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Introduction

As proton accelerators get larger, and include more magnets,
. the conventional tracking programs which simulate them run slower.
At the same lime, in order to more carefully optimise the higher cost
of the accelerators, they must return more accurate results, even in the
presence of a longer list of realistic cffects, such as magnet errors and
misalignments. For these reasons conventional tracking programs
continue to be computationally bound, despite the continually
increasing computing power available. This limitation is especially
severe for a class of problems in which some lattice parameter is
slowly varying, when a faithful description is only obtained by
tracking for an exceedingly large number of turns. Examples are
synchrotron oscillations in which the energy varies slowly with a
period of, say, hundreds of turns, or magnet ripple or noise on a
comparably slow time scale. In these cases one may wish to track for
hundreds of periods of the slowly varying parameter.

The purpose of this paper is to describe a method, still under
development, in which element-by-element tracking around one turn
is replaced by a single map, which can be processed far faster.
Similar programs have already been written in which successive
clements are "concatenated” with truncation to linear, sextupole, or
octupole order, et cetera, using Lie algebraic techniques to preserve
symplecticity[1,2]. The method described here is rather more
empirical than this but, in principle, contains information to all orders
and is able to handle resonances in a more straightforward fashion.

It is assumed for this method that a conventional program
cxists which can perform faithful tracking in the lattice under study
for some hundreds of turns, with all lattice parameters held constant.
An empirical map is then generated by comparison with the tracking
program. There is no pretense at rigor - the empirical map is only
judged to give a sufficiently accurate representation of the supposedly
exact tracking data. Having replaced the true motion by an empirical
map with very similar features (that is, containing the "physics") we
again have a well posed mathematical problem of the influence of
modulating the parameters of the map. The way this modulation is
performed is described below.

Certain features, such as chaos on a microscopic scale, will not
be faithfully represented, but an example will be given showing that
this can be unimportant, and that the physically interesting behavior
only emerges after parametric modulation is introduced. The
empirical Hamiltonian approach is applied to the example, giving an
excellent representation of the true motion, which is dramatically
affected by the modulation. At present, and as described here, the
software tools to carry out the derivation of the map, and to track
using i, only work in one transverse dimension. It is hoped that they
can be extended to two transverse dimensions in the near future,

R Invari | Empirical Hamiltoni

Suppose that the conventional tracking program is used to
determine the horizontal physical coordinates, x,, and x'p, of a
fixed energy test particle on turn number n, for many successive
turns. While these programs naturally use Cartesian coordinates, it is
convenient to present the data graphically in polar coordinates of
amplitude and phase, a, and vy, where

Xn=

agsin (y,), x' = a;[cos (W)= asin(yy)l /B (D)
and o and B are Twiss parameters at the reference point. If no
nonlinearities are presentin a (a,, y,) phase space scatter plot, all
the points wilt liec on a straight line of constant amplitude a,, but
successive points will be spaced in y by 2rQ, where Qs the
tune. For sufficiently small amplitudes and neglecting small chaotic
regions, the points in a scatter plot still lic on a definite "invariant”
line when nonlinearities are introduced. The line is in general curved,
and may even close on itself in a discrete set of "islands”.

*Operated by the Universities Research Association for the U.5.
Department of Energy.
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Figure 1  The phase space trajectories of six particles, perturbed by

a single round beam-beam collision per turn of strength £=0.0042,
followed for 970 tumms with a conventional tracking program around a
machine with an unperturbed tune of Qg=0.331.

Figure 1 shows the phase space motion of six trajectories
followed for 970 turns, with a single beam-beam interaction of tune
shift parameter § = 0.0042 encountered once per turn, It is natural
to plot the measured amplitude a in units of o, the gaussian size of
the round opposing beam. The tunc approaches its unshifted value of
Qp =0.331 at large amplitudes, and at small amplitudes approaches
Qo + & = 0.3352, so that the tune distribution is spread across the
sixth order, Q = 2/6, resonance. (The symmetry of the idealised
beam-beam kick disallows the Q = 1/3 and all other odd order
resonances.) Abstract general comments will be illustrated at several
points below by continued references to this particular example.

