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Abstract

We explain an analytic computation of the map and the lIsmearll for a
lattice composed of cells with random sextupole and octupole errors. as well
as systematic chromatic sextupoles. Results are presented for the 60° and 90°
lattices.

I. INTRODUCTION

It has often been stated that the SSC is largely dominated by errors.

This implies that an "ensemble of machines' l must be studied. In practice, one

generates the various random components of the lattice using a certain

algorithm. In the cases explored during the linear aperture studies, it

amounted to generat'; ng a sequence of random numbers. Hence emerges the

perennial question; do we have enough "seeds"? Are the "statistics" good

enough?

To bypass this problem, we decided to go ahead with a realistic analytical

computation which could be checked on selected cases by extensive tracking.'

The checks on extreme cases allowed us to extrapolate with confidence in all

the regions of interest.

In this report. we will document a technique most relevant to the study of

a machine made out of cells. The technique can be adapted to include an

actual insertion. However. for simplicity. we will ignore the existence of

anything but the cells.



II. THE MAP OF THE MACHINE WITH ERROR5 ONLY

Consider the i t h cell. It has a mapping Af;. In general. it can be

written as follows:

",I; = .s:I -1 exp{-l!.·l) eXP{f;) .s:I (2.la)
2 2

g = : g: :::: [g.] :::: -L .etc ... (2.lb)g

J = (J • J ) (2.lc)x y

Here. J and J are the action variables of the linear map. The operatorx y

f associated to f contains all the errors and the systematic non-linearities.

The map sv' is a canonical transformation bringing the systematic linear
2

part of .'it i in Floquet variables. This is described in 55C-29.30 and 78.

We will follow here the notation of 55C-78.

The full map of the machine is simply the product of the individual maps.

50. assuming N cells. one gets:

N
,If:::: n .~A" i = vllf1 ••• .j(N

i=l

= .J,f' -1 exp( -Nl!..J) exp{:f :) ... exp(:f
N

: ) sv
2
'

2 - 1
(2.2a)

(2.2b)

Obviously. we must have Np. = 2.0 .. To proceed further. we can combine the1 ,

exponents fK into a single grand exponent. Doing this to second order in fK.

gives the result:

.it :: (2.3a)

v :: 1 I [fK, fJ.l
2 k<j

2

(2.3b)

(2.3c)



Equation (2.3) gives the final map .~ to second order in t. Each

individual polynomial f K is a function of the particular errors in the Kt h

cell. Hence f K is not a constant. It would be nice, if we had an expression

of the fK in terms of the errors in the cells. Such an expression would be

functionally invariant cell to cell. ~

Consider the error vector vK = (random

multipole strengths in the Kth cell), we can rewrite fK as follows:

~ iii' i j
fK = f(VK) = a,b~c.d(rabCd VK + 6a~cd VK VK) labcd> + ... (2.4a)

(2.4b)

The eigenvectors labcd> of j are defined as in SSC-78. The matrix quantities

rand 6 are not error-dependent. There are the responses of the lattice to

the multi pole excitations vector VK'
Since our problem has been formulated through the use of mappings. all the

unnecessary infonmation has been integrated out. The quantities rand 6

can be computed with the help of a standard tracking code equipped with a map

producting algorithm. (MARYLIE, RACETRACK or TEAPOT). Basically, one

computes the map of a single cell (dim VK) times for the computation of r

and (dim VK) x (dim VK - 1)

2 for 6

The maps are fed into the analysis subroutines of MARYLIE which extract the

matrices rand A.

In the next section, we compute the smear to first order in V.
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III. COMPUTATION OF THE INVARIANTS TO FIRST ORDER IN V

Following the results of Appendix A, we compute the canonical transforma

tion which removes the non-secular terms in W:

we get for G:

~= s(-1 exp(-Np.j) exp(£W),W
.W = exp(£G) .

Splitting Win two parts,

W = I A labcd>
R Icl+ldl~O abcd

G = 1 W
1 - exp (Nl!.j) R

= L A • 1 Iabcd> .
Icl+ldl~O abcd 1 - eXP(-l(cpx+dpy)N)

(3.1a)
(3.1b)

(3.2a)

(3.2b)

(3.3)

According to Appendix A, we can write the old invariants J in terms of the new

invariants I:

~ =! + £[G(t,!), 1] + ... (3.4)

In (3.4), G is a function of ! and t as defined by (A3) and (A4). For

example, we get for 6J (=J -I ):x x x

6J = £ L A
x lel+ldl~O abed

1 labcd> (3.5)

2Now, we must compute 6J and average of thex

2

<6J2> = L
X 2

4

phases ~x and wy :

a+a' b+b l

1-2- 1-2-
x y

(3.6)



Specializing to equal

2

<AJ 2> = L-
X 2

S = 3

S = 4

emittance (Ix = Iy = I), we simplify (3.6):

Aabcd A:'b'cd c2 IS
I 1 - COS({C~x+d~y)N)

sextupo1e
octupo1e .

