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Abstract

We derive the tools necessary for the extraction of a map from standard
tracking programs using multipole kicks. Our results applied to programs
using approximate Hamiltonians (PATRICIA, RACETRACK) or to the more rigorous
symplectic integrators. As an example of a symplectic integrator, we chose
the kick code TEAPOT for its simplicity. Our results are nevertheless general
because Her; has shown that symplectic integrators are in fact kick codes.
Finally, we give the general fonmulae for geometric invariants which are
quartic extensions of the usual Courant-Snyder invariants.

1. Introduction

In the stUdy of circular machines, fast methods of tracking have always

been useful. For large, error dominated rings, such as the contemplated SSC,

one must take into account the effect of very high order multipoles.

Traditionally, the multipoles have been incorporated into tracking

programs as zero length elements or kicks. Unfortunately, these kick codes

have tracking as their primary goal and are incapable of giving certain

insights into the nature of the non-linear lattice functions. On the other

hand, matrix codes such as MARYLIE 1 or TRANSPORT 2
, . have the capability of

computing non-linear lattice functions· around the design orbit. Unfortu-

nately, they have no way of computing exactly the matrices around an arbitrary

orbit. This is due to the perturbat1ve approach of these codes. They expand

everything in tenms of the design trajectory. Off-momentum effects as well as

misalignments are not treated exactly.

In this paper, we intend to show how one computes the non-linear map

around any trajectory with the help of a kick code. From the non-linear map,

represented by Lie transforms, we will extract the non-linear invariants. s
, &



The maps computed by our method from kick codes. are accurate to third

order around the chosen trajectory. but. unlike those of matrix codes. they

are exact in the momentum and the magnitude of the misalignments of the orbit

under study.

1.1 The choice of a coordinate system.

The orbit we choose to study will be represented by a vector Z.

The positions X and Yare deviation from the ideal closed orbit of the ~

machine. Often they are chosen in a plane perpendicular to the design momen-

tum. but as we will discover this is not always necessary. The momentum Px
and Py are also in the plane of (X. V). They measure the deviation from the

ideal momentum Po and they are scaled by PO. The time T is defined as

follows: T '" c (Time of flight)

c '" Speed of light.

Finally. Pt is related to the energy deviation:

E-EO
Pt = - (c Po)

(1.2)

(1 .3)

•

..
1.2 Is (Px' Py) better than (XI, YI) ?

Most kick codes use XI (=~~) and y l instead of the momenta Px and Py.
The use of XI and y l facilitates the expression of the map in a drift

•

space: boX '" LX'
boY '" LY I , L = path length of the design orbit.

(1 . 4a)

(1 .4b) ...
Since equation (1.4) is exact, it implies that in terms of the momenta drifts

are more complex. In fact, one needs to replace XI and y l by the expressions:

(1 . Sa)
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(1. 5b)

(1. Sc)

On the other hand, multipole kicks are much simpler in tenms of the momentum:

-
~As(r) - vector potential

~

r • (X, Y) measured in the plane of the
multi pole

(1.&a)

( 1.&b)

(1.&c)

.-

-

-

As seen by the reader, one cannot win. For (XI, VI) the drifts are triv­

ial while for a canonical set the kicks are easy.

1.3 Making XI and VI canonical by approximating kicks.

In the case of a large machine, where the influence of a single kick is

small, it is conventional to introduce an approximation:

(1.1a)

-
With this approximation, the equation for a kick becomes:

~I gl [A ~]
6r = P (1 +4) s" t' •o

(1.1b)

(1.8)

-

Consistent with this approximation, one writes down a Hamiltonian in terms of

t'. To do this, we start from the correct Hamiltonian H:
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H = Ps - ~ As

But, following (1.7) we approximate (1.9):

H=_ ('~) ~ P:+ P/) 1./2

\ (lH)2

H=- (1+&) +2(~+a) (P:+P;) - i- As
o

(1. 9)

(l.lO)

..

If one does not need the time of flight information contained in the

a-dependence of Hand H. one can replace ~ by 1'. The Hamiltonian K governing
.. ..

the motion of (r. r l
) is just:

(loll)

The Hamiltonian K is at the root of many traditional codes used in accelerator

design. These include PATRICIA' and RACETRACK-. The non-linear tools which

are discussed in the later sections of this paper have been implemented in the

program RACETRACK.

