SSC-78

The uperconduc 'ng/Super Collider

“"

July 1986



8sc-78

LIE ALGEBRAIC MAPS AND INVARIANTS PRODUCED BY TRACKING CODES

Etienne Forest
SSC Central Design GroupX
c/o Lawrence Berkeley Laboratory
Berkeley, California 94720

July 1986

*Qperated by Universities Research Association, Inc. for the U. S. Department
of Energy



SSC-78
LIE ALGEBRAIC MAPS AND INVARIANTS PROOUCED BY TRACKING CODES
Etienne Forest
SSC Central Design Group
July 1986
Abstract

We derive the tools necessary for the extraction of a map from standard
tracking programs using multipole kicks. Our results applied to programs
using approximate Hamiltonians (PATRICIA, RACETRACK) or to the more rigorous
symplectic integrators. As an example of a symplectic integrator, we chose
the kick code TEAPOT for its simplicity. Our results are nevertheless general
because Neri has shown that symplectic integrators are in fact kick codes.
Finally, we give the general formulae for geometric invariants which are
quartic extensions of the usual Courant-Snyder invariants.
1. Introduction

In the study of circular machines, fast methods of tracking have always
been useful. For large, error dominated rings, such as the contemplated SSC,
one must take into account the effect of very high order multipoles.

Traditionally, the multipoles have been incorporated into tracking
programs as zero length elements or kicks. Unfortunately, these kick codes
have tracking as their primary goal and are incapable of giving certain
insights into the nature of the non-linear lattice functions. On the other
hand, matrix codes such as MARYLIE® or TRANSPORT?’® have the capability of
computing non-Yinear lattice functions® around the design orbit. Unfortu-
nately, they have no way of computing exactly the matrices around an arbitrary
orbit. This is due to the perturbative approach of these codes. They expand
everything in terms of the design trajectory. Off-momentum effects as well as
misalignments are not treated exactly.

In this paper, we intend to show how one computes the non-linear map
around any trajectory with the help of a kick code. From the non-linear map,

represented by Lie transforms, we will extract the non-linear invariants.®*®



The maps computed by our method from kick codes, are accurate to third
order around the chosen trajectory, but, unlike those of matrix codes, they
are exact in the momentum and the magnitude of the misalignments of the orbit

under study.

1.1 The choice of a coordinate system.
The orbit we choose to study will be represented by a vector Z.

Z= (X, Px, Y, Py’ T, Pt) (1.1)

The positions X and Y are deviation from the ideal closed orbit of the
machine. O0ften they are chosen in a plane perpendicular to the design momen-
tum, but as we will discover this is not always necessary. The momentum Px
and Py are also in the plane of (X, Y). They measure the deviation from the
ideal momentum PO and they are scaled by PO. The time T is defined as
follows: T=1c¢ (Time of flight)

¢ = Speed of light . (1.2)

Finally, Pt is related to the energy deviation:

) . (1.3)

1.2 1s (Px' Py) better than (X', Y')?
Most kick codes use X' =%§) and Y' instead of the momenta Px and Py.
The use of X' and Y' facilitates the expression of the map in a drift

space: AX = LX' ' (1.4a)
AY = LY' , L = path length of the design orbit. (1.4b)

Since equation (1.4) is exact, it implties that in terms of the momenta drifts

are more complex. In fact, one needs to replace X' and Y' by the expressions:

P
_ X
X' =3 (1.5a)
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Y - 51 (1.5b)
S

2p,
ps-(1-—+p’-p’-p’

)1/2
o t X y )

(1.5¢)

On the other hand, multipole kicks are much simpler in terms of the momentum:

-9, B (1.62)
0
As(?) = vector potential (1.6b)
[ (X, Y) measured in the plane of the (1.6¢)
multipole

As seen by the reader, one cannot win. For (X', Y') the drifts are triv-

jal while for a canonical set the kicks are easy.