(3.7a)

(3.7b)

Finally, we must average the expression (3.7a) over the VK's. The result is

in the lowest order in multi pole strengths:

(3.B)

In the case of uncorre1ated cells (Nbined N or unmeasured). the seed average ;s

given by:

(3.9)

Including random sextupoles and octupoles in (3.7). we now have an expression

for <AJ=> which has two terms:

(3.10)

The smear. which is the fluctuation of the amplitude J~. is obtained as

follows:

~

(3 = maximum (3 •

~4

a (3.lla)

(3.11b)

The linear aperture is obtained by the equations:

Sx(ax) = r I r = 6.4%

S (a ) = r
y y

5

(3.l2)



The minimum of the couple (ax. ay) is the linear aperture. The value of

r(=6.4%) was empirically determined to match the peak to peak definition used

in tracking studies.
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IV. INCLUSION OF CHROMATIC SEXTUPOLES

This was done by a semi-analytical method. A ring with no-errors was

produced. The chromaticity sextupole were ajusted at their proper value.

Then a map was produced and analyzed in a F10quet representation. With this

information. we augmented equation (3.10) as follows:

zero if

J 2 (ax + aX) IS (aX aX) I·<6 X> = s c + 0 + CC •

x xThe Quantity Be is linear in chromatic sextupo1e strength and Bee is

quadratic. B~c turned out to be main contributor. Notice that B~ is

the machine is a perfect achromat. Here also we neglected cross-terms

involving a random sextupo1e and a chromatic sextupole.

V. SCALING WITH CELL LENGTH

(4.1)

The purpose of this smear calculation was to compare cell lengths. We had

4 cases to discuss. These were the 4. 5. 6 and 7 magnets per half cell. This

is a lot of tedious work especially if cross terms are to be estimated.

Therefore we computed only the 4 and 7 magnet cases and used approximate

scaling laws to generate any other length. In theory. we needed only one

length. however the two lengths allowed us to check the validity of our crude

scaling laws.

These laws are summarized:
~ A

~I = P 0 n l = n 0 2 (S.la)

t aX'y 3aX• y
= (S.lb)s s a

BX' y' aX•Y 4 (5.1c)= a0 0

I BX'y / 3BX• Y = (S.ld)c c 0

I aX•Y/ 0 8aX' Y = (S.le)cc cc
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(5. If)

The equations in (5.1) allowed us to give a continuous plot of linear aperture

versus cell length. These are given in graph (S.2) and (5.3) .

./

Fig.(5.2)
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VI. OFF-MOMENTUM LINEAR APERTURE

In this calculation, we do not claim exactness. All that was done, was to

compute the feed-down effect on (a2, b2, a3, b3) on the basis of an average

dispersion number. Using (S.la), we can scale" for different cell length.

The feed-down on the rms-values obeys that following formulas:

(6.la)

(6.lb)

Similar expressions apply for the erect multipoles.

1 For examp1e, Beat Leemann found the following results by tracking:

Ha~nets/ Phase Coil ATRACKINS(IlITI) ATHEORY(nvn)Ha f Cell Advance Diameter (em)

7 60° 4 8.06 ± 0.4 8.4

4 90° 4 10.7 ± 0.4 10.5

6 90° 4 10.65 ± 0.6 10.5

6 90° 6 17.5±0.75 17.1
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APPENDIX A. PROOF OF THE EQUIVALENCE OF TIME AND PHASE AVERAGE
TO ALL ORDER IN THE PERTURBATION

Consider a map .ft. We assume that .ft is integrable. That is:

where

3...w such that,w'.A"s'-1 = exp[-p.J+F(J)]

[J. t 4>.] ::: 6 •.•
1 J lJ

~

J = :J: = -LJ = [J,]

(1)

( 2)

Using (1), we can construct n-invariants of the map:

Canonically conjugate to Ii' we can define new phases .i:

The "smear" is by definition the average oscillation of J. under repeated
1

application of Aft:

We first compute.i'mJi.

m.1 -1 ~ ~ m· i
.It J

i
::: ,Qj exp[-p.J+F(J)] ,w J

::: exp[-m{p.I-F(I)}][Ii+G;(I,.)]

.vlli

aF= Ii + Gi[I ••+m{p-ar)]

::: Ii + Gi(I,.+mw(I)]

10

(3)

(4)

( 5)

(6)



If ~ (I) has irrational and incommensurate components:

1im
M-.oo

1 M
- I
M m=1.

211' 211'

I ... I d~ ••• d~
1 n

o 0

(7)

Hence the phase average using the sf-script (Analytical) and the numerical

average over turns must be equivalent.

17835
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Appendix B: Cell used in the study. (provided by D. Johnson)

qf/2 00 os sf Nb*( b 0) qd 00 sd os Nb*( b 0) qf/2

Quadrupole: Lq= variable

Sextupole : ls= 0

Drifts:

Dipole:

o = .sm

os= 2.0 m

00-3.98m

4>=16.54m B=6.5997 T

B'= 212 TIm

B"LJBp= variable*

Bp=66712.8 Tm

Nb 4 7

600
lqI2 2.02m 1.22m

leen 158.76m 259.61m

900
lq!2 2.82m 1.72m

leen 161.96m 261.60m

"Provided by Beat Leemann numerical studies.
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