The Hamiltonian K introduces errors which are proportional to the inte­

grated strength of As. It provides a very accurate chromatic description of

very large machines because the use of XI and V' does not introduce errors

solely proportional to the length of the ring. On the other hand. codes using

Px and Py• introduce errors which are of zeroth order in the length anytime

they approximate the drift (1.5) by a Taylor series. (MARVLIE for example).

Of course, for a small ring. the integrated strength of As can be large.

Oragt noticed in the context of the Los Alamos Proton Storage Ring (PSR) the
....

inadequacy of K in predicting the correct chromatic properties.-
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1.4 The no-compromise kick code: TEAPOT.

Passing from (XI, VI) to (Px' Py) involves a square root only. If one is

willing to live with it, it is possible to write a kick code which uses the

exact formulae for the drift and the mu1tipole kicks. Such a code has no

dynamical approximation of the type introduced in section 1.3. Its only

approximation is to replace an ideal long element by one or a few thin lens

kicks represented by equation (1.6).

It is important to emphasize that it would be possible to regain long

elements by splitting them in a large number of kicks and drifts. This is not

the case if an incorrect Hamiltonian such as Kis used to describe the thin

lenses. In fact, if one uses Kfor a long element, only the linear part of

the map is correctly restored.

Inspired by the desire to be exact, Schachinger and Talman of the sse

Central Design Group, have written a code which uses the exact formalism for

the lenses. This program, TEAPOT 1 0 (Thin Element Accelerator Program for

Optics and Tracking), has been equipped with an algorithm capable of gene­

rating a six dimensional map around any orbit.

As a result of the strict compliance of TEAPOT to the thin lens model, we

have been able to use the concatenation routines of the program MARYLIE in the

map generating algorithm.

In the next section, we examine the tools necessary to extract a map out

of a kick code. We concentrate on the example of TEAPOT, because of its

greater complexity and exactness.

2. The elements of a thin lens code.

The present version of TEAPOT contains multipole kicks, drifts and

rotations in the plane of the ring. It has also a special linear kick to

handle sector bends. The basic ideas of the code are contained in Figure 1.
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This figure shows two successive multipole planes 9'i and 9'1+1. The center

of the multipoles are located at Pi and Pi +l. The canonical coordinates of

the particles at plane 91 are expressed with respect to Pi in a frame

within ~. The Xi direction points away from the center of the multipole

and Vi 1s perpendicular to the plane of the ring. The components of Pi +1 in

the frame of .9'i are given by the pair (.9'i+' 2"i+)'

The particle drifts towards 9'1+1. Finally, X1+1 and Vi+1 are the coor­

dinate of the particle expressed in the plane 9'1+1 just before entering the

next multi pole. The reader will notice that we use capital letters for the

ray under study, unlike reference 10 where lower case letters are used.

2.1 The tracking in TEAPOT.

First, it is instructive to derive the connection between (Xi' Vi' Ti) and

(X i+l, Vi +1, Ti+1) in terms of canonical transformations. Consider the phase

space vector 21 defined in Section 1.

...

..

.",

."

2i = (Xi' Px1' Vi' Pyi' Ti, Pt i)

The particle drifts in the frame of 9'i a distance Ii:

(2.2)

(2.3a)

(2.3b)

(2.3c)

."

T. = Ti1+
(2.3d)

...-

6
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All the momenta are left invariant by the drift. We then rotate I i+ in the

frame of ~i+l and express the component Xi+l with respect to the point Pi +, :

(2.4a)

(2.4b)

Py(1+)

ps( 1+)
(2.4c)

(2.4d)

SUbstitution of (2.3) into (2.4) leads to the express10n used 1n the program

~Yi : Y. ++' 1+ Psi-

-

TEAPOT. Px1
, Xi - 2';+ +~ .9i+

Xi.' = -co-s~.-1-+ P
xi

1. p tan.;+
s1

.9.i+ - tan.i • (X1- 21+)

1+ Px1 tan.;+
Psi

Py(1+1) = Pyi

1

(2.5a)

(2.5b)

(2.Se)

(2.5d)



+ P .
1+ --!.l ta nell

Psi i+

(2.Se)

Pt(i+l) = Pt i (2.Sf)

Finally. we consider the multipole kick. In terms of the canonical vector Z.

kicks are represented by the vector potential A: -
(2.6a)

The program allows for misalignments in the plane of the multipole. Rotation

errors are obtained by modifying an and bn. Translation errors are computed

by translating A:
(2.7)

•
It should be added that sector bends are treated by including an extra term to

A.
(2.7a) •

This completes the description of this kick code in terms of canonical

variables. We now look at the expansion around a trajectory.

