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ABSTRACT

Bunched. charged particle beams lose energy when they traverse cavities or

other structures which can be described by resonator impedances. The

calculation of this loss is extended to arbitrary quality factors by using

known approximations for the sums of infinite series. For low Q-va1ues. these

expressions agree with those obtained by replacing the sums by integrals. The

loss power in SSC is calculated using these expressions.



1. Introduction

The calculation of the energy loss of a Gaussian bunch transversir

resonator impedance has recently been refined in a number of sse repol

In a circular machine. the energy loss per revolution or loss power 01

in general is given by

CD
- 2

Ploss= p~~ ReZ(p~o)II (p~o)1 •

where (,)0= 2./T ;s the (circular) revolution frequency. and I(~) the Fe

transform of the beam current

_ 1 +T/2
I(~) = - I

T -T/2

Since the current in a bunch must vanish outside its rf bucket. th

of integration can be extended to ± CD.

Assuming a Gaussian bunch. the current can be written

,. e
I (t) = I exp(- ---2) •

b 20

where I = Ib(O) is the peak current. and d the rms bunch length in tim

(0 : az/c). The average bunch current is

= 1 T~2 I (t)dt _ I 012.
Ib T -T/2 b - T

The Fourier transform is obtained from Eq. (2) with extended limits

2 2
to) a

=I.e--2­
b

2



where we have introduced the average bunch current defined in Eq. (4). The

loss power for a (single) Gaussian bunch thus is given by

00

Ploss ~ Ib I ReZ(pw
o

) exp(-p2w:~2).
p=-

(6)

For large accelerators with short bunches, the value of w d ~ d /radius can
o z

be very small and the exponential factor then falls off only for rather high

values of the summation index p. If the impedance varies slowly, one can

approximate the sum by an integral, but for impedances with narrow peaks this

is not permissible.

2. Multibunch Case

Most accelerators are operated with more than one bunch circulating, and

for the sse there are even some 11,000 bunches foreseen. Usually one attempts

to have equally spaced identical bunches, but sometimes gaps are left in an

otherwise uniform bunch train. or a bunch-to-bunch spread in population is

introduced on purpose in order to damp coherent oscillations. We shall

therefore treat the general case first and specialize to equally spaced

identical bunches only in the last stage.

Equations (1) and (2) are correct for any current distribution. We study

a current distributed over M- in general different - Gaussian bunches. Each

....
bunch is characterized by a peak current lk' an rms bunch-length dk. and a

position tk

(7)

The average current I is found to be the sum of the average currents in each
o

bunch
d
k
V2...

T

3

(8)



which is seen to depend only on the product of the peak current and t

width.

The Fourier transform of EQ. (7) is found from EQ. (2), with limi

extended to ± CD

_ (t-t
k

) 2

M 2

1
CD 20'k e-jwtdti'(w)

,.,
= T I Ik I e

k=l -
2 2

M
w O'k

-jwt---,f2.
I

... 2 e k=- IkO'k eT k=1

...
Since IkO'k = Ibk T/'I/21l'. we can simplify this as

H
I(w) = I

k=l

H
= I

k=1

i.e .• the Fourier transform of the total beam current is the sum of tt

Fourier transforms of each bunch, multiplied by phase factors dependir

their positions t
k

•

From now on we assume that all bunches are identical (Ibk = lb' O'k

and hence Ibk = Ib) and equally spaced (tk = kT/H, with k = 1.2, •.• H).

Then
H
I

k=l

jkwT
- H

e

and in particular for w = ~0
p -

H e-2,"jpk/HI(pw ) Ib(P(o)o) I
0 k=l
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The sum over the p-th power of all n-th roots of unity vanishes except

when p is a multiple of M. then each term is one and the sum thus simply M.

-We thus have l(pwo) = 0 except for p = nM, where n is an integer.

I(n~ ) = Mib(n~ ) ,o 0
(13)

i.e •• only multiples of the "bunch-frequency· ~b =~o appear in the

spectrum. The power loss of Mequally spaced. identical bunches can thus be

written as ~

Ploss =M
2 I ReZ(p~b)IIb(p~b)12.
p=~

(14)

However. since the sum is only over each M-th multiple of ~ • it will be
o

Mtimes smaller than the sum over all lines for slowly varying impedances. We

shall therefore split the factor M2 and write the power loss as

The effective loss impedance for Gaussian bunches is defined by

~

Z'oss =H I ReZ(p~b)exP(-(p~ba)2]
p=~

and can be easily generalized to other distribution functions.

