% in CLEO, Bugey Neutrino Expt., etc.
- Long term: several months
- Cross-calibrate in lab, on bench, & w/ radiosource
- CDF, UA-1, UA-2: ~1% long term
- lasers, plasma pinches, LED's, stable arcs, laser diodes, etc
[- Tunable ring laser, phase locked machine RF
-> sub ns pulse, stability: 10-4]
[- Inject front/rear at several wavelengths
-> rad damage, separate fibers from PMT stability]

« Symmetries of Energy Deposition
- Towers of constant 1} (a ring of towers): same Energy.
- Sets of towers of constant ¢: same SE/on (Energy profile)
- Compute Entropy; anneal
- Use tracker to correlate with absolute d3E/dtdddn.



Nuclear Instruments and Methods 206 (1953) 177-181 . 177
- North-Holland Publishing Company

- | A SIMPLE METHOD FOR THE STABILIZATION OF SCINTILLATION DETECTORS

M. BOTTCHER, W.D. BREWER, and E. KLEIN

Fachbereich Physik, Freie Universitat Berlin, W. Germany

- Received 10 May 1982

]
'
!

We report on the design and operation of a gain-stabilized Nal(Tl) scintillation spectrometer for use in stray magnetic fields
utilizing a blue light-emitting diode as reference source. The specirometer is simple, compact. and robust and the stabilization can bs
constructed a1 modeast additional cost. It is easy to operate, and yields long-term gain stability of better than £0.2%, as weil as grc;m\

-~ ‘ifmproved cperation in stray magnetic fields. ——

Nuclear lnstruments and Methods in Physics Research A279 (1989) T3=76 . <~ a0 Pm:(') -
¢
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WNorth-Hotland. Amsterdam "
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PERFORMANCE OF A LIGHT FLASHER SYSTEM FOR A PROTOTYPE Csl CALORIMNETER
AND THE DESIGN FOR CLEO 11
Yuichi KUBOTA and Chris O"G",ADY - M W e Pov
Cornell University, Ithace. New York 14853, USA 7 ~
—~ A swdy of the light calibration sysiem installed in a prowotype Csl shower counter is reported. The system is ablc to observe a
change of less than 0.5% in the sensitivity of the uetector.
"_-'—-———l- : Do TeTmEE oo )
\uclear Instruments and Methods in Physics Research A234 (1985) 517'520 wE LA, .. - ».'. e 5]1; o
_Nonh-Holland Amsterdam it e S S T L
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E
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v
?GAI'\I STABILIZATION OF PHOTOTUBES USING A LED DIODE SCHEME ""
'L, HOLM, H.W. FIELDING and G.C. NEILSON
:Fu'Erear Research Centre; Physics Department, University of Alherta, Edmonton: Canada, T6G INS - o = - e

>

;'Receivcd 13 July 1984

e :;-;tlw

The performance of LED diode gain stabilization schemes for RCA 4512 phototubes is evaluated. Under normal experimental
 conditions the use of a green Litronix GL56 LED and an ORTEC surface barrier detector provide the best results. An overall gain
;sgab:huuon of =0.5% over several months has been achicved.
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.. LASER/FIBER OPTIC CALIBRATION SYSTEM
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Presentation by:

Philippe Gorodetzky
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Fig V.22: Nomtres de phorons (quelle que soir leur longuenr d'onge) arr-anr en bour de
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Figure 5 : Top) Schematic view showing
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SILICAL

CALORIMETRY WITH SILI(CA) FIBERS

Tests performed at CERN on the small prototype with S* at 200 GeV/n
and electrons at 10 and 30 Gev

- PRELIMINARY RESULTS -

October 1991
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Fia V.8: Moniage unilisé pour le 1est du filtre.
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Fig V.9: Courbe del'oscilloscope sans le filtre (a4 gauchei n°l avec le filtre (a droite) n®2
Les échelles horizontale et verticale sont respectivement égales & Sns par division et 1V