2.2 The transfer map expanded around a trajectory.

The expansion of a map around a given trajectory involves taking the

derivatives of the tracking operations of a given program. One follows a

particle along its path and simultaneously differentiates the operations

performed by the code. The resulting matrix is concatenated with the matrices

of the previous operations. At the end. one gets a first. second or even

8
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third order matrix for the full ring relative to the given trajectory. This

brute force method has been incorporated in the programs HATPOT (matrix

TEAPOT) and MATRACE (Matrix Racetrack) to third order in (X, P , Y, P). Itx y

should be noted that a lie algebraic representation can be extracted from the

matrix representation of the map.11

Here. we will be more elegant and perhaps more confusing. Instead of a

direct differentiation of the expressions in section 2.1, we will appeal to

elementary geometry in defining the non-linear maps around a given trajec­

tory. The map representing the motion of a particle from one plane to the

next will be a product of a rotation, a drift and a second rotation. The

parameters defining this map will depend on the particular ray for which the

map is computed. Finally, our treatment is six-dimensional and lie algebraic

from the start. With this in mind. the reader is invited to carefully follow

the description of these three operations with Figure 2 as a guide.

A. The drift between the multipole planes

Consider an arbitrary trajectory Zi at the plane ~, as shown on Fig. 2:

Z = (X , P , Y , P , T , P ) . (2.B)
i i xi i yi i ti

Suppose we are interested in a neighboring ray Z:

Z = Z +,., = (x P Y P T P ) (2 9)i l' 1 i' xi' i' yi' i' Ti· •

For simplicity, we will scale 'i by POi' where POi is the momentum of Zi

(Ii is scaled by PO' the momentum of the design trajectory of the machine).

The variable 'i is measured in the plane ~.

9



Now. consider a rotation of angle .0 in the plane of the ring. We choose

.0 such that the new frame has its x-axis perpendicular to the projection of

the ray in the plane of the ring: •

(2.10)

V
Such a rotation will depend on .0' Pyi and ~i the velocity of the ray Zi'

Let us assume that it can be represented by a symplectic operator

.fl'C.
O

' Pyi): ..
(2.11)

By writing the inverse of 91 in (2.11), we assume that:Ji rotates from a perpen­

dicular frame to an arbitrary frame. The Lie representation 1 2 for ~ has the

form:

(2.12)

The expressions for ~, 3f
2

• f
3

and f. are given in Appendix 1, Table Z.

As shown in Fig. 2, 'L is such that its y-axis makes an angle .0 with

the ray Zi:

(2.13)

We can derive a symplectic transfonmation which correspond to the drift

around Zi' In the frame of 'L' it is given by the map ~.

'
f i nal = ~(OB P )
L ' yi (2.14)

As hinted in (2.14), ~will depend on the distance in the plane OAB as well as

the vertical momentum of the ray Zi' The Lie algebraic representation of g( is

given in Appendix 1, Table 1.

10
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Finally, we can use .9P to rotate 'l. into the plane 9';+1" This involves

a rotation by an angle • :
1

We can express the full map from 'i to 'i+1 as follows:

(2.1&)

-
B. The mu1tipole kick.

The lie algebraic representation of a multipole kick in tenms of '1 is

obtainable from (2.7). In fact, we need only to expand Aerrors around Zi in

homogeneous polynomials in 'i:

(2.17a)

(2.11b)

-

-

-

The computation of each f m requires the evaluation of only two derivatives.

This is a result of Maxwell's equations. In fact, the computation of these

two derivatives is equivalent to computing Bx and By with a different set of

an and bn coefficients. Hence, it is an extremely fast operation, as fast as

the tracking of one ray through the mu1tipole.

This concludes our discussion of the computation of a map around a

particular trajectory. In the remaining sections, we illustrate how one

obtains invariants from the map around a closed orbit.