3. Resonator Impedance

The interaction of a charged particle beam with its surroundings is

(15)

(16)

usually described by impedances. In accelerators or storage rings, the major

contributors to the overall impedance are often the rf cavities or other

unavoidable cross-section variations of the vacuum chamber. These can be

approximated quite well by a number of (parallel) resonator impedances, each

characterized by a resonant frequency ~ 12_, a shunt impedance R, and a
r

quality factor Q (or. alternatively, by the bandwidth A~ = ~r/Q). The

complex impedance (assuming a time variation ej~t) can be written

s



1 + jQ

R

It is often more convenient to expand this expression by partial fract

decomposition

where

and

w w
l(w) R (_1 2)

= j S w--w w--w
1 2

w
w = 2Qr (j ± S)

1.2

are the (complex) poles of the impedance.

To calculate the power loss. we need the impedance evaluated at mu

of the bunch frequency Ca)b = Hw
o

with V
1,2

where

;s the ratio of resonant and bunch frequencies.

In order to evaluate Eq. (1&) for the loss impedance. we need the'

infinite series of the form

F(a,v) = I
p=-

2 2exp(-a p )
p - v

where a = wba is real, but u in general complex.



This series converges only very slowly for small values of a, but then it

can be summed analytically to very high accuracy.4 Indeed, the first

neglected term in the derivation is of the order of exp{_~2/a2), which for

a = 1110 approaches e-1 0 0 0 ~ la-coo!

This sum is given by the expression

a2 :I
F(a,v) = jw (w(av) - e- v [l-j.cot (wv »)} ,

where w(z) is the complex error function.- We thus obtain the general

expression for the loss impedance of k equally spaced, identical Gaussian

bunches traversing a resonator with any value of ~r' Rs ' Q

(25)

{~ [w(~) - e
1 1

2
-~

1 (1-j.cot ...v )]
1

2
-012

-a [w(~) - e (l-j.cot wv )]} . (26)
2 2 2

In Eq. (26), we have introduced

~ cs
~ = av =-f-{j±S).

1.2 1,2 2Q

which are independent of the number of bunches. which appears only in the

arguments.v of the cotangent.
1,2

4. Broad-band Resonator

(27)

For single bunches it is often advantageous to replace the large number of

(sharp) resonances of real structures by a single one with broad bandwidth.

These impedances are equivalent if they have the same wake potential over the

length of the bunch.

1



A broad bandwidth corresponds to a small quality factor. When Q

compared to p = ~ /~b' the imaginary part of the poles u becomesr r 1.2

large. Since the cotangent of complex argument can be written

cot(x+jy) = -j 2jx
l-e

-2ye
-2ye

one finds cot z ~ -j for y» 1. Then the expression in square brac~

Eq. (25) vanishes and one gets simply

F(a,u) ~ j~ w(au)

which is exactly the same result as that obtained when the infinite ~

replaced by an integral. 2

The broad-band loss-impedance becomes to a very good approximatio

BB 1I'R
Zloss = ----$ [a W(a ) - a W(a )]

~O' 1 1 2 2
o

and does thus not depend on the number of bunches.*

i) For Q > 1/2, the Quantity $ = v4Q2-1 is real and hence u2 = -u 1*.

Since furthermore w(-z*) = w*(z), we find that the loss impedance is

resistive

i i ) For Q < 1/2, $ is imaginary and so is a
1,2

- J. Y with
- • 1.2'

* This justifies including the factor M in the definition of the loss
impedance Eq. (16)
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The complex error function of imaginary argument is purely real s )

2

w(jy) = eY erfc (y) (33)

where erfc(y) = 1 - erf(y) is the "complementary error function. II Then the

loss impedance is again resistive

2 2
88 lI'R a a

Zloss (Q < 1/2) = [a e ~erfc(a ) - a e 2 er f c(a )]
w a "1-4Q2 ~ ~ 2 2

o

and is also independent of the number of bunches.

iii) In the limit 0 ~ 1/2, both expressions (31) and (34) become

indetenminate. Taking the limit ~ ~ 0 for 0 = 1/2 ± ~ in EQs. (31) or

(34) yields

(34)

Z~:ss (0 = 112) (35)

where a = wro for short.