1a composante lente apparait sur la p’mtoorapme n°l a gauche du pic. le signal ne
revient pas & 0 mais reste constamment & -1 V. Sur la photographie n°2. le signal
revient a 0. Nous constatons bien [effat du rlltre. Cette aténuation du signal d'un
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PERMANENT BLDG BOUNDARY

CLEAN AREA LEGEND
NORTH ,

- ELECTRONICS TEST

MODULE CLEANING

CLEAN MODULE STORAGE AS -RECEIVED MODULE STORAGE
42,000 LITER LAr DEWAR
N F
42,000 LITER LN2 DEWAR T el . k\\\ \
_ MODULE & SMALL
§ PARTS RECEIVING
GROUND RAILS
\\
- \\ Sm
///////M/ > ~'VESSEL RECEIVING
<LYGHALL 4 ,ﬂ 77 & FREP AREA
’ CONCRETE
4
ENDCAP 'S ENDCA BARREL X Wm
CRANE RAIL
TEMPORARY COVERING
CRUSHED ROCK BASE
| DRAFT
CRANE REQUIREMENTS SCALE $00:1
HI-BAY: 50/10 TONNE BRIDGE CRANE Eberle 03/02/92
VESSEL RECEIVING/PREP: $0 TONNE BOOM CRANE GEM CALORIMETER ASSY BLDG

S ' e - PLAN VIEW
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Copper Fl1}/0.12 Segmentation
Barium Fluoride EM Calorimeter
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Muon Chamber
- " — — /— Envelope
3 e ne
| ado ¥~ 50%mal::ap Tubo 30 mm thick
I} _ Longltudinal framing
! (fastened to tower extenslons)
5500 —»
Laminated Copper Towers
1550 Joint A
Muon Chamber
Cylinder 15 mm plate /— Envelope
Barlum Fluoride
14m B VR B DO AL 0! Ll S 5 A5 AL Wy L S0l A L Forward calo rllmlﬂr
e
b : : ]
L 2300 * 1970 1"—350 & 2200 +
]: 4620 p f
Dimensions in millimeters
GEM Scintillator Calorimeter System

F. Ayer :‘mmm . p p ;
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LIGHT GUIDE / PMT / BASE ASSEMBLY

SCHEMATIC VIEW
FIBER BUNDLE !
{800 FIBERS MAX.)
, o TOTAL LEN3TH 2580 mm
|
Yy |
r —— =
1 FEEEN
'. ------
f
¥
'
VARIABLE (~ 52 mm)
| "
\ ------
J——— ] -
ya /l‘_- ‘L "
! | |
r 30—+~ 92 1“ 2] 100
. j
CLAMP LIGHT MIXER PUT P~ BASE
HEX HEXAGONAL 2°TuaS #2490
L = 38 mm
2" APEX - APEX, o" 51 mm

~7ia—

2 =52 nm

—f—

DIMENSIONS IN MILUMETERS
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Total

Number of Mech.Theta Rows 28 Each
Number of Mech. Towers 840 Each
Absorber Volume 169.88 M3

|Fiber Lenght| 3,749,264 M

Cu Tubc .ength| 2,884,050 M

Cu Tube Volume 131.00 M3
Number of Cu Plates! 48,668 each
Copper Plate Weightl 1292.47 M1
Number of Fibers| 2,570,848 each

Total Weight| 1434.99 MT

]

ORNL 4-23-82




(.03.CU.006

Face Plate

GEM Detector
Fiber Calorimeter
Central Barrel Module
Assemibly-Station One

Copper Module Block

Module Top Rib

Rennich



intillating Fib

lorimeter

Catagory Estimate  Fraction
Research & Devel. $3,445K 11.3%
EDIA $9,419K 30.9%
Construction $30,492K
Contingency $12,375K 31.0%
Total $55,730K

4/19/92



E ium Fluori lorimeter

Potential Improvements

Current Polenlial
Structure - Fiber Composite Titanium/Aluminide
Tolerancing Centerline Reference {Face Reference
Inspection Mechanical Gages Coordinate Measuring Machine
Readout Phototriode Solid State Diode
Joint Matching |Lapping Diamond Cutling

Oak Ridge National Laboratory 3/6/92




Composite Wall (0.3 mm)
Air Gap (0.2 mm)

Coating (0.025 mm)
Crystal

e o ot gt ot g N

0.75 mm

Barium Fluoride
Detail of Gap Between Crystals

G.03.BF.012 Rennich



Structural Wall

Barium Fluoride
Preferred Crystal Tolerancing
G.03.BF.010 Rennich



Contact With Structure !