3. A non-linear Floquet representation.

As mentioned earlier, it is quite important to obtain the exact behavior

resulting from misalignments or chromatic effects. In the study of the

contemplated sse. the chromatic effects of high multipole errors must be

11



computed to all orders in &or the misalignments. However. most of the

properties around the resulting closed orbit can be explained by a relatively

low order study of the optics around it. In Appendix 2. we apply this

technique to a linear problem. The linear problem being solvable exactly, is

an ideal example of the perturbative approach introduced in this section.

This example is presented for pedagogical purposes only. In the following two

sections, we will derive some of the non-linear canonical transformations

implemented in the program MARYlIE; they are used in obtaining invariants and

tune shifts. The reader will notice references to equations in Appendix 2

«B1), (B2), etc ••• ); this allows the reader to establish connections between

the non-linear case and the equivalent linear computation in Appendix 2. An

exact link between the two computations is obtained if g3 in equation (3.3) is

set to zero. The reader is advised to set g3 to zero in the first reading of

section 3 and 4. (No sextupolar terms in the map).

Suppose we have a fixed point 1 of the map At. Ar may represent the off-

momentum motion with magnet errors for one turn of the machine

-

•

(e = 0 ~ e = 2.). This map has a lie algebraic representation:

...It=: exp(:f :) exp(:f :) exp(:f :)
2 • •

(3.la)

(3.lb)

•

..
Here the Lie operators are expressed in terms of the initial restricted phase

space vector ~O. For simplicity, we will not look at the full phase space

."

Using some standard techniques, it is possible to find a canonical trans­

formation which transforms f into a very simple operator1 3
:

2

12



-
This transformation, when applied to ~I, leads to the result:

·#'F = .91 .1 ,.9/-1 = exp(: .91 f :) exp(: .91 f :) exp(:.91 f :)
2 2 22 2. 2"

~ exp(:g :) exp(:g :) exp(:g :) •
2 • "

(3.3)

We will say that .~F is the map At in linear Floquet variables. At this

stage, it 1s possible to introduce the usual action-angle variables:

-

,..

x = "2 I cos.

px = - "2 I sin.

y ",,"2 J cos.

All the polynomials 9mare rewritten as follows (B6):

(3.4a)

(3.4b)

(3.4c)

(3.4d)

-
9 =m (3.5a)

-

or, conveniently,

gm =~ r:bCd labcd> .

In particular, 9 has a simple form (Bla), (Blb):
2

(3.5b)

(3.6)

Moreover, the vector Jabcd> is an eigenvector of :9:. The application of_ 2

:g : on this vector gives the relation:
2

-

:9 2 : labed> = exp(i(c~x+dlly) ) [abed»

13
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(3.Ba)

The map .w originally simplified the linear part of Lallowing us to com-
2

pute ArF in this new basis. Can we continue our simplification and reduce

the non-linear terms to their simplest form? To explore this, we apply a

canon- ical transformation ~ on .A'F .

.91. = exp(: F.: )

= exp(:g :) exp(:-g :) ..wexp(:g :) exp(:g :) exp(:g :) .w-1 •
2 2. 2 a ••

(3.Bb)

With the help of standard Lie algebraic tools, we rewrite (3.8b) accurately to

the order of 9 :•
exp(:g :) exp(:exp(:-g :) F - F + 9 :)

2 2 • a a

x exp(:g + l[exp(:-g :) F 9 -F l + l[F g l:)• 2 2.'. II 2 a' a
(3.9)

The map AfF can be made simpler by removing its second order content. This
2

is done by requiring that its third order polynomial vanishes:

(1 - exp(:-g :) ) F = 9 •
:I a II

(3.10)

It is easy to see that (3.10) can be inverted away from integer and third

integer resonances. This inversion is easily carried out using the eigenbasis

representation:

F = (1- exp{:-g :) )-~ 9
II 2 II

F (1 ( » -~ )""' r a I b da = - exp :-g2 a~3 abed a c >

Ic I+ Id 1=3,1

= L:
a+b=3

Icl+ldl=3,1

14
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.-

The map ~F 1s purged from all quadratic contributions (Bla):
2

A(,F = exp(·.g~·.) exp(·h .). . ..
2

1h = 9 + -2[F • 9 ]
4 4 ••

+ i (dp-6b) la~ b+P-2 C+K d+6 >•

(3.l2a)