The trajectory in figure 1 with an amplitude a = 20 exhibits
resonance lock on. This particle jumps from one island to the next
but one on every turn, to visit only three of the six equivalent islands.
No particle was launched on the other three islands, and so they do
not appear. If the trajectory is plotted every three turns, the
successive points appear to march slowly around a single island, with
a period somewhat larger than 970 turns. These points are so close
together that, to the resolution of the figure, they form a continuous
invariant curve. Similarly, if only every third point of a nonresonant
trajectory is plotted, the progress across the figure is also slow, with
an average phase advance per three turns of

3.2 (Q(a)—-1/3) (2)

which is proportional to the average tune separation from the
resonance.

Although all of the trajectories shown in the figure are
“regular”, some initial conditions lcad to “chaotic” behavior, in which
successive points appear fo wander randomly over a bounded region
of phase space, instead of lying on smooth invariant curves. This
kind of behavior will be neglected for now and discussed further
below. The curves followed by regular trajectories (for example
those in figure 1) can be described as contours of an “invariant
function”, Hj, which can in general be decomposed into Fourier
harmonics as

Hy(J, ¢) = UQ) + Zlvm(n ccosm (¥ ~= M} B
m=

<Azy> =

where the functions U(J), V() and ¢,,(J) are independent of
time. Here the m=0 term, 8(]), has been defined separately for
later convenience, and the action coordinate J has been introduced;



its value on the n'th tumn is
Iy = 1122,2 4

The function Hy is not unique; if the right hand side of (3) is
multiplied by a constant the contours of the new function ar¢
unchanged. This ambiguity will now be removed, in the process of
treating Hy as a true Hamiltonian.

Though the coordinates x., x'y, or equivalently J,, y, are
determined only for integer valies of n, we now introduce a
‘continuous time variable t, which increases by one unit for each tum
around the accelerator. The action-angle variables J(t) and y(t) are
assumed to vary with time according to

d\]] oH k dJ _ oH k (5)

dt a dr v
where k is an integer such that the tune of all particles is near j/k,
with j being another integer. The "empirical Hamiltonian" Hy (1,v)
is one of the functions Hf, with the previously undelined
multiplicative constant chosen to make (S) best agree with (1) after
integration over k units of time.

1t can be seen that the motion defined in this way is completely
artificial for non integer values of {, and even for integer values
which do not divide by k. The values taken on by J(f) and w(t)
are unrelated to the values of J and Wy actually taken on by 2
particle as it proceeds around the accelerator. Rather they are smooth
interpolations between the discrete values taken on every k'th turn.
One can simply imagine the phase point slowly moving along the
invariant curves, such as those of figure 1. (Recall that j=1,k=3 for
this standard example.)

In the particular case that only the Fourier term m=k is present
in (3}, this procedure is equivalent to changing to a comoving frame,
where the phase ¥ — (j/k) 2& n advances only slowly with tura
number. However, in practical situations, and even in the simple
example being demonstrated here, it is necessary to include more than
one Fourier term in order to closely match the data found by tracking.

Numerical Determination of Empirical Harilton

The functions U(I), Vi (1), and ¢, ()) are "guessed” as
simple analytic functions having free parameters, which are
determined by matching the empirical motion to the motion given by
the tracking program. To do this the vector empirically describing
motion in phase space over k turns, (Apl, Apw), is first
approximated by combining (3) and (5) to give

AW ik = IR = W) + 12U"(S) . (§ = <5>)
+ o Vim(<I>) coslm (¢ = 9p(<I>))] {6)

and
MJ 1k = ~gH Y ~ X m Vo (<J>) sin [m(y = dy(<I>N] (D)

in a Taylor expansion about <J>, the mean action. A prime signifies
differentiation by J. A presumably negligible term in ¢',(<J>) has
been dropped in (6), while the term in U"(<J>) has been added to
allow for the possibility that motion is resonant, in which case Hy
has a local minimum or maximum, .

The quantities U'(<)>), Vo, (<J>) and ¢ (<]>) in (6) and
(7) are treated as parameters whianare varied to best fit the observed
data for a singte trajectory, for example by minimising the sum

S = ¥ OJst - Adda® + OV - MVda)® ®

If the data come from tracking for N wums, there are N—k vatves in
the sum. This works for both resonant and nonresonant trajectories,
but assumes that a smafl number of important Fourier harmonics have
been identified ahead of time. The parameters of the analytic guesses
for U(D), V(). and ¢.,(J) are then adjusted to best fit the set of
values for t?j'(<.l>), Vinl<I>) and ¢,,(<J>) which have been
determined for each value of <J>, that is, for each trajectory.