5. Narrow-band Resonators

For resonances with bandwidths of the order of or smaller than the bunch

frequency. it is no longer penmitted to replace the sum by an integral. The

resonances of (metallic) cavities usually have quality factors of some tens of

thousands. and the situation Q ~ Pr = wr/Mwo is often encountered. Since

for all Q > 1/2: v 2 = -v 1 *. we can rewrite Eq. (26) in any case as

2
-a

Z = 2.R Re {a [wee )-e l(l-j.cot lI'V )]}loss W as 1 1 1
o

9

(36)



The loss impedance is again purely resistive, but now the cotangent

become important. Since its argument is complex it will always remi

as can be seen from another fonm of the cotangent of a complex varit

cot (x + jy) =t sin2x - j sinh 2y
sin2x + sinh 2y

where the denominator is a sum of squares which does not vanish for

However, the loss impedance will depend strongly on the resonate

frequency, which is often varying with temperature and/or small defc

of the vacuum chamber wall. In this case it is indicated to search

maximum loss impedance, which is easily done numerically by changin~

resonant frequency in small steps.

O. Analytic Approximations

For short bunches such that I" I = W d« 1, we can approximat1,2 r

complex error function by the lowest tenms of its power series expan

2jz 2w(z) =1 - - - z +­
.f'lf

For a broad-band resonator impedance with Q > 1/2, one obtains t

Eq. (31)

BB
Zloss B. [1 +...l

Q ,f.i

Wd
--.r:... +

Q
... ]

As can be shown from Eq. (34), this expression actually holds al

Q < 1/2 if the stronger condition W d « Q is fulfilled.
r

For very long bunches, on the other hand, for which 1"1,21 = Wrd

we can use the lowest terms of the asymptotic expansion of the compl<

function'

10



w(z) ~ -::i- [1 1 3 .. ]+-+-+-;'.. Z 2z2 4z"

to obtain from Eq. (31 )

zSB ,Iii tot /6>
B. 3 1-L....£= - 3 Q2 [1 + 2 (1 - 2Q2 ) + ... ]loss 2 (6>r(1 ) (6)rC1)

.

(40)

(41)

The loss impedance in seen to decrease with the cube of the bunch length

when it is larger than the (reduced) wavelength of the resonator (A/2~).

Already for 6)reJ = 1. the long bunch expression is a factor 2y~Q smaller than

the short bunch limit: The power loss of long bunches is thus seen to be

considerably less than for short ones, and excessive power loss in

accelerators can be alleviated by lengthening the bunches.

7. Energy Loss of sse Bunches

According to present plans for the sse, almost every sixth rf bucket will

be filled with bunches from the HEB booster. There will be 15 batches of 1130

bunches each. separated by 14 small gaps of 10 empty locations and a longer

one of 190 empty locations for the abort kicker. A total of 16950 bunches

will thus occupy most of the 17280 possible places. The spectrum will

therefore contain mainly multiples of the bunch frequency (62.5 MHz). while

the revolution frequency harmonics will stay below the 1% level (see Appendix

for the evolution of the bunch spectrum during injection).

At top energy (20 TeV), the bunch length is expected to be 1.3 em nms for

the rf voltage of 20 MV at 315 MHz. During acceleration, the bunches are

slightly shorter but should remain above 6 cm rms.

11



The impedances are less well known. In a circular accelerator. tt

contributors to energy loss are usually the rf cavities. There are a

40 cells foreseen for sse. with a design to be scaled down from the 3~

PEP cavities. 6 The higher mode frequencies should scale approximatel~

proportion to the fundamental frequency. while the R/Q values remain t

if the geometric proportions are not changed. The Q-values should cha

the square root of the frequencies. which is close enough to unity to

neglected.