Structural Wall

Mismatched Joint

Clearance=200 microns

csssnmmefons

cmvensrrbsnses

An angular mismatch at the joint due to a 200 micron
tolerance will result in a 5§ mm crystal misalignment or
25X the accepted tolerance for crystal clearance.

Barium Fluoride
Crystal Tolerancing
G.03.BF.011 Joint Error Rennich



Catagory Estimate  Fraction

Research & Devel. $4,093K 7.2%
EDIA $8,271K  14.6%
Construction $56,509K
Contingency $11,417K 17.6%
Total $80,290K

e — - - — —

4/19/92



] Muon Chamber - -
END CAP 4 -0
Stripline Cables H
_o——llli Ny
via=1.5 - =TT - \.. i V
\ - - "_ - = —_ -
-7 Liquid Argon Flow Path i
d B =
ta=10 - o ki
v \ _ _ suiplinecable path™ e
—-— ™~ — | 1~
" e T 1630.0 mm 17800 mmn

v eli=h20

1510.0 mm

ol EE

5090mm from IP

940.0 mm -

1070.0 nun -

5340 nun from 1P

MARTIN MARITTTA RHERCT OT0YRIT
PROJECT: S5C CEM DETECTOR

FORWARD CALORIMETEN
LIGUID ARCON OP110N
>| GENERAL ARRANGEMENT

|_PRINT NO: FCLAR-GA®I __ [ eV 4_
DRAWN BY: S. M. CHAF, L

5500 mm from IP

e e CUECKED A AFTROVED v,

« ‘ 1 e ] ‘ [ [ ( c




) }

LARCOS) _.MMARY

LIQUID ARGON OPTION FORWARD CALORIMETER
COST ESTIMATE SUMMARY

——

Page 1

ENGR/DESIGN
M&S and PROC/FAB LABOR LABOR
INSPECTION MATERIAL ASSEMBLY |INSTALLATION| SUBTOTAL
CONSTRUCTION $2,332K $7,103K $883K $20K $10,338K
R&D $708K $165K $37K $0K $910K
ENGINEERING $282K | $0K $0K $0K $282K
SUBTOTAL $3,323K $7,268K $920K - $20K | $11,530K
I COST PERCENTAGE
R&D $910K 11.37%
EDIA $2,614K 32.66%
CONSTRUCTION{ $8,006K
CONTINGENCY $3,756K 35.37%
TOTAL $15,286K |
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5500 mm from 1P ""-—":—-clauﬂl

950 mm from Beam CL

Polyethylene oil out for bottom half
/ ela=2.5 oil in for top half
At -‘-___-""-—-
Sl eta=3.0
— /. ,

______ X Iy [ S

n
f
/

| R 2000mm | R

=
— -—
— - .
.
o
-

Top & Bottom Liquid
Support Tube Distribution Manifolds
vm‘v "A.A "
MUON CHAMDER
4720 mm from IP T ~——
5750 mm feom 1P —» Tk - MARTEI MARIETTA RIZRGY S¥oTIErG]
. Teell PROJECT: SSC GEM DETECTOR
FORWARD CALORIMETY