1.3 Making X' and Y' canonical by approximating kicks.
In the case of a large machine, where the influence of a single kick is
small, it is conventional to introduce an approximation:

p P p

Tx X o X
X'=p_ =, (1+3) (1.73)

s 2,1/2
(1 ”o + Pt)

9 (1.7b)

With this approximation, the equation for a kick becomes:

-»

ar' B . (1.8)

=—-—gL—-—[A
P0(1+6) s’

Consistent with this approximation, one writes down a Hamiltonian in terms of

. To do this, we start from the correct Hamiltonian H:



H=p -9, ‘ (1.9)

S P0 s
But, following (1.7) we approximate (1.9):
PYR 1/2
+ .
H=- (148) -2 Pg s
(1+8)?
_ 1 2,02y _ 9
B - (148) +5mgy (P+Py) B As (1.10)

If one does not need the time of flight information contained in the
s-dependence of H and A, one can replace [ by ¥'. The Hamiltonian K governing

the motion of (?, ?') is just:

¥ = E_i.iliél =1 t2 2, _ __ 9
K= (1+8) =3 (X'7+Y'7) P0(1+6) AS . (1.11)

The Hamiltonian X is at the root of many traditional codes used in accelerator

design. These include PATRICIA? and RACETRACK®*. The non-linear tools which
are discussed in the later sections of this paper have been implemented in the
program RACETRACK.

The Hamiltonian K introduces errors which are proportional to the inte-

grated strength of Ag. It provides a very accurate chromatic description of

very large machines because the use of X' and Y' does not introduce errors
solely proportional to the length of the ring. On the other hand, codes using
Px and Py' introduce errors which are of zeroth order in the length anytime
they approximate the drift (1.5) by a Taylor series. (MARYLIE for example).

Of course, for a small ring, the integrated strength of As can be large.

Dragt noticed in the context of the Los Alamos Proton Storage Ring (PSR) the

inadequacy of E in predicting the correct chromatic properties.?®



1.4 The no-compromise kick code: TEAPOT.

Passing from (X', Y') to (Px' Py) involves a square root only. If one is
willing to live with it, it is possible to write a kick code which uses the
exact formulae for the drift and the multipole kicks. Such a code has no
dynamical approximation of the type introduced in section 1.3. Its only
approximation is to replace an ideal long element by one or a few thin lens
kicks represented by eguation (1.6).

It is important to emphasize that it would be possible to regain long
elements by splitting them in a large number of kicks and drifts. This is not
the case if an incorrect Hamiltonian such as X is used to describe the thin
lenses. In fact, if one uses K for a long element, only the linear part of
the map is correctly restored.

Inspired by the desire to be exact, Schachinger and Talman of the SSC
Central Design Group, have written a code which uses the exact formalism for
the lenses. This program, TEAPOT® (Thin Element Accelerator Program for
Optics and Tracking), has been equipped with an algorithm capable of gene-
rating a six dimensional map around any orbit.

As a result of the strict compliance of TEAPOT to the thin lens model, we
have been able to use the concatenation routines of the program MARYLIE in the
map generating algorithm,

In the next section, we examine the tools necessary to extract a map out
of a kick code. We concentrate on the example of TEAPOT, because of its

greater complexity and exactness.

2. The elements of a thin lens code.
The present version of TEAPOT contains multipole kicks, drifts and
rotations in the plane of the ring. It has also a special linear kick to

handle sector bends. The basic ideas of the code are contained in Figure 1.



This figure shows two successive multipole planes 5?1 and £W1+]. The center
of the multipoles are located at Pi and P1+]. The canonical coordinates of
the particles at plane 9% are expressed with respect to P.I in a frame
within gﬁ. The x, direction points away from the center of the multipole
and Y1 is perpendicular to the plane of the ring. The components of Pi+1 in
the frame of 5?1 are given by the pair (% 40 ‘Qq+).

The particle drifts towards £?3+1. Finally, X1+1 and Y1+] are the coor-
dinate of the particle expressed in the plane .9§+1 just before entering the
next multipole. The reader will notice that we use capital letters for the

ray under study, unlike reference 10 where lower case letters are used.

2.1 The tracking in TEAPOT.

First, 1t is instructive to derive the connection between (xi, Yi’ Ti) and

(x1+], Y1+1. T1+‘) in terms of canonical transformations. Consider the phase

space vector Z1 defined in Section 1.