However. the exact frequencies of the higher modes will be spread

certain range due to construction tolerances and temperature differenc

the 40 cells. Assuming a variation of 5.10-4
• the frequency spread oc

bandwidth corresponding to a resonance with a quality factor of 2000.

unloaded quality factor of the fundamental resonance is about 40.000.

Q-values of the higher modes will be reduced by the same factor 20.

This reduction does not apply to the fundamental resonance. howeve

must be kept fixed by tuners. The power loss into the fundamental mod,

however. is taken into account as ubeam loading " in the design of the

system. and thus will be excluded here.

The power loss of the strongest higher modes of the scaled rf cavi"

shown in Figs. 1-6 as a function of detuning over a full bunch-frequenf

interval. Figure 7 shows the sum over all 18 higher (longitudinal) mot

trapped in the cavity (assuming a cut-off frequency corresponding to a

proportionally scaled beam pipe). As can be seen from the figures. tht

loss is extremely low near the center frequencies and becomes large onl

12



detuning of nearly 30 MHz. At the peak of the second harmonic, the loss may

increase as much as 4 orders of magnitude. This has to be taken into account

in the detailed design of the rf cavities which should avoid higher modes at

multiples of the bunch frequency.

During injection, only part of the circumference of the accelerator is

filled with bunches, and the revolution frequency hanmonics will be stronger.

This is compensated partially by the reduced current, but because of the

narrow spacing of lines there will be a much higher probability of falling

exactly onto one or more resonances. The power loss during injection could

thus be larger than at full current, but would be limited to a period less

than the injection time of some 20 minutes. The evolution of the loss during

injection is discussed in the Appendix.

8. Conclusions

The energy loss of bunches in the sse traversing the rf cavities is

strongly reduced by the fact that the spectrum of a train of evenly spaced,

identical bunches contains only multiples of the bunch frequency. Due to the

large number of bunches in the sse, the bunch frequency is very high (62.5

MHz). Then all higher modes in the rf cavities could be SUfficiently far from

integer multiples of the bunch frequency that the energy loss is strongly

reduced over that calculated by a simple broad-band model. However, this must

be taken into account in the design of the rf cavities, as the resonant loss

at the shortest higher modes may be larger by up to 4 orders of magnitude,

surpassing by far the loss calculated with the broad-band model.

13



During injection, the circumference of the machine is only filll

partially, and the revolution frequency harmonics are excited more ~

The energy loss may thus be increased over the injection period, bui

limited as also the current is only building up to its full value.

References

1. Conceptual Design Report SSC-SR-2020 (Mar 86).

2. M. Furman, SSC-Notes 142/143 (May 86).

3. H. Lee, SSC-Note 179 (May 86).

4. ISR/TH 80-03, P. Zotter, CERN Report ISR/TH 80/03 (1980).

5. M. Abramowitz, I. Stegun, NBS-Handbook of Mathematical Functions
1965.

6. P. Wilson, SSC-Note 124 (1985).

14



N
:J:
~

0
M
~-
N

II

e
Q)

"0
0

0 e
C\l ~

0--N
:J:
~

e.,..-
trl
e.....
e
~...
Q)

0
"0-0
e
0

....
u
e
~-VI
<tI-3:

0 c.,..
("\) -

1 ~

OJ
::t
0
e,

lI\
VI
0
~

,...

Ol

0 0 0 0 0
u..

0 0 0 0 0 0
LD 0 io 0 LD
C\J 0 ~ LO C\l
......-I ......-I

15



o
o
L.O
~

o
o
o.-

16

o
o
L()

o



17

o
o
o-

o

0
C\J

N
:z:
:E
,..,
o.D
0"-
U"I

If

C

CU
~

0 0
:E

'-
0....
CUe
~
V)

M

C'l
'r-

0
u..

(\J
I



c
(\

c

o
(\J,

18

o
o
~

o



o
CD

o
CD

19

o
N

o

0
(\J -N

x:
%

0
0
..0,...-
O't

c:
QJ

0
-0
0
~

s.-
o.....
Q.l

e
It)

Vl

U"l

0'.,....
u,

0
(\/

I



c
o

c

o
o,

1

LD
•o ""'"•o

M
•o

20

(\J
•o

....-I
•o

o
•o



o
o
o
o......

o
o
LD
r-,

21

o
o
o
LD

o
o
LD
C\J

o

III
Q,I.,.......,...
::-

"'I.J

U
VI
II')

0 Q,I

C\I .s:
+-'

'-
0
...,
<U
"0
0
E

"0
Q,I
Q.
Q.