~ 6920 mm from 1P ——m J
ela=20

LIQUID SCINTILLATING Of 10N
SPAGUHETTI FCAL LAYOUT CONCEPYT

PRINT NO: D-FCLS-MD00I REVY

1. OILMPING SYSTEMIS N WN, : DRAWN BY) . M. CHAE 113
CIIECKED & ATROVED BY;




1861.37 mm

sce D-FCLS-TAMDOOS for detall

-
4720 mm from IP

\— see D-FCL3-TAMDOM for detall

1

2

3

4

5

6

7

RA

RD
**length A
**Length D
Length C

181.90
250.03
72528
4725.28
74.15

19209

25830
473028
4730.28

74.83

182.67
159.12
474528
4745.28
73.07

181.06
259.67
475528
475518
7522

253.17
359.13
4576 65
5576.65

104.04

253.55
359.67
6586.65
63586.65
104.19

253.59
359.73
6582.65
6587.65
104.24

25198
360.2
6597.65,
6597.65
104.3

4 The lengihs In the wable indicate the distance from the {nteraction point.

MARTTH HMARIETTA RUERGY OXSTRENMD

PROJECT: SSC GFM DETECTOR

FORWARD CALGRIMETER
LIQUID SCINTILLATING OFTION

SUPEQ TOWER OF MODULE 4

SPAGHETTI TOWER & MODULE DESICH

PRINT NO: 13-FCL.S.TAMDGO3

DRAWN BY1 8. M. CHAE

REYVI_
3

__CHECKED & AFTROVED B,




SPAGHETTICG. SUMMARY

SCINTILLATING LIQUID OPTION FORWARD CALORIMETER

COST
ENGR/DESIGN
M&S and PROC/FAB LABOR LABOR
INSPECTION MATERIAL ASSEMBLY | INSTALLATION| SUBTOTAL
CONSTRUCTION $2,481K $6,726K $1,179K $252K $10,638K
R&D $484K $582K $294K $0K $1,360K
ENGINEERING $271K $0K $0K $0K $271K
SUBTOTAL | $3,236K | $7,307K | $1,474K $252K | $12,269K
COST PERCENTAGE
R&D $1,360K 16.76%
EDIA $2,753K 30.59%
CONSTRUCTION| $8,111K
CONTINGENCY | $4,139K 38.11% |
TOTAL $16,362K “
| Page 1
] ]

4 ¢
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Compuled Paramiers for Complsts Detecior
Totals PreRadiator EM Cal Deteclor

Segments 85,824 3,051,328 3,138,052 each
Channels 31,134 31,136 82,272 oeach
Striplines 1,048 7,784 9,732 sach
Types of Stepline 42 42 04 each
Lenght of Stripline 5,357 M
Conneclions 281,697 3,814,160 4,005,857 Each
PreRadlator Plate Area 408 4244 4,652 MA2
Volume ol Lead 0.81 8.37 g6.98 M3

Welght ol Lead 6.95 72,25 70.20 Mt

Area of Copper 816 8,488 9,304 M2

Welght of Copper 0.18 1.82 2.10 Mt

Area of PrePreg 818 8,488 8,304 M2
Welght of PrePreg 0.42 4.33 4.74 Mt
Area of elecirodes 408 4,244 4,652 M2
Welght of Elecirodes 0.14 1.49 1.82 Mt
Volume of LKr 0.73 7.64 -8 M3

Welght of LKr 1.28 12.09 14.23 Mt

Area of Ampiifler 3t.14 48.51 79.85 M2
Aclive Materlal Welght 8.04 92.97 101.91 Mt

ORNL 4.15.92

¢ ( | { ¢ ¢



arallel Pla Kr Calorimeter

Catagory Distribution

Catagory Estimate  Fraction

Research & Devel. $2,005K 10.3%
EDIA $6,517K  23.9%
Construction $19,461K
Contingency $9,766K 38.2%
Total $37,750K

4/19/92



ili

Catagory Tot Uts SK/UNTIT Units Cost
1.00{Material
1.10|Skis S9OK
1.20|Silicon $S00K
1.30|MultiLaver Cards $338K
2.00{Readout
2.10|Electronics $1.10K
3.00]Structure
3.10|Cylinders 2 300.00 Each S600K
3.30|End Plates 4 100.00 Each SS00K
4.00|Thermal Cont $980K
5.00]Assembly
5.10]Ass & Test 4 0.045 MH/chip $2.761K
5.20|Tooling $S00K
6.00|Testing
6.10|Test Beam Labor $500K
§.20|Test Equip $250K
7.00{Transport. _ ___SIK
8.00|Installation
8.10Install. Labor 5550 0.045 MH $250K
8.20{Install, Equip $100K
Direct Cost $8,369K
EDIA 25% $2,092K
Base Cost $10,461K
Contingency 40% $4,184K
Subtotal $14,646K
R&D 11% $1,611K
TOTAL $16,257K