21 = (xiv Pxil Y.io Pyit T'i' Pti) (2.2)
The particle drifts in the frame of #4 a distance Ij:
2 _ z
5y = ‘7§+ + d?1+ tang; (2.3a3)
P
- xi
X1+ = Xi + D 21 (2.3b)
si
Pyt
Y1+ = Y1 + 5 ti (2.3c)
si
1 _
By  'ti
T.. =T, + I (2.3d)
i+ i Ps1 i
a 2 1/2

[



All the momenta are left invariant by the drift. We then rotate Zi+ in the

frame of 9%+] and express the component xi+1 with respect to the point Pi+1:

X x
Xip = 5 L  TTaE (2.4a)
* x{i+) CoSdy, 0S¢y,
1+ P tan¢1+
s(i+)
Pr(i41) = €054 Py(iay ~ ST P4y (2.4b)
Y, .=y, -taney X, Py(is) (2.4c)
i+ i+ P 5
'|+ P—xLL‘.-)-tanoi.'- S(1+)
s{i+)

Pyci+y = Py(iny

1
tang (B‘ - P )
Tiar = Ty t p1+ g 4 Xis (2.4d)
P ®5+
s{i+)

Substitution of (2.3) into (2.4) leads to the expression used in the program

TEAPOT. P i
- X, + Pl_.5”
- 1 xi i+ si “i+ (2.5a)
i+l CoSdy Pxi :
1+ — tan¢
PS1 i+
Pe(ier) = €055, Py - sine,, Poy (2.5b)

Pyi s~ taney, (X5-25))

Y1+1 ) Yi+ * Psi 1+ 551 tan¢1+ (2.5¢)
Psi
Pyci+n) = Pyi (2.54)
" - Pis
T = Tyt ’ Pey { 5



]
tane;, (EE - Pti) Pxi

1+ —=— tan¢
Psi i+
Praian) = Pra (2.5f)

Finally, we consider the multipole kick. In terms of the canonical vector 2,

kicks are represented by the vector potential A:

A= 9%% Re 3 (nl]) (ia +b ) (x+iy)™! (2.6a)
n=0
It = exp(:R(27):) 27 =7 + [K,27]. (2.6b)

The program allows for misalignments in the plane of the multipole. Rotation
errors are obtained by modifying a and bn. Translation errors are computed
by translating A:

Rerrors = A(X7-ax™, ¥Y7-aY7). (2.7)

It should be added that sector bends are treated by including an extra term to
A.

Kerrors = A+ a(X™ - AX7) + B(Y - aY"). (2.7a)

This completes the description of this kick code in terms of canonical

variables. We now look at the expansion around a trajectory.

2.2 The transfer map expanded around a trajectory.

The expansion of a map around a given trajectory involves taking the
derivatives of the tracking operations of a given program. One follows a
particlie along its path and simultaneously differentiates the operations
performed by the code. The resulting matrix is concatenated with the matrices

of the previous operations. At the end, one gets a first, second or even



third order matrix for the full ring relative to the given trajectory. This
brute force method has been incorporated in the programs MATPOT (matrix
TEAPOT) and MATRACE (Matrix Racetrack) to third order in (X, Per ¥s Py). It
should be noted that a Lie algebraic representation can be extracted from the
matrix representation of the map.*?

Here, we will be more elegant and perhaps more confusing. Instead of a
direct differentiation of the expressions in section 2.1, we will appeal to
elementary geometry in defining the non-linear maps around a given trajec-
tory. The map representing the motion of a particle from one plane to the
next will be a product of a rotation, a drift and a second rotation. The
parameters defining this map will depend on the particular ray for which the
map is computed. Finally, our treatment is six-dimensional and Lie algebraic
from the start. With this in mind, the reader is invited to carefully follow

the description of these three operations with Figure 2 as a guide.

A. The drift between the multipole planes
Consider an arbitrary trajectory Z1 at the plane &%, as shown on Fig. 2:

Z =(Xx, P
( i

§ » Yo P LT, P ). (2.8)

xt 1 yi i ti

Suppose we are interested in a neighboring ray Z:

1=12 +7; = (x , . , . . . 2.9
P E ST X P Y P T L) (2.9)

For simplicity, we will scale ¢4 by POi' where Po1 is the momentum of Z,
(Zi is scaled by PO' the momentum of the design trajectory of the machine).

The variable {; is measured in the plane 92.



