SSC-86

SSC-86

PRRETRILEI,

TV,
-,

A e,

ks

Energy Loss of Bunched Beams
in RF Cavities

M. Furman, H. Lee, and B. Zotter
SSC Central Design Group

August 1986




§SC-86

ENERGY LOSS OF BUNCHED BEAMS IN RF CAVITIES*

M. Furman, H. Lee, and B. Zotter
SSC Central Designh Group

c/o0 Lawrence Berkeley Laboratory
Berkeley, California 94720

August 1986

x0perated by Universities Research Association, Inc. for the U. S, Department
of Energy



SSC-86
ENERGY LOSS OF BUNCHED BEAMS IN RF CAVITLES
M. Furman, H. Lee, and B. Zotter
SSC Central Design Group
August 1986
ABSTRACT

Bunched, charged particle beams lose energy when they traverse cavities or
other structures which can be described by resonator impedances. The
calculation of this loss is extended to arbitrary quality factors by using
known approximations for the sums of infinite series. For low Q-values, these
expressions agree with those obtained by replacing the sums by integrals. The

loss power in SSC is calculated using these expressions.



1. Introduction

The calculation of the energy loss of a Gaussian bunch transversit
resonator impedance has recently been refined in a number of SSC repo
In a circular machine, the energy loss per revolution or loss power ot

in general is given by

- 5 2
loss~ 2 ReZ(Dwo)II (pw )17,

p=—¢>
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where w,= 2¢/T is the (circular) revolution frequency, and T(w) the fc

transform of the beam current

Tw) =1 ] 1(t)e Iotqt |

Since the current in a bunch must vanish outside its rf bucket, th
of integration can be extended to + =.

Assuming a Gaussian bunch, the current can be written

-~ tz
I (t) =1 exp(- —3) ,
h( ) p( 20’)
where T = IH(0) is the peak current, and o the rms bunch length in tim

(c = oz/¢c). The average bunch current is
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The Fourier transform is obtained from Eq. (2) with extended 1imits
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where we have introduced the average bunch current defined in Eq. (4). The

loss power for a (single) Gaussian bunch thus is given by

[--]

Ploss © 1; I ReZ(pw ) exp(—p’u:a’ . (6)
p=-¢)

For large accelerators with short bunches, the value of wo = oz/radius can

be very small and the exponential factor then falls off only for rather high

values of the summation index p. If the impedance varies slowly, one can

approximate the sum by an integral, but for impedances with narrow peaks this

is not permissible.

2. Multibunch Case

Most accelerators are operated with more than one bunch circulating, and
for the SSC there are even some 17,000 bunches foreseen. Usually one atiempts
10 have equally spaced identical bunches, but sometimes gaps are left in an
otherwise uniform bunch train, or a bunch-to-bunch spread in population is
introduced on purpose in order to damp coherent oscillations. We shall
therefore treat the general case first and specialize to equally spaced
identical bunches only in the last stage.

Equations (1) and (2) are correct for any current distribution. We study

a current distributed over M - in general different - Gaussian bunches. Each

bunch is characterized by a peak curreni ik’ an rms bunch-length o, and a

position ty

Mo (t-t,)*
I(t) = } Ikexp - ("
k=1 20;

The average current I° is found to be the sum of the average currents in each

bunch

Lk =1y - — 1 (8)



which is seen to depend only on the product of the peak current and t

width.
The Fourier transform of Eq. (7) is found from Eq. {2), with 1imi

extended to t =

2
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Since Tkak = Ipg T/v2r, we can simplify this as

2 2
- M w oy .
I(w) = % Ibkexp(— < - Jutk)
k=1
M _ -jmtk
= 3 L (w) e '
k=1 bk

i.e., the Fourier transform of the total beam current is the sum of tr
Fourier transforms of each bunch, multiplied by phase factors dependir
their positions tk.

From now on we assume that all bunches are identical (Ibk = Ih' %
and hence Tpx = Tp) and equally spaced (ty = kT/M, with k = 1,2,...M).