(3.12b)

(3.12c)

(3.13)

All of h can be lumped into one sum (86):
4

h = ) Ha4bcd 1abcd> •
• a~4

Icl+ldl= 4.2,0

As we did before we will attempt to simplify AiF with a canonical trans-
2

formation sri. (85):

sri = exp (: F :)
4 4

.-
(3.14)

Here, we discover that it is not possible to remove h completely (86), (87).
4

In (3.13), the terms such that Icl+ldl equals zero are not removable by

-

canonical transformation. We separate them from the

h - ) H 4 [abed» + H4 14000>
4 - a~4 abed 4000

Icl+ldl=4,2

+ H4 10400> + H
4

12200>0400 2200

As before, we can compute F :
4

rest of h :•

(3.13)

-
F4 = a?b~4

Ic 1+1d 1=4 • 2

H;bCd labed>
1 -exp(-12_(cv +dv »x y

1S

(3.14)



The final map is given by -
.IF = exp(:g.a:) exp(:T.:) (3.15a)•

T = H- 14000> + H" 10400> + H- 12200>• 4000 0_00 2200 ..,

= H- 12 + H4 J2 + H4 IJ (3.15b)
4000 0400 2200

One notices that 9 and T are all expressed in tenms of the action variables
.2 4

I and J. Therefore.·g· and :T : commute and the exponents in L F can be
• 2' • •

..
combined (88): L F ~ exp(:g + T :) .

a 2 4
(3.16)

It is a simple exercise to show that T produces tune shifts with amplitude.
"

In fact. the tune shift are just (89):

.",

(3.17a)

H-
A = - _"=0=0=0. B = ­... (3.17b) ..

Finally. it is clear that near certain resonances the canonical transfonma-

tions represented by F and F will be ill defined. This is closely relateda _

to the absence of true non-linear invariants of the map L. In the next

section. we derive a cubic and quartic correction to the linear invariants.

The map Lis also rewritten in tenms of a pseudo-Hamiltonian H. 1 4

4. The non-linear invariants and the Pseudo-Hamiltonian.

In the previous section. we computed the canonical transformation leading to

L F. One can express the original map Lin terms of .IF:
a a

...

.xl = exp(: F :) exp(: F :) .P/ •
" • 2

16
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-
Let us write two functions with the help of .s;I :

(4.2a)

(4.2b)

-

""'

It is easy to check that I and J are quartic invariants of ~_ 4

exp(:g + T :) I2 _

= s,I-1 I = I ; [g , I] = [T , I) = 0 . (4.3)
42_

Because 9 and T are polynomials in I and J, their Poisson bracket with I or:II _

J is zero. As an example, we can compute the cubic invariant 1 :•
1 = ~-1exp(:F :)1

• 2 I

= sf-1 (I+(F , Il) + ..•
2 II

"'" -r:bcd ic Iabed>
~ 1 - exp(-i2_(cv +dv »
a+b=3 x y

Icl+ldl=3,'

- The quantity s(-1t is the quadratic invariant.
:I

(4.4)

The term sf-16I ;s the
:I •

-

-

cubl c correct ion to JI'-1 1•
2

17



Finally, we can compute the pseudo-Hamiltonian H (810):

-J.
• exp(: J( (92 + Tc ) : )

From (4.5), we can read off H (810):

(4.5)

(4.6)

-

."

...

All the manipulation described in section 3 and 4 are performed by the program

MARYLIE. MARYLIE can compute invariants, pseudo-Hamiltonian and generating

function representations of any map provided by a kick code.J.c It handles the

full six dimensional representation of the map Af.

18
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Conclusion

We have shown how it is possible to extract the Lie Algebraic polynomials

corresponding to the operations of a kick code. In particular, we have worked

out the tools necessary to compute the six-dimensional lattice functions of an

exact kick code. These techniques apply to simple codes like TEAPOT or to

more complicated symplectic integrators. Indeed, Neri1 S has shown that the

various symplectic integrators amount to a succession of kicks, rotations and

drifts.