MARK RENNICH/OAK RIDGE NATIONAL LABORATORY/ 4-20-92




Structural Framing

A Joint / Cableway
Feedthru Difficulties Need to be Studied
3300
- — :‘!000 ‘
Y
- 2300 >
- 5300 -
GEM Detector .
BaFFiL.Ar Calorimeter

G.03.Cun7

Rennich



Detéctor Cal Electronics
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G.03.A58.015

GEM Configuration Option Study
Scintillating Calorimeter
Fixed Coil Version
ELEVATION VIEW

EBERLE/RENNICH



Elecironics

Temporary Rafl Struclure

GEM Configuration Option Study
Scintillating Calorimeter
Integral Calorimeter Version

G.01.AS.00010 EBERLE/RENNICH

Note: One Side Access Possible with Revised
Structural Arrangement '



Membrane Foundation
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Magnet/Membrane Installation Rail
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Calorimeter Struclure

LIl
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Calorimeter Support Membrane
Stablizer Jacks (2 Required)
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SRS . R k. |

et SRR TR SR e S B

GEM Detector .
Membrane Support System _
G.03.M.005 : Rennich
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Superconducting Super Collider Laboratory
2350 Beckleymeade Avenue, M.S.200!

Dallas TX 75237-39-46

(214) 7708-6018

Fax: (214) 708-0006

Physics Research Division

Engineering Resources Depariment

Memorandum
To: File
From: Ray Stefanski %07/
Subject: Shielding Requirements for Calibration Hall
Date: Wed, Apr 29, 1992 (revised) sorry for the error!

After our meeting on test beamns held in Fred's office on April 28, I consulted with Steve Butalla (at
Fermilab RSO) on their general shielding requirements for test beams. We recall that the DO and
CDF test.beam facilities at Fermilab have no concrete shielding associated with them. Areas that
require control for radiation safety are fenced, with access through interlocked gates. This is the
mode!l that we used in establishing parameters for the Calibration Hall at SSC, namely we did not
account for the possible use of shielding block in these beams.

Apparently, acceptable guidelines for radiation shielding have changed dramaticalily in the last two
years. Steve sited an incident where a long thin detector was inserted in a test beam, without going
through formal preparation, and raised radiation levels in the surrounding area by more that an order
of magnitude. It’s this kind of experience which has lead to a policy at Fermilab to provide shielding
to account for the worst event that could pessibly occur in the area. Administratve or bztier
controls are no longer acceptable.

Steve did a back of the envelope estimate of shielding requirements for operation in a hadron beam at
107 particles per second and a flat-top of one second in an eight second cycle time. He sited FNAL-
TM 1140 as a reference for shielding guidelines. ( I've asked the Fermilab library to send me a
copy.) The assumption is that one must provide shielding for a thin target, three interaction lengths in
length (one assumes that we achieve shower maximum in the target), and that the occupied area is
about six meters from beam center. The occupied area must be kept below 0.1 mrem/hr, which is
conservatively set below the guideline of 0.25 mrem/hr established by DOE for such areas. The
result is:

Two meters of concrete for 107 paricles per second,
One meter of concrete for 106 particles per second,
and 2.5 x 104 particles per second for no shielding.

One can assume thart radiation levels fall as the inverse of the square of the distance for distances
beyond six meters.

These requirements would apply to areas where people are expected to work for extended periods.
This would not apply to catwalks, for example, since occupancy would be for very short duration.
Shielding for the roof of the building would also probably not be required.