Then jkaT



The sum over the p-th power of all n-th roots of unity vanishes except

when p is a multiple of M, then each term is one and the sum thus simply M.

We thus have T(puo) = 0 except for p = nM, where n is an integer,
I(nnmo) = Mlb(nnuo) . (13)

f.e., only multiples of the "bunch-frequency" W, = Hmo appear in the
spectrum. The power loss of M equally spaced, identical bunches can thus be
written as © ~

P =M I ReZ(pub)IIb(pmb)lz . (14)

loss p=—o
However, since the sum is only over each M-th muitiple of © it will be
M times smaller than the sum over all lines for slowly varying impedances. We

shall therefore split the factor M* and write the power loss as

2
Ploss =M Z]ossIb ) (1%)
The effective loss impedance for Gaussian bunches is defined by
«
Zyoss = M pzﬂm ReZ(pmb)exp[d(pmba)zl (16)

and can be easily generalized to other distribution functions.

3. Resonator Impedance

The interaction of a charged particle beam with its surroundings is .
usually described by impedances. 1In accelerators or storage rings, the major
contributors to the overall impedance are often the rf cavities or other
unavoidable cross-section variations of the vacuum chamber. These can be
approximated quite well by a number of (parallel) resonator impedances, each
characterized by a resonant freguency mr/21, a shunt impedance R, and a
quality factor § (or, alternatively, by the bandwidth Aw = ”r/Q)‘ The
J

complex impedance (assuming a time variation e wt) can be written



{w) = R m
1+30 (- =D
r

1t is often more convenient to expand this expression by partial fract

decomposition R w w
2(e) = 35 (oo -~ o)
Js w e ’
where S = /40’—1
d °r
an = L (3
©, 20 %S

are the (complex) poles of the impedance.
To calculate the power loss, we need the impedance evaluated at mu

of the bunch frequency W, = Mw

o

Z(Du) =..£(“_1__."L)
b js p—vl p—v2
® p
. r
with v, = —;;3 = 3g(3S),
ﬁ)r (Dr
where pr = ;; = Vo
o

is the ratio of resonant and bunch frequencies.
In order to evaluate Eq. (16) for the loss impedance, we need the

infinite series of the form

Fla,v) = 3§ £xRi=8 .
p=—

where a = @O is real, but v in general complex.



This series converges only very slowly for small values of a, but then it
can be summed analytically to very high accuracy.® Indeed, the first
neglected term in the derivation is of the order of exp(-x*/a®), which for
a = 1/10 approaches e *°°° o 107 *°°!

This sum is given by the expression

F{a,v) = j» {w(av) - e_azvz[l—j.cot (wv )]}, {25)
where w(z) is the complex error function.® We thus obtain the general
expression for the loss impedance of k equally spaced, identical Gaussian
bunches traversing a resonator with any value of @ Rs, Q

2
xR Te,
L10ss = w oS fa, [W(a ) ~e (1-j.cot w )]

-u:
-, [wa) e ° (1-j.cot wv )]} . (26)
In Eq. (26), we have introduced

w o

a = av =-2-—5-(jtS). (21)

1,2 1,2

which are independent of the number of bunches, which appears only in the

arguments LA of the cotangent.

1

4. Broad-band Resonator

For single bunches it is often advantageous to replace the large number of
(sharp) resonances of real structures by a single one with broad bandwidth.
These impedances are equivalent if they have the same wake potential over the

length of the bunch.



A broad bandwidth corresponds to a small quality factor. wWhen §

compared to P = wr/wb, the imaginary part of the poles Vo becomes

large. Since the cotangent of complex argument can be written

2ix .
2ix .

cot(x+jy) = —j &

1-e
one finds cot z » =j for y >> 1. Then the expression in square brack
Eq. (25) vanishes and one gets simply

F(a,v) = jwv w(av)
which is exactly the same result as that obtained when the infinite s
replaced by an integral.?
The broad-band loss-impedance becomes to a very good approximatic
Z?ﬁss - 3355 [ W} - o wla)]

and does thus not depend on the number of bunches.*

i) For Q > 1/2, the quantity S = v4Q?-1 is real and hence v, = -y, *.