Our techniques are also applicable to codes using the approximate fonmula

~ = (1+6)r ,•

It is the author's belief that the most important contribution of the Lie

algebraic methods to accelerator design resides in the analytical powers of

the Lie algebraic tools which permit the extraction of tune shifts and

invariants from complicated maps; in other words the Lie algebraic manipu­

lations capability of MARYLIE are more important than its ability to generate

the map of a particular magnet. We hope that the reader will see that it 1s

possible to extract from ordinary tracking codes the Lie algebraic polynomials

of a transfer map.
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Appendix 1 The Drift s-g and the Rotation 9i.

First. we must derive the map of equation (2.14). According to a standard

result of Hamiltonian theory. the Hamiltonian1
• for a drift is given by -Pz:

2 2 22%H - -Pz • -(1p Pt i + Pt 1 - Pxi - Pyi ) • (Al)

Calling 'i the phase space variables measuring deviations around Zi' we can

produce a Hamiltonian K for the motion of 'i:

K = - {li" P~i + P~1 - P~i - (PYi + pyi )2) % _~;i + pYiPYiR • (A2)
\ l_p2

yi

The Lie algebraic polynomials for ~are readily available from K. In fact. we

need only to expand K in power1
' of '1'

CD

f m = - OB ~

~(OB. Pyi ) c exp(:f2: ) exp(:f3: )

(A3a)

(A3b)

(A3c)

The coefficients of K2, K3 and K4 are listed in Table 1.

Because we have the Hamiltonian K, we are 1n a position to derive the

-

rotation 9i. Consider the rotation from 'L to 'i in Fig. 2.

vector (XL' YL' ~L)' we drift q from the plane of ,~to ~i.

~ ~

qLi = exp(-:dK:) qL

~Ca 11ing q the

(A4a)

(A4b)

-
Equation (A4b) parametrizes the plane ~i' It penmits us to solve for xLi'

Notice that d is the distance along the OB direction of figure 2 and that PSL

21



in the following equations is the total momentum along the same direction:

X..l
(A5a)

...
Finally. we can use (A4) and (AS) to compute the vector qi:

..,

Xi
x..l.i (A6a)..

cos .0

fy.L + PYI] d -Yi + Y (A6b)
PS.L ..l.

[<1- P l]t
1

= B Ti d + T (A6c) .",

PS..l .L

The momentum PX..l must be redefined. This involves a simple rotation:

Pxi = cos .0 PX..l. + sin .0 (PS..l - (1 -P~;)%}

P~d = PY.L

(A7a)

(A7b)

(A7c)

..

From equation (2.12), it 1s possible to find the Lie algebraic polynom;a1 1 8

for ~( •• Pyi ) ' They are listed in Table 2.

22
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Appendix 2. A linear example of the non-linear perturbation theory.

Consider a map ~Kdefined as follows:

The parameter la l is assumed to be small. Nevertheless it is possible to

write At with a single Lie operator. This is most easily seen by 100k1ng at

the matd x representat1on of vi.

C::)· MG)· C. :) cs
• sin.) c-s1np cOSp-

("05. s1n)l

•5inX:) (82)
= -sin)l + 2 a cOSp COS)l + 2

It is we 11 known from the Courant-Snyder theory that the quadratic invariant

of M is just:

-

-

-

• oC-sinu+2acosu)
y a s1np

In terms of Imt the map At' has the form: U

...
COS)I "" cOSp + a sinp .

(83a)

(83b)

(84a)

(B4b)

We can regain the results of (83) and (84) by the perturbative techniques of

section 3 and 4. Consider a transformation ordered in power of "a":

-

.s:I = •.• SifI oW "" ••• exp(:a 2F :) exp(:aF :) •
2 1 2 1
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2First, we expand ax in tenms of the Floquet representation:

= t {122> + 12-2> + 2120>} (86)

--

The vector 120> in (86) is a tune shift tenm.

cannot remove 120>:

The canonical transformation

1 1
F1 = 2 1- exp(:-~J:) {122> + 12-2>J

_ 1 {122> + 12-2> }
- 2 1 - exp(-;2~) 1 - exp(i2p)

To first order in "a ll , we have the equality:

N .L N -1= exp (:-,,120>:) exp(:a!20>:)
1 1

(81)
-

= exp(:(-,,+a)J:) . (B8)

From (B8), we deduce the first order shift of~. The result agrees with

(B4b): - 2" = p - a + O(a ) (89)

Finally, we compute the pseudo-Hamiltonian of J~using F
1.