Xc: Jim Siegnst George Yost Harvey Lynch
John McGill Ron Hoffmann Bob Richardson
Tom Prosapio Fred Gilman Ed Verminski
Ronn Woolley Bob Lavelle Tom Murphy

Howard Fenker Frank Stocker Steve Butalla(FNAL)
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1. Introduction

Lawrence Livermore National Laboratory (LLNL) has been asked to provide R&D on
new methods of barium fluoride (BaF2) crystal surface preparation, as well as optical
coating methods to improve the efficiency of transport of scintillation light through the
crystal to the photodetector. The goal of the R&D is to identify a method (or methods) for
preparing the surface to eliminate the amorphous layer that has been found to be a product
of the surface preparation techniques used when the crystals are manufactured in China and
provide a crystalline surface free from oxygen and other contamination, with suitable flat-
ness for optical coating. UV reflective coatings have been identified that are suitable for the
wavelengths of the scintillation light (220 nm peak). The coating consists of a layer of
aluminum with a magnesium fluoride over-layer. This coating can be applied in a uniform
layer or in a graded layer, with reflectance varying as a function of position. It is uitimately
desired that the UV coating be applied with graded reflectance to lincarize the response of
the crystal along it length.

2. Bak, Surface preparation R&D at LLNL

A number of surface preparation technigues have been identified as potentially capable
of removing the amorphous layer and providing a clean crystalline layer for coating. The
R&D program, which began in early March, 1992 has explored the following surface

preparation techniques:
A. Polishing with diamond grits

BaF; crystals have been polished at LLNL using this standard technique for use
as laser windows. Up to this point it has 1ot been known how the crystal structure
is affected. Comparison of this polishing technique with diamond turning has
shown that diamond turned laser windows are less susceptible to damage in high
intensity laser beams. The process uses diamond impregnated pads and a BaF,
sample was polished 1o 20 angstrom RMS surface finish for study. This technique
is probably not suitable for large area polishing because edgas tend to be rounded
off and flatness over large areas is not easily achieved
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B. Ductile grinding

The process known as ductile grinding uses a specially prepared wheel coated
with diamond. The wheel is prepared so that it is flat to within 0.25 - 0.5 microns
and the part to be polished is translated across the surface of the rotating wheel. In
effect, this is using many diamond turning bits instead of one. The advantage of
this process is that it is very suitable for mass production polishing of large num-
bers of crystal surfaces. LLNL's ductile grinding system was dismantled last year
and I have requested that it be rebuilt. We do not have results from this process yet.

C. Diamond pitch lapping

This process uses specially prepared wheels coated with a synthetic pitch and
impregnated with diamond powder. The prepared wheel is rotated and the sample to
be polished is translated back and forth across the wheel as the wheel rotates. The
sample is usually immersed or heavily washed with a low viscosity silicon oil. We
have prepared a small sample using this technique and have measured a surface
finish of about 10 angstroms RMS. This technique has the advantage of being
simple to implement and can provide large area and large quantity polishing capa-
bility.

D. Diamond turning of the crystal surface

Diamond turning of crystal surfaces are routinely done at LLNL in support of
the Laser Program and other programs requiring precision optical surfaces. LLNL's
Large Optics Diamond Tuming Facility (LODTM) is capable of turning surfaces
with radii as large as 1.65 meters with a precision at the few angstrom level. Other
smalier diamond turning machines are available for preparing surfaces with similar
precisions.

We opted to perform “wet” diamond tumning using a highly purified water-free
lubricating fluid (Drakeol 7, a low viscosity poly-alpha olefin oil). Altemnative cut-
ting fluids include low viscosity silicone oil or 2 pure hydrocarbon such as hexanes.
Drakeol 7 is routinely used for diamond turning potassium di-hydrogen phosphate
crystals (KDP) for use as frequency doubling and tripling crystals for the Nova
laser at LLNL. The crystals are turned and then cleaned using a pure toluene soak
for 24 hours. A similar cleaning method was used on BaF crystals.

We achieved very successful results using small samples of BaF; crystals. In
one sample we were able to achieve a 6 angstrom RMS surface finish measured
over a 600 micron area of the crystal. We also observed that the surface finish de-
pended on the crystal lattice orientation. In one sample we observed markedly dif-
ferent surface finish quality when machining across a crystal grain boundary. The
surface finish on one side of the boundary was found to be 80 angstroms RMS
compared with 6 angstroms RMS immediately on the other side of the grain bound-
ary.
In summary BaF, appears to be a good material for diamond turning and other
diamond cutting processes, such as ductile grinding and diamond pellet lapping.