Since furthermore w(-z*) = w*(z), we find that the loss impedance is

resistive

88 2wR

z1oss (@>1/2) = mooS

Re[“1w(°1)]

ii) For Q < 1/2, S is imaginary and so is a = j.y1 r with

W J

v =55 (1 ¢ v1-40%)

* This justifies including the factor M in the definition of the loss
impedance Eq. (16)



The complex error function of imaginary argument is purely real’)

2
w(iy) = ¢¥ erfc (y) (33)

where erfc(y) = 1 - erf{y) is the "complementary error function." Then the
loss impedance is again resistive

2 2

-}
xR <

88 [a e erfc(a ) - « & %erfc(a )] (34)
w o v1-4Q* * v =

Z]oss

(Q <1/72) =

and is also independent of the number of bunches.

jii) In the limit Q » 1/2, both expressions (31) and (34) become
indeterminate. Taking the 1imit ¢ » 0 for Q = 1/2 £ ¢ in Eqs. (31) or
(34) yields

88

zloss

2
(Q = 1/2) = 2uR[(142a%)e® erfc(a) - 22 ] , (35)

where o = w. o for short.

5. Narrow-band Resonators

For resonances with bandwidths of the order of or smaller than the bunch
frequency, it is no longer permitted to replace the sum by an integral. The
resonances of (metallic) cavities usually have quality factors of some tens of
thousands, and the situation Q 2 pp = wpr/Mw, is often encountered. Sincé

for all Q > 1/2: v, = -v,*, we can rewrite Eq. (26) in any case as

2

R Y
Zyoss = 5555 Re {a [w(a )-e *(1-j.cot wv )1} . (36)



The loss impedance is again purely resistive, but now the cotangent
become important. Since its argument is complex it will always rem:
as can be seen from another form of the cotangent of a complex vari:

1 sin2x - j sinh 2y

cot {(x + jy) =

n

sin®x + sinh?y
where the denominator is a sum of squares which does not vanish for

However, the loss impedance will depend strongly on the resonatc
frequency, which is often varying with temperature and/or small defc
of the vacuum chamber wall. In this case it is indicated to search
maximum loss impedance, which is easily done numerically by changinc

resonant frequency in small steps.

6. Analytic Approximations

For short bunches such that l“; 2| = w0 <L 1, we can approximat

complex error function by the lowest terms of its power series expan

wiz) =~ 1 - 2z _ 22 +

Vo

For a broad-band resonator impedance with Q > 1/2, one obtains t

Eq. (31)

G
BB r
z —_ U S
w

R
loss ~ o Q v 0
As can be shown from Eq. (34), this expression actually holds al

Q < 1/2'1f the stronger condition .o << Q is fulfilled.
For very long bunches, on the other hand, for which Ia1 aI = w0
we can use the lowest terms of the asymptotic expansion of the compl:

function®

i0



w(z) = —:i— [+ A + 3 +..] (40)

ve Z 222 424
to obtain from Eq. (31)
BB _vi % R R RS
loss 2 (wo)” 0 [ (0.9) (-5 + -1 (41)

The loss impedance in seen to decrease with the cube of the bunch length

when it is larger than the (reduced) wavelength of the resonator (An/2x).

Already for wpo = 1, the long bunch expression is a factor 2vxQ smaller than
the short bunch 1imit: The power loss of long bunches is thus seen to be
considerably less than for short ones, and excessive power loss in

accelerators can be alleviated by lengthening the bunches.