Now, consider a rotation of angle ¥ in the plane of the ring. We choose
¥ such that the new frame has its x-axis perpendicular to the projection of

the ray in the plane of the ring:

©

tanwo = Xl . (2.10)

Psi

v
Such a rotation will depend on y,, Pyi and -0% the velocity of the ray Zj.
o* "vi c i

Let us assume that it can be represented by a symplectic operator

0

By writing the inverse of # in (2.11), we assume that # rotates from a perpen-
dicular frame to an arbitrary frame. The Lie representation®® for # has the

form:

f 0 :f
A= e e ' g (2.12)

2

The expressions for 52, g, f’ and f. are given in Appendix 1, Table 2.
As shown in Fig. 2, ¢, is such that its y-axis makes an angle ¥p with
the ray 21:

P
vy = tan* yi : (2.13)

2 2,1/2
(Psi + Pxi )

We can derive a symplectic transformation which correspond to the drift
around 21. In the frame of CL' it is given by the map & .

final _

€0

z(o8, Pyi) ¢, - (2.14)

As hinted in (2.14), £ will depend on the distance in the plane 0AB as well as
the vertical momentum of the ray 21. The Lie algebraic representation of & is

given in Appendix 1, Table 1.

10



Finally, we can use < to rotate ¢ jnto the plane .92+]. This involves
a rotation by an angle ¥,

¥,o= W ey (2.15)

We can express the full map from <4 to C1+] as follows:

Cigg = F - (¥ge Pyy) Z(0B, PLy) Flw, Puy) gy (2.16)

B. The multipole kick.

The Lie algebraic representation of a multipole kick in terms of (1 is

obtainable from (2.7). In fact, we need only to expand Agppors around Z4 in

homogeneous polynomials in {j4:

’m - -
fo (§3) = Aarrors(Zis €4) s m22 . (2.17a)
L]
~ _ ,.m .
Rerrors (Zi *&3) = 'EO A2 6 - (2.17b)

The computation of each fm requires the evaluation of only two derivatives.
This is a result of Maxwell's equations. 1In fact, the computation of these
two derivatives is equivalent to computing Bx and By with a different set of
a, and bn coefficients. Hence, it is an extremely fast operation, as fast as
the tracking of one ray through the multipole.

This concludes our discussion of the computation of a map around a
particular trajectory. In the remaining sections, we illustrate how one

obtains invariants from the map around a closed orbit.

3. A non-linear Flogquet representation.
As mentioned earlier, it is quite important to obtain the exact behavior
resulting from misalignments or chromatic effects. In the study of the

contemplated SSC, the chromatic effects of high multipole errors must be

11



computed to all orders in & or the misalignments. However, most of the
properties around the resulting closed orbit can be explained by a relatively
Jow order study of the optics around it. 1In Appendix 2, we apply this
technique tc a linear problem. The linear problem being solvable exactly, is
an ideal example of the perturbative approach introduced in this section.

This example is presented for pedagogical purposes only. In the following two
sections, we will derive some of the non-linear canonical transformations
implemented in the program MARYLIE; they are used in obtaining invariants and
tune shifts. The reader will notice references to equations in Appendix 2
({(B1), (B2), etc...); this allows the reader to establish connections between
the non-linear case and the equivalent linear computation in Appendix 2. An
exact link between the two computations is obtained if 94 in equation (3.3) is
set to zero. The reader is advised to set 95 to zero in the first reading of

section 3 and 4. (No sextupolar terms in the map).

Suppose we have a fixed point T of the map .#. .# may represent the off-
momentum motion with magnet errors for one turn of the machine

(6 =0 >0 =2x). This map has a Lie algebraic representation:

M = exp(:f_:) exp(:f :) exp(:f,:) (3.1a)
= i§ k.2
Ful®0) = Z Aijke *oPxoYoPyo (3.1b)
J+j+k+2=m

Here the Lie operators are expressed in terms of the initial restricted phase
space vector - For simplicity, we will not look at the full phase space
CO-

Using some standard techniques, it is possible to find a canonical trans-
formation which transforms f_ into a very simple operator*?®:

- 2 2 - 2 2
3 g@ such that .w;fz = -«ux(xo + pxo) 1uy(y0 + pyo) (3.2)