E. Argon Ion Beam Milling

Argon ion beams are also available for removing material from the crystal sur-
face. In this technique a beam of argon ions is directed onto the surface to be
milled, with the rate of material removal determined by the orientation of the crystal
surface with respect to the beam. For our studies the crystal was oniented at 45 de-
grees. Removal rates vary depending on the material but typically are a few microns
per minute to a few microns per hour. For our study a carbon mask about2cm x 1
cm was prepared to allow the crystal to be milled in a controlled manner. Carbon is
a good material for the mask because of its extremely low sputtering rate compared
to most materials.

We prepared three samples with measured removal depths of about 0.5, 1.0 and
2.0 microns. The samples took about 1/2 hour to remove 1 micron of material.
Surface quality was observed to be poor (compared to previously described sur-
faces finishes) and in general followed the original surface quality.

2. X-ray diffraction analysis and energy dispersive spectroscopy

Crystals were analyzed, before and after preparation using x-ray diffraction analysis,
and electron beam microprobe methods for the determination of structural and chemical
properties of the surface, respectively. We noticed that x-ray diffraction measurements
would show the BaF, lines slightly shifted and additional unidentified lines would also be
present. Unfortunately, we were unable to precisely identify the nature of these spurious
lines. Also, x-ray diffraction was unable to qualitatively distinguish between crystalline and
amorphous surfaces. We did closely examine the sample crystal that exhibited the two dif-
ferent surface finishes on diamond mming. We cleaved small samples from the two regions
and crushed them into a powder. There was no noticeable difference in the two materials.

We also performed energy dispersive spectroscopy (EDS) on a sample and found the
strongest signals due to strontium and iodine.

3. Rutherford Backscattering Analysis at Charles Evans & Associates

Three BaF3 samples were brought to Charles Evans and Associates for Rutherford
Backscattering (RBS) analysis. The samples were: 1) the diamond turned piece with the
two different surface finishes, 2) the diamond pad polished piece with the 20 angstrom sur-
face finish, and 3) the ion beam milled sample with the three different depths of cut.

Measurements were first made on sample 1) for the two different finish regions. No
channeling was observed on either area for this sample, leading us to believe that the crystal
surface on the sample is amorphous

The second sample measured was the ion milled sample 3) which had to be broken
down to a smaller size to fit in the RBS machine. We opted to look at the 2 micron depth
milled portion. In this measurement, strong channeling was observed, indicating a crys-
talline layer had been exposed. In addition RBS was performed across the sample on a
portion of original Chinese surface finish that was masked off. In this region no channeling
was observed.



The third sample measured was the standard polished sample 2). Measurements are still
in progress on this sample.

A fourth sample, prepared using the diamond pitch polishing method is being measured
at this time.

4. UV Reflective Coatings

LLNL regularly coats optics with both reflective and anti-reflective coatings.
Magnesium fluoride is typically used for anti-reflective coatings. The reflective coating to
be applied to the BaF; crystals consists of a thin layer of alurninum (about 500 angstroms)
with a MgF; over-layer. Reflective coatings of this type exhibit high reflectance, typically
75%-85% down to about 180 nm. In addition the coatings are robust. We utilize an elec-
tron beam evaporative coating system specifically designed for the purpose of laying down
MgF» and aluminum.

We have prepared two different samples for the purpose of characterizing the quality of
the reflecting coatings. One sample was a large piece of BaF3, left with the original Chinese
surface finish, about 6 inches long cut from a larger prepared crystal pair. The other sample
was a small BaF7 sample with a high quality surface finish for use a witness sample. This
witness sample was used to quantitatively characterize the quality of of the reflective coat-
ing.