7. Energy Loss of SSC Bunches

According to present plans for the SSC, almost every sixth rf bucket will
be filled with bunches from the HEB booster. There will be 15 batches of 1130
bunches each, separated by 14 small gaps of 10 empty locations and a longer
one of 190 empty locations for the abort kicker. A total of 16950 bunches
will thus occupy most of the 17280 possible places. The spectrum will
therefore contain mainly multiples of the bunch frequency (62.5 MHz), while
the revolution frequency harmonics will stay below the 1% level (see Appendix
for the evolution of the bunch spectrum during injection).

At top energy (20 TeV), the bunch length is expected to be 7.3 cm rms for
the rf voltage of 20 MV at 375 MHz. During acceleration, the bunches are

sTightly shorter but should remain above 6 tm rms.

11



The impedances are less well known. In a circular accelerator, tt
contributors to energy loss are usually the rf cavities. There are a
40 cells foreseen for SSC, with a design to be scaled down from the 3f
PEP cavities.® The higher mode frequencies should scale approximately
proportion to the fundamental frequency, while the R/Q values remain i
if the geometric proportions are not changed. The Q-values should cha
the square root of the frequencies, which is close enough to unity to
neglected.

However', the exact freguencies of the higher modes will be spread
certain range due to construction tolerances and temperature differenc
the 40 cells. Assuming a variation of 5.10™*, the frequency spread oc
bandwidth corresponding to a resonance with a quality factor of 2000.
unloaded quality factor of the fundamental resonance is about 40,000,
Q-values of the higher modes will be reduced by the same factor 20.

This reduction does not apply to the fundamental resonance, howeve
must be kept fixed by tuners. The power loss into the fundamental mod
however, is taken into account as “beam loading" in the design of the
system, and thus will be excluded here.

The power loss of the strongest higher modes of the scaled rf cavi
shown in Figs. 1-6 as a function of detuning over a full bunch-frequent
interval. Figure 7 shows the sum over all 18 higher (longitudinal) moc
trapped in the cavity (assuming a cut-off frequency corresponding to a
proportionally scaled beam pipe). As can be seen from the figures, the

loss is extremely low near the center frequencies and becomes large on)

12



detuning of nearly 30 MHz. At the peak of the second harmonic, the loss may
increase as much as 4 orders of magnitude. This has to be taken into account
in the detailed design of the rf cavities which should avoid higher modes at
multiples of the bunch frequency.

puring injection, only part of the circumference of the accelerator is
filled with bunches, and the revolution frequency harmonics will be stronger.
This is compensated partially by the reduced current, but because of the
narrow spacing of lines there will be a much higher probability of falling
exactly onto one or more resonances. The power loss during injection could
thus be larger than at full current, but would be limited to a period less
than the injecticn time of some 20 minutes. The evolution of the loss during

injection is discussed in the Appendix.

B. Conclusions

The energy loss of bunches in the SSC traversing the rf cavities is
strongly reduced by the fact that the spectrum of a train of evenly spaced,
identical bunches contains only multiples of the bunch frequency. OQOue to the
large number of bunches in the SSC, the bunch frequency is very high (62.5
MHz). Then all higher modes in the rf cavities could be sufficiently far from
integer multiples of the bunch frequency that the energy loss is strongly
reduced over that calculated by a simple broad-band model. However, this must
be taken into account in the design of the rf cavities, as the resonant Toss
at the shortest higher modes may be larger by up to 4 orders of magnitude,

surpassing by far the loss calculated with the broad-band model.

13



During injection, the circumference of the machine is only fillt
partially, and the revolution frequency harmonics are excited more :
The energy loss may thus be increased over the injection period, bui

limited as also the current is only building up to its full value.
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Appendix: Energy Loss During Injection

Injection into the SSC is presently planned in "box-car* fashion
N = 15 batches of n = 1130 bunches each from the HEB booster. Ten si
of 10 empty places, and a bigger one of 190 are left between those b
total of 16950 bunches is thus injected into the M = 17280 possible
{corresponding to each sixth rf bucket). For simplicity, we shall n
this small difference and assume that each batch contains n = M/N =
bunches.