12



This transformation, when applied to .#, leads to the result:
_ 7 o . . . . . .
A= o A ,ciz exp(: sza.) exp(: ﬁzf’.) exp(.mzf‘.)
= exp(:gzz) exp(:g‘:) exp(:g.:) . (3.3)

We will say that .#; is the map A in Vinear Floquet variables. At this

stage, it is possible to introduce the usual action-angle variables:

x=v2 1 cos¢ (3.4a)
Py = - v2 1 sing (3.4b)
y =v2J cosy (3.4c)
Py = - v2 J siny . (3.4d)

A1l the polynomials g, are rewritten as follows (B6):

a b
_ m 2 12
g = E ; rabcd 19 3% exp[i(co+dy)} (3.5a)
a+b=m
lcl+ldi=m,m-2,...

z r';‘bcd labcd> . (3.5b)

In particular, 9, has a simple form (Bla), (Blb):

or, conveniently,

I

9, = —Z«vxI -2mv J = -vax]2000> -21vy|0200> . (3.6)

y
Moreover, the vector labcd> is an eigenvector of 29, The application of

gt on this vector gives the relation:

:g,: |abcd> exp(i(cux+duy) ) labcd> (3.7a)

].l.i = 2'\’1 . (3.7b)

13



The map .ﬁ; originally simplified the linear part of .# allowing us to com-
pute Jd} in this new basis. Can we continue our simplification and reduce
the non-linear terms to their simplest form? To explore this, we apply a
canon~ ical transformation &, on dl%.
o, = exp(:F 1) (3.8a)
A A

2

= exp(:gzz) exp(:-gzz).w:exp(:gzz) exp(:g':) exp(:g‘:) &{;‘. {3.8b)

With the help of standard Lie algebraic tools, we rewrite (3.8b) accurately to

the arder of g,:

A = exp(:g:) exp(:zexp(:-g,:) F - F_+g.:)

2

x exp(:g, + %[exp(:-gz:) F,» 9,-F. 1+ %[F., 9,1:) (3.9)

The map #¢ can be made simpler by removing its second order content. This
2

is done by requiring that its third order polynomial vanishes:
(1 - exp(:—ga:) ) F’ =q . (3.10)

It is easy to see that {(3.10) can be inverted away from integer and third

integer resonances. This inversion is easily carried out using the eigenbasis

representation:
- - (- . -a
F, = (1-exp(:i-g 1) ) "~ g,
.o -1 2
F' = (1- exp(: gz) ) ;2;;3 Tabed fabcd> (3.11)
fcl+|di=3,1
r’ |abcd>
- Z abcd
1 - exp(—iZf(Cvx+dv ))
a+b=3 y
lel+ld]=3,1

14



The map dffz is purged from all quadratic contributions (Bla):
ﬁt%z = exp(:ga:) exp(:h‘:) (3.123)

= 1
h, =9, +5lF.q)]

&

r’ r*
_ 1 abcd aBxd
=g, +1 21 SN [labcd>, |aBxs>] (3.12b)
[jabed>, |aBxé>] = % (Ca-xa) |a+a-2 b+B Cc+x d+8 >
+ % (dB-8b) |a+a bB-2 C4x d+d >. (3.12¢)

A1l of h‘ can be lumped into one sum (B6):
_ 4
h. = ;Z;;4 Habcd |abcd> . (3.13)
ici+|d|= 4,2,0
As we did before we will attempt to simplify Afpzwith a canonical trans-

formation %, (B5):
&, = exp (:F 1)

71 .y » ) . * . -— .
Mg o, = exp(.gz.) exp(.h‘+exp(. hz.) F‘ F‘.) . (3.14)

Here, we discover that it is not possible to remove h‘ completely (B6), (B7).
In (3.13), the terms such that |c|+|d| equals zero are not removable by

canonical transformation. We separate them from the rest of h‘:
) [}
h‘ = ;2;;4 Habcd labcd> + H‘Cmo |4000>
‘CI+|d|=4,2

+ H* |0400> + H* {2200> (3.13)
400 2200

o

As before, we can compute F‘:

4
F o= ; Habed jabcd> . (3.14)
4 a+b=4 T -exp(-12«(cv +dv ))
tcl+ld|=4,2 y

15



The final map is given by

/F’ = exp(:9,:) exp(:T,:) (3.15a)
T = H* 14000> + H* |0400> + H* |2200>
4 4000 0400 2200
=H* 1% + 4 3P +nt 1 . (3.15b)
4000 0400 2200

One notices that g, and T‘ are all expressed in terms of the action variables

1 and J. Therefore, g, and :T‘: commute and the exponents in ”(F can be
2

combined (B8): Ag} = exp(:g, + T ) . (3.16)

It is a simple exercise to show that T‘ produces tune shifts with amplitude.