"'lo.....
0 '-'

(Xl....
........
'tI

....
0

E
::l
Vl

G.l
~

+-'

0 I...
0

(\J .....
I G.le

"'VI

r-

r;:rl.,...
..I-



Appendix: Energy Loss During Injection

Injection into the sse is presently planned in "box-car" fashion

N = 15 batches of n = 1130 bunches each from the HE8 booster. Ten Sl

of 10 empty places, and a bigger one of 190 are left between those b.

total of 1&950 bunches is thus injected into the M= 11280 possible

(corresponding to each sixth rf bucket). For simplicity, we shall n.

this small difference and assume that each batch contains n = MIN = .

bunches.

We also assume that the batches are injected from the booster at

time-intervals hI. Then the total energy loss during injection is of

by summing over all states containing from one to N adjacent batches

AT
6E = N

N
I

k=l

II)

I Re Z(pwo) IIk(PCdo) 12
•

p=-<D

where

;) Summing this geometric series for unon-harmonics" p(modM) ~ 0 yi/

sin:l ClTnkp/M)

sin:l(1fp/M)

Inverting the order of summation. we obtain the contribution of the

lines between bunch-frequency harmonics

N
~ sin~(1fnkp/M) ,

k=l

where r 1 means that multiples of Mare excluded from the sum.

Using the identity s;n2~k (1-cos2ok)/2. we find that the consti

contributes N/2 to the sum over k, while the p-dependent tenm vanishf

22



exactly. Thus

(AS)

ii) For harmonics of the bunch frequency ~b = M~o' all the terms in Eq. (A2)

are in phase and simply add up. so

and
(A6)

N
I

k=l

With the identity

(A7)

Nr k 2 _ N(N+l} (2N+l)
k=l - 6

one finds the "harmonic" contribution (with M= Nn) to the energy loss

(AB)

eo

~E2 = ~~ (M+n)(2M+n) l Re Z(P~b) T~ (P~b) . (A9)
p=-

Adding the two contributions (AS) and (A9). one obtains the total energy loss

during injection

~E - ~T- 2 I
p=--

(A10)

where we have regrouped the "non-harmonic" terms. The denominator in that

latter part is small only either for q « H or for H-q « H. where the sine

can be replaced by its argument. The non-harmonic terms thus are large only

near the bunch-frequency harmonics.

23



If the impedance does not vary rapidly (see below), we can rep1acG

last term by

ll.E
2

Since H is much larger than unity, we can replace the sum over q by tt

function (2) = ~2/6.

The total energy loss becomes then approximately

where
F = (1 + ~)(1 + ~H) + 1/2 .

The first term is the contribution of the bunch-frequency harmonics an

close to unity for M»n. The contribution of the "non-harmonic ll lin

about one half and is thus a non-negligible part of the losses during

injection even for the case of a IIsl owl y" varying impedance (the bunch

always shorter than a bucket, so the single-bunch spectrum Ib(w) will

significantly over a bunch-frequency interval.

For resonant impedances which are much narrower than the width of

"non-harmonic" tails of the spectrum, i.e •• a few times a revolution

frequency, this approx imat ion wi 11 no longer hold. The "non-harmonic I'

contribution could then become much larger if a spectral line just fal

a resonant peak.

For the rf cavity of the sse, higher modes have frequencies betwee

MHz and about 2GHz, and Q values of the order of 5 x 104
• Hence their

width is between 10 and 40 kHz, corresponding to 3 to 12 times the rev

frequency. The assumption of "slowly varying" impedance is thus only

24



marginally fulfilled. However, the O-values have been reduced by a factor of

20 to approximate the frequency spread 1 of the rf cavity cells. Under this

assumption, the resonances are wide enough for Eq. (A-12) to hold, and the

energy loss during injection is only about half of the energy loss of the

machine with all bunches filled.
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