= (}i-a) IJ - ~(1 _;~~~ ~g~) + 1_2~~~(~~~»)I
= (,,-a) {J + aJ (5;0(2+) - S;n(2t+2~)}}

1 - cos(2~)

= il!.:!l {(l _ a Sin(2J,1)\x 2+(, + a sin(2u) ) p2
2 1-cos(2p) J 1 - cos(2p)

24
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-
From (810), we deduce the value of the Twiss parameters:

Y • 1 _ a cosu + 0(a 2 )sin.. • ••

(811 )

-

-

-

-

These values agree to first order with (83). This concludes the treatment of

this example.
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Table 1

The lie Algebraic Coefficients and the linear Matrix

of ~(08. Pyi ) = exp(:-OB k:) b = Py; . a = (1 - P;;)%

20
x1p~ykp~Tmp~ Coefficients ofMaryl1e Index -KJ and -K4

.."

51 o 201 0 0 -(bl2a3)

53 o 2 0 0 0 1 -1/(2paJ)

74 000 300 -(b/a3 + b3/ a5)/2 ..
76 00020 1 -(1/a3 + 3b2/ a5)/(2p)

79 000 1 0 2 (b/a3 - 3b/(p2a5»/2

83 o 0 0 0 0 3 _(y-2 + p2b2)/2p3a5) ..
140 o 4 0 0 0 0 -1/(Ba3)

149 o 2 0 2 0 0 -(l/a3 + 3b2/a5)/4 ...
151 o 2 0 1 0 1 -3b/(2paS)

154 o 2 000 2 (1/a3 - 3/(p2aS»/4

195 o 0 0 4 0 0 -(1/(8a3)
+ 3b2/(4a5) + 5b4/(Ba7

» ...
197 000301 -(3b/a5

+ 5b3/a1)/{2P)

200 000 2 0 2 (1 + 3b2/a2)/(4a3) - 15b2/( 4p2a1) - 3/( 4p2aS)

204 000 1 0 3 -5b/( 2pJa7) + 3b/(2pa 5) ..
209 o 0 0 0 0 4 (_p4(b4 +4b2) _ (5 _ y-2)p2)/{ 8p4a7)

3 -2 2 2 2 3 3M36 = OB b/(pa ). "56 = DB (y + P b )/(P a ). "54 = DB b/(pa ).
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Table 2

The Lie Algebraic Coefficients and the Linear Matrix of
2 % of ' of 0 ~

~( •• Py1) b = Py1' a 0: (1 - Pyi) • 91= ~ e ' 3'e' 4' 3 2,

A = -b(tan5. / 2 + 3 tan3./2 + tan.)/(2pa5) . a = -(tan. + tan 3,/2)/(2pa3).

Maryl ie Index x1pjykplTmp" Coefficients of fa and f 4x Y T

34 1 2 0 0 0 0 -tan./(2a)

35 1 1 1 0 0 0 -b tan2./a2

38 1 1 o 0 0 1 -tan2~,/(pa2 )

43 1 o 0 2 0 0 -tan./(2a)- b2(tan3• + tan.)/(2a3)

45 1 00101 -b (tan3• + tan.)/(pa3)-
48 1 00002 -(tan,(y-2 + p2b2) + tan3.)/( 2p2a3)

105 1 30000 -tan2"rI(4a2)
,...

107 1 20100 -(3tan3• + 2tant) b/(4a3)

109 1 2 0 0 0 1 -(tan", + 3tan3./2)/(2pa3)

114 1 1 o 2 0 0 -tan2. / (4a2) -b2(3tan4• + 5tan2.)/(4a4)-
116 1 1 o 1 0 1 -b(3tan4• + 5tan2.)/(2pa4)

119 1 1 000 2 [tan2./a2 - (3tan4• + 5tan 2.)/(p2a4)}/ 4

130 1 o 0 3 0 0 b2PA + bPB

132 1 o 0 2 0 1 3bA + a

135 1 00102 3A/P - baa

139 1 o 0 0 0 3 _(y-2 + a2b2) tan./( 2p3a5)-
+ tan3.(1-3/(p2a2»/(4pa3) _tan S..,/ (4p3a5)

-
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Figure Captions

1. The geometry for straight line propagation through a drift space in the
program TEAPOT.

2. The geometry involved 1n the computation of the non-linear map around an
arbitrary trajectory in the program TEAPOT.
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