In fact, the tune shift are just (B9):

(::x) B (: :) (:) (3.173)

y
H* a 4
_ _ 4000 - _ 2200 _ _ 400
A= « ° B 2°q * C Y (3.17b)

Finally, it is clear that near certain resonances the canonical transforma-
tions represented by F’ and Fo will be i1l defined. This is closely related
to the absence of true non-linear invariants of the map .#. 1In the next
section, we derive a cubic and quartic correction to the linear invariants.

The map .#is also rewritten in terms of a pseudo-Hamiltonian H.**

4., The non-linear invariants and the Pseudo-Hamiltonian.

In the previous section, we computed the canonical transformation leading to

A . One can express the original map A in terms of Af% :
F] b ]
=T M (4.1a)
|
& = exp(:F‘:) exp(:F’:) ﬁﬁ . (4.1b)

16



Let us write two functions with the help of & :

2 2
Xo + P
-1 -1} "0 x0
I‘ = v Il = o (}__—E———;) (4.2a)
2 2
Yo + P
= vy . 70 Yo
J. o3 M(—z—) (4.2b)

It is easy to check that I‘ and J‘ are quartic invariants of .# :

AT, = o A I 2 |
b ]
= _g’f-" Y 4

F
]

I

@t explig, + T 0) 1

2 hd = -
1= I‘. [gz. I] [T.. I11=0. (4.3)
Because 9, and T‘ are polynomials in I and J, their Poisson bracket with I or

J is zero. As an example, we can compute the cubic invariant I':

I

-1 - »
&, exp(.F’.)I

s, (I+[F, 1) + ...

Jy;‘(l+[Fa, 2000>])

-r? icjabed>
=y 1+ _abed
2 2 E : 1 - exp(-in(Cuxi-du ))
a+b=3 y
lcl+]d|=3,1

=1

ha 8
- &1 w, ol (4.4)

The gquantity &V;‘I is the quadratic invariant. The term ;y;‘AI. is the

cubic correction to .wi‘l.

17



Finally, we can compute the pseudo-Hamiltonian H (810):

M = .w;lexp(:gz+T‘:)JV
= exp(‘gfl:gz+ T,: )

-3
= exp(: & (g,+ T.):) (4.5)
From (4.5), we can read off H (B10):
= _ -1 P
H=- w9, -w T,

J -H* I -K* Pt 1) (4.6)
y 4 4000 4 0400 [ 3 2200 4 a4

2'“)(14 + 2%uv

A1l the manipulation described in section 3 and 4 are performed by the program
MARYLIE. MARYLIE can compute invariants, pseudo-Hamiltonian and generating
function representations of any map provided by a kick code.*® It handles the

full six dimensional representation of the map .#.

18



Conclusion

We have shown how it is possible to extract the Lie Algebraic polynomials
corresponding to the operations of a kick code. In particular, we have worked
out the tools necessary to compute the six-dimensional lattice functions of an
exact kick code. These techniques apply to simple codes like TEAPOT or to
more complicated symplectic integrators. Indeed, Neri'® has shown that the
various symplectic integrators amount to a succession of kicks, rotations and
drifts.

OQur techniques are also applicable to codes using the approximate formula
B = (1+8)F,

It is the author's belief that the most important contribution of the Lie
algebraic methods to accelerator design resides in the analytical powers of
the Lie algebraic tools which permit the extraction of tune shifts and
invariants from complicated maps; in other words the Lie algebraic manipu-
Tations capability of MARYLIE are more important than its ability to generate
the map of a particular magnet. We hope that the reader will see that it is
possible to extract from ordinary tracking codes the Lie algebraic polynomials

of a transfer map.
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Appendix 1 The Drift 2 and the Rotation #.