Measurements were made on the witness sample for both front surface reflectivity and
back surface (through the BaF7) reflectivity. The front surface reflectivity was measured to
establish that the coating was of the proper quality. Results of the front surface measure-
ment confirmed that the coating was high quality, with a reflectivity of about 90% from 300
nm to about 220 nm followed by a gradual drop to about 86% at 190 nm. Back surface re-
flectivity showec that the reflectance was about 87% at 300 nm falling gradually to about
85% at 240 nm with a steeper fall to 74% at 190 nm. At 220 nm the reflectivity is about
81%.

A qualitative look at the large BaF; sample shows that surface finish plays an important
role in the uniformity of the coating. Pin hole sized areas were observed that were not
coated, presumably due to the observed scoring of the crystal surface during the Chinese
surface preparation.

These initial samples were coated with uniform reflectance coatings. Gradient coatings
will also be studied. Two alternative ways of performing gradient coatings exist. One in-
volves translating the sample past the source at a varying rate. The other involves placing
the sample at an angle with respect to an isotropic coating source. It is likely that the trans-
lation method will be adopted because it is suitable for long crystals and translation stages
are easily programmed for variable motion to allow the deposition of coatings with complex
reflection gradients.

The Monte Carlo program LTRANS3, developed at the Institute for Theoretical and
Experimental Physics (ITEP), Moscow is being adapted to model the BaF; crystal proper-
ties. This Monte Carlo code combines scintillation light emission, crystal transmission, ab-
sorption, wall effects and geometric ray tracing to allow an evaluation of the uniformity of
light transport to the end of the crystal as a function of position on scintillation light emis-
sion. This code can be used to estimate the correct gradient for the surface reflective coating
to provide the optimum uniformity along the crystal length.
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4. Conclusions

We have performed R&D on four different BaF> surface preparation techniques. All the
techniques have demonstrated surface finishes better than 20 angstroms RMS. Three tech-
niques: diamond turning, ductile grinding, and diamond pellet lapping hold promise for
mass production of large area high quality surface finishes on BaF2 crystals.
Unfortunately, RBS studies show that diamond turning and standard diamond polishing
does not provide a crystalline surface.

It is unknown at this time if the surface finish starts out crystalline and then becomes
amorphous over time. It has been suggested that Charles Evans & Associates perform an
RBS on a freshly cleaved BaF; sample and then follow up a few days later to see if a
change in the surface is evident.

Ion beam milling is effective for removing BaF2 surfaces down to a depth of a few mi-
crons/hour. In addition, there is an indication that ion milling provides a somewhat crys-
talline surface. Adapting this technique to mass production is feasible, but the quality of the
surface is only as good as the surface one starts with and, in general, is worse than sur-
faces prepared using various grinding or machining techniques.

Optical coatings for high reflectance in the UV (> 80% at 220 nm) appear to be achiev-
able using standard E-beam evaporative coater.. We also intend to study the effect of ap-
plying a hard silicon dioxide overcoat to protect the coatings from damage.

Finally, it is worth reiterating the previously mentioned work comparing laser damage
to optical windows prepared using standard polishing techniques and diamond turning. It is
likely that this is a surface or near-surface phenomena and is related to stress build-up in the
crystal during the polishing technique. Acid etching of surfaces reveal these stresses as mi-
cro-cracks, or pits, and acid etching is commonly used as an analytical tool in characteriz-
ing laser glass surfaces.

We are currently studying the character of BaF; surfaces using acid eiching. For ex-
ample, a sample of BaF2 was pitch polished to 10 angstroms RMS surface finish and then
one half was dipped into an acid solution consisting of 10% hydrofluoric acid, 5% hy-
drochloric acid and the remainder, water. After 5 minutes the sample was removed and the
surface was studied under an optical microscope and a profilometer. The optical observa-
tions show small linear scratches indicative of shear stress on the crystal, however the size
of the scratches indicates that the stress is small. Also, no pits are observable. The etched
surface shows a 35 angstrom RMS finish and appears identical to the adjacent un-etched
surface to the naked eye. We have sent this sample to Charles Evans and Associates for
RBS analysis of the two surface treatments.

Despite the lack of channeling observed in RBS measurements of some of the samples
we have prepared we feel that it is probably worthwhile to explore the radiation hardness of
Bak; crystals prepared using the various techniques described in this paper.