The process of empirical Hamiltonian determination is now
demonstrated by purseing the standard beam-beam example further.,
Figure 2 plots the a=~30 trajectory already drawn in figure 1, but on
an expanded scale, showing that the m=2 and m=6 terms are
dominant in the Fourier series. Only these two harmonics will be
retained.

3.2 [T T T T T l#-—r—r"r—,—r“r"w—ril
a(o) [ 1
117 NN n ]
30 i i i [
- [

- v ooV (VY. ]

2.8 1 1 Jo L 1 1 ) L ] L i1 1 I 1 | S [ 'l 1 LA -‘
o 0.2 04 0.8 0.8 1

W (units of 2r)

Figwre2  The irajectory a=30 of figure 1, plotted on an expanded

scale, showing the dominance of m=2 and 6 harmonics.

Figure 3 shows the six values of U' found by fitting each of
the trajectories in figure 1 as crosses, and shows the analytic
approximation to U', a Pade approximation, as a solid cutrve. The
dashed line shows the behavior of U’ expected on purely theoretical
grounds[3,4] in a comoving frame analysis. Similarly, figure 4a
shows the individual fits, the analytic approximation, and the
theoretical prediction for Vg as crosses, a solid line, and a dashed
line. Figure 4b shows the results of a straight line fit (in amplitude)
of ¢g as a solid line. In theory ¢5 is expected to be -n/6, and
constant. Although the agreement does not appear to be very good, it
should be noted that the vertical scale is quite expanded. The
empirical tracking resuits shown below are insensitive 1o this fit, and
1o the ¢% fit shown below, both of which could easily be improved.
Finally, figures 5a and 5b show the individual Fits of Vy and ¢,
and their analytical approximations by straight lines (in amplimdcz).
In the theoretical comoving frame analysis of this simple example all
terms other than Vg are explicitly dropped, a procedure which is
justified by comparing figures 4a and 5a, and noting that Vs is
relatively small.

Table 1 summarises the situation, showing the theoretical
behavior and the analytic Pade approximations for all of the
functions. I, is a reduced Bessel function of order n.

Function Theory Analytic Fit
v lp-? T2 -0.0152 + _ 00280
1 + 0.463)
+ constant
4 - 40810513 + 4371065

v e 0m a1
6 f] 3 1+48210253 426210415

o6 -n/6 - 0531 + 4911033172

vy — 414104 4+ 3541043172

3 — 547103 - 112103712
Table 1 Theoretical behavior and analytic fits for the functions in

the empirical Hamiltonian representing the beam beam example.

An empirical Hamiltonian can be found at any fixed value of 2
parameter, for example the energy offset 6 = AE/E, using the
procedures described above, provided only that displacements are
measured about the true closed orbit. A global empirical
Hamiltonian, valid over a range of the parameter, may then be
constructed by fitting parametric functions like U(3,8) 1o a smali
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Figure3  The values of U’ found by fitting each of the six

trajectories in figure 1 (crosses), as fit by a Pade approximation (solid
curve), and according to theory (dashed curve).
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Figure4  The values of (a} Vg and (b) ¢g found by fitting each
of the six trajectories in figure 1 (crosses), fit by Pade approximations
(solid curves), and according to theory (dashed curves).

number of these particular maps, Tracking is performed by keeping
the parameter constant for one turn, and using a numerical algorithm
representing the integration of (5), referred to the current value of the
parameter. The parameter is adjusted after every tumn as appropriate -
in the case of synchrotron oscillations & is varied sinusoidally and
inexorably, mimicing an idealised thin radio frequency cavity at the
reference point.
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individual trajectories in figure 1 {crosses), an
linear functions of amplitude.

It is essential that the value of Hj at the new phase space
location, after single turn propagation using the numerical algorithm,
is exactly the same as at the 0ld, so that

HyOnew: ¥oew) = HilUold: Yold) ®

In the results presented below the second condition in the algorithm
makes the square of the path length of the propagation line segment
(AJ, Ay) the average of the "old" and "new" Hamiltonian slopes.