First, we must derive the map of equation (2.14). According to a standard

result of Hamiltonian theory, the Hamiltonian'® for a drift is given by —Pz:

2 2 .2 _ 2 %
Ho= P, = -(1—g Pyy + Py - Py Py,) . (A1)

Calling g5 the phase space variables measuring deviations around 21. we can

produce a Hamiltonian K for the motion of ‘1‘

A 2 2 _ A % _(Pxi ]
‘= (‘ B Pt * P TPk TPyt Pvi)) (pa * pyipyit!———_' — -
1-p
yi

The Lie algebraic polynomials for Zare readily available from K. In fact, we

?

need only to expand K in power'” of &
®
k= Ez n (A3a)
fm = - 0B Km (A3b)
Z (0B, Pyi) = exp(:fzz) exp(:fa:) e s {A3c)

The coefficients of Kz, Ka and K4 are listed in Tahle 1.

Because we have the Hamiltonian K, we are in a position to derive the
rotation &#. Consider the rotation from £, to {3 in Fig. 2. Calling E the

vector (x,, y,, v,), we drift § from the plane of ¢, to H.

>

-’
q,4 = exp(—-:dK:) qQ, (Ada)

d = tanqn0 X4 (A4b)

Equation (A4b) parametrizes the plane 5?1. It permits us to solve for x;i'

Notice that d is the distance along the 0B direction of figure 2 and that P,
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in the following equations is the total momentum along the same direction:

Xy
x*‘ ) px; ’
1 - == tan ¥y

pSL

2 2

_ _2 _ _ 2\ %
Psy "61 BPrL ¥ P " Py (py; + Pyi) ) ’

Finally, we can use (A4) and (AS5) to compute the vector 31:

X
X co:1¢
0
Y, =| YY1 4 4y
i P 1
sS4
- -
-(l o )-
t, =|-B—3if g
il p pn
sL
b -

The momentum Py must be redefined. This involves a simple rotation:

2 %
Pyj = €S g Py, + sin g {pg, - (1 “Pyi) }
pyi = py.L
Pei T Pey -

From equation (2.12), it is possible to find the Lie algebraic polynomia

for #(y, P 1). They are listed in Table 2.

y
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Appendix 2.

Consider a map -# defined as follows:

A = exp(:-pd:) exp(:ax?:),

The parameter "a® is assumed to be small.

write .# with a single Lie operator.

the matrix representation of .#.

1 0 s
e . cosu
p = M -
P P 2a 1 -siny
cosSy

-sinuy + 2 a cosu

A linear example of the non-linear perturbation theory.

(Bla)

(B1b)

Nevertheless it is possible to

This is most easily seen by looking at

o) 0

cosy

sinu (82)

)

cosuy + 2 a sin

It is well known from the Courant-Snyder theory that the quadratic invariant

of M is just:

Iy = % (yx? + 2axp + Bp?) (B3a)
_ asinp _a - a{-sinu+2acosy)
@ = AN Y * "a sing (83b)
[1-(cosy + a sinu)?}*'?
In terms of I_, the map.# has the form:**
A = exp(:-1 L) (B4a)
cosy = cosuy + a siny . (84b)

We can regain the results of (B3) and (B4) by the perturbative techniques of

section 3 and 4.

— = - z - - .
W o= cee Sy A, ...exp{:a Fz.) exp(.aFl.) .
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First, we expand ax? in terms of the Floquet representation:

ax? = a2) cos?¢ = % J[e12¢ + e 120,91

3 1122> + [2-2> + 21205} (B6)

The vector |20> in (B6) is a tune shift term. The canonical transformation

cannot remove |20>:

=1 1 )
FL - 2 1- exp(:_u‘]:) {|22> + |2 2>}
-3 ' -

1 - exp{-i2u) 1 - exp(i2u)
To first order in "a", we ﬁave the equality:
o, A sz, = exp (:-ul20>:) exp(:al20>:)
= exp(:(-u+a)d:) . (B8)
From (B8), we deduce the first order shift of u. The result agrees with
(B4b):

w=u-a+0(a* ... . (B9)