We also assume that the batches are injected from the booster at
time-intervals AT. Then the total energy loss during injection is oi

by summing over all states containing from one to N adjacent batches

a1 N2 % 2
AE = - 2 Re L(pwy) 11 (pw )",
k=1 p=-=
nk
where T (o) =T () I engT/H
k B g

i) Summing this geometric series for "non-harmonics” p(modM) = O yis

sin®(ankp/M)

1T (pe )) *= T2(pw.)
k™o b*™o sin?(«p/M)

Inverting the order of summation, we obtain the contribution of the

lines between bunch-frequency harmonics

12(pa_) N
' Re Z(pw,) b 0f 5 sin?(ankp/M)
- sin®(wp/M) k=1

ap = AL
1

=z
8

p

where }' means that multiples of M are excluded from the sum.
Using the identity sin®ak = (1-cos2ak)/2, we find that the const:

contributes N/2 to the sum over k, while the p-dependent term vanishe

22



exactly. Thus

® 2(pw )
’E, = %1 I Re Z(po,) —9—;—9~——— (A5)
p=— sin“(wp/M)

ii) For harmonics of the bunch frequency @ = Hwo, all the terms in Eq. (A2)

are in phase and simply add up, so

and I, (Pap) = nkI(puy) (A6)
N T H i N 2
LI (o)™ = I (po)n” Ik (A7)
k=t kP BT

With the identity
N

one finds the "harmonic" contribution {(with M = Nn) to the energy loss

aE = A% (Men)(2Men) I Re Z(pwy) Tp (poy) - (A9)

p=w
Adding the two contributions (AS) and (A9), one obtains the total energy loss

during injection

(-]
AE = AT by Re Z(pw, ) ’i” (pw, ) (M+n) (2M+n)
2 p=— b b b 3
(A10)
M-1 ReZ(pw, + Qw ) 1. (pw, + qu_)
.3 b o’ b b (5]
gq=1 sin®(wgq/M)

where we have regrouped the "non-harmonic* terms. The denominator in that
latter part is small only either for q << M or for M-q << M, where the sine
can be replaced by its argument. The non-harmonic terms thus are large only

near the bunch-frequency harmonics.
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If the impedance does not vary rapidly (see below), we can replace
T1ast term by [ﬁ;l]
n o 2 27
aE, = AT =2 ¥ Z(pwy) 1, (pw) I =
T p=—w g=1 q

Since M is much larger than unity, we can replace the sum over g by tf
function Z(2) = =?%/6.

The total energy loss becomes then approximately

ATM® o -
8E = 53— F I ReZ (pa,) 1; (Pop)

p=-e

where n n
F=(1+ ﬁ)(] + Eﬁ) +1/2 .

The first term is the contribution of the bunch-frequency harmonics an
close to unity for M >> n. The contribution of the "non-harmonic" lin
about one half and is thus a non-neqligible part of the losses during
injection even for the case of a "slowly" varying impedance {the bunch
always shorter than a bucket, so the single-bunch spectrum Tb(u) will

significantly over a bunch-frequency interval.

For resonant impedances which are much narrower than the width of
"non-harmonic® tails of the spectrum, i.e., a few times a revolution
frequency, this approximation will no longer hold. The "non-harmonic"
contribution could then become much larger if a spectral line just fal
a resonant peak.

For the rf cavity of the SSC, higher modes have frequencies betwee
MHz and about 2GHz, and Q values of the order of 5 x 10°. Hence their
width is between 10 and 40 kHz, corresponding to 3 to 12 times the rev

frequency. The assumption of "slowly varying" impedance is thus only
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marginally fulfilled. However, the G-values have been reduced by a factor of
20 to approximate the frequency spread’ of the rf cavity cells. Under this
assumption, the resonances are wide enough for Eq. (A-12) to hold, and the

energy loss during injection is only about half of the energy loss of the

machine with all bunches filled.
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