1 ¢ 2 o2, ,0H2
A2y Ayl -
P ot e Gt G

Equations (9) and (10) are symmetric with respect to initial and final
coordinates, making the motion reversible.

We now use the empirical Hamiltonian method to track
particles in the presence of synchrotron oscillations, for comparison
with exact tracking results. Figure 6a plots one phase space point at
the end of each of 1000 synchrotron oscillations, in the standard
beam-beem example with E=0.0042, for many different initial
conditions. The unperturbed tune is modulated at the synchrotron
frequency, so thaton turn n

Q « Qg + qeos(2xQyn) an
where the base tune is Qg =0.331, the tune modulation amplitude is
q = 0.001, and the sync?nrotron tune is Qg = 1/194. A family of

synchrobetatron sidebands of the main resonance appears when tune
modulation is included[3,4], corresponding to the shifted tunes

Q@ = 2/6 + p.Qy/6

oH 2
10
m;ew)] (10)

(12



where p is an integer. The p=1,0, -], and -2 sidebands arc
clearly visible. Chaos ensues when these sidebands overlap[5], that
is, when the beam-beam tune shift parameter £ is raised so that the
istands are more narrowly spaced in amplitude. The parameters of
the example have been carefully chosen to show the onset of chaos,
especially between the p = 0 and —1 sidebands. If the tune shift
parameter is increased to 0.006, the entire region from a=2¢ to
a=6¢ becomes chaotic[4].

Figure 6b reproduces the results of 6a by tracking with the one
turn propagation algorithm described above, based on the empirical
Hamittonian described in figures 3, 4, and 5. Instead of

parameterising the Hamiltonian with energy, however, the tune
modulation was added as a second mapping, adding a small amount
of oscillating phase advance after each single turn propagation. The
two figures are not exactly identical in their features, despite using
exactly the same initial conditions for each trajectory, but they agree
very well in the size of the sidebands, and in the presence of chaotic
behavior in some regions.

Conclusi | Potential Applicati

A procedure has been outlined for determining an empirical
Hamiltonian, which can represent motion through many noniinear
kicks, by taking data from a conventional tracking program. Though
derived by an approximate method this Hamiltonian is analytic in
form and can be subjected to further analysis of varying degrees of
mathematical rigor. Typical fields for study include:

i)  Many potential uses in long term tracking studies. The
example of this paper shows that the large scale chaos induced by
synchrotron oscillations in the presence of a single bcam beam
interaction is well accounted for by the empirical Hamiltonian
method.

ii)  The importance of microscopic chaos in the original map.
Even a modulation free nonlinear map is known to have smatl chaotic
regions which are not included in our empirical map. It may be
possible to neglect these regions altogether, for practical purposes, if
modulation sources causing much more extreme chaos are present.
An example showing such behavior has been given.

iif) A more detailed application of the Chirikov criterion, or a more
tigorous analysis of the time-varying Hamiltonian, The modulation
free Hamiltonian Hy can, according 1o (3) and (5), be written as

H(,0) = 2nQyd

(13)
+ W) o+ Elvmu).cos[m(\v— 0B
m=

where all the terms are proportional to the perturbation strength,
except for one, 2rQq J, which involves the unperturbed tune.
Synchrotron oscillations cause Qg to be replaced by the modulated
tune Q given by (11}, making Hy time dependent. Various
authors{3,4,5,6] have described the model of "sideband island
chains” caused by this modulation, and the chaos which accompanies
their overlap. The chaotic behavior observed in figure 6 is
qualitatively well understood in these terms. This model has so far
been restricted to describing sidebands close to a single dominant
island chain, but the empirical approach should lead to a more
globally accurate description, since the functions in (13) have been
selected to give a good description for a broad range of amplitudes.

Even though the empirical procedure has only been described
here in one transverse dimension, there is good reason to hope that it
can be extended to include two transverse dimensions, so that it can
become a more practical tool in realistic cases. The numerical codes
which at the time of writing only deal with horizontal motion need to
be extended Lo include vertical motion, and to include a more general
parametric variation of the one turn map.
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Figure 6  Trajectories followed for 1000 synchrotron periods of
194 turns (a) by conventional tracking, and (b) using the empirical
Hamiltonian of Table 1 . Apart from the addition of tune modulation
with an amplitede q=0.001, the model is the same as in figure 1.
One point is plotted at the end of every synchrotron period.
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