Finally, we compute the pseudo-Hamiltonian of .# using F1

H= o (u-2)) = (u-a) {J-a[F , 3]}
, _af___-2ije> 21]2-2>
= (v-2) ;J 2(1 “exp(-i2m) * T - exp(i?u))i

e {sin(2¢) — sin{2¢+2u))
= (p-a) {J + al 1 = cos(2u) }

_ (u-a) {(] a sin(?ul)x2+(1 . __..a_.§il"_@2)_) p? - 2axp} (810)

T1-cos(2u) 1 - cos(2u)
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From (B10), we deduce the value of the Twiss parameters:

a=-a+0(a%) ... {B11)

B=1+3 20 4o’ ...

acosu , gea?y ...

Y=1- sin

These values agree to first order with (B3). This concludes the treatment of

this'example.
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Table 1

The Lie Algebraic Coefficients and the Linear Matrix

= EXD(i-UB k:) b = Py'i' a = (] - Pz.)’A

of Z (08, P yi

yi)

Marylie Index x‘p{ykp§rmp¥ Coefficients of -K3 and K4

51 020100 -(b/s2ad)

53 020001 -1/7(2pa’)

74 000300 -(bsad + b3/a%) 2

76 000201 ~(17a% + 3b%/a%)/(28)

79 000102 (bsa> - 3bs(p%a®))s2

83 000003 ~(v 2 + p%b?)/28%a°%)

140 040000 ~1/(8a%)

149 020200 ~(17a% + 3b2/a%) /4

151 020101 ~3b/(2Ba")

154 020002 (1/7a° - 3/(p%a%)) /4

195 000400 ~(17(82%) + 3b%/(4a°) + sb/(8a’))
197 000301 ~(3bsa> + sb37a’ys(28)

200 000202 (1 + 3b2/a%)/(4a%) - 1502/(apa’y - 3/(4p%a%)
204 000103 —sb/(2p%a’) + 3b/(2pa’)

209 000004 (-g* (b +4b2) - (5 - v %)p%)/(88*a’)
M,y = 1. W, = 0B/a, My, = 0B(1/a + b%/a%),

My = 0B b/(Ba), Mo = 08 (v + p2%)/(8%%), My, = 0B b/(pa?).
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Table 2

The Lie Algebraic Coefficients and the Linear Matrix of

. = = _2‘6 - F :f!:f:g
'-%(Wo Pyi) b Py1o a (1 Pyi) .g 2e 3'e” 4 2"

A= -b(tansv/z +3 tansvlz + tanv)/(Zﬁas). B = -(tany + tan3¢/2)/(23a3).

Marylie Index xipjykp!rmp" Coefficients of f, and f

34 120000 ~tany/(2a)

35 111000 -b tanly/a’

18 110001 ~tanZy/(Ba’)

a3 100200 ~tany/(2a)- bZ(tandy + tany)/(2a%)
45 100101 -b (tan’y + tany)/(Bac)

48 100002 ~(tang(v "2 + 82b%) + tanS¢)/(28%a%)

2 2
105 130000 ~tan®y/{4a%)
107 120100 -(3tan’y + 2tany) b/(4a%)

1 ~(tany + 3tan’y/2)/(282°)
4

109 12

114 11 0 ~tan?y/(4a’) -b2(3tanty + stany)/(4at)

116 11 -b(3tan4¢ + Stanzw)/(zaa4)

o O O o o o © o O o
—

o O O o o o O o o o
—

19 110002 (tanZy/a? - (3tanty + StanZy)/(p%a))/a
130 100300 b%BA + bRB

132 100201 3bA + B

135 100102 3A/B - bpB

139 100003 -(v 2 + 8%?) tanys(28%a%)

+ tanSy(1-3/7(p%a?))/(4pad) -tan’y/(ap%a°)

FH =1, F24 = -b tany/a, F26 = -tany/(Ba), F3‘ = b tany/a, FSI = tany/(8a).

611 = 1/cosy, 622 = COS¥, 611 =1 1=3,6.
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Figure Captions

1. The geometry for straight line propagation through a drift space in the
program TEAPOT.

2. The geometry involved in the computation of the non-linear map around an
arbitrary trajectory in the program TEAPOT.
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