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1. Introduction

Since the introduction of second order matrix methods in accelerator

physics, algebraic expressions for the matrix have been used in designing

systems with little aberration.

Our purpose is to show how one can use a Lie algebraic representation to

gain additional insight.

This paper will not be an expose on lie algebraic techniques. Indeed,

some advanced tools used in our analysis require separate documentation. We

expect that future papers, 1n collaboration with Alex Dragt and his group,

will provide the general theory.

Here our goal is more modest. We intend to show how simple symmetries

permit a classification of the aberrations in an arc of a particle

accelerator. This work arose in connection with the design of the Super­

conducting Super Col1ider (SSe).

We will adopt the Einstein summation convention: Repeated indices are

summed over.

2. The matrix representation of a map

Our objective is to study the motion of a charged particle around an ideal

orbit. It is therefore useful to expand around this orbit. Let us denote by
~

Z a complete set of canonically conjugate variables: [1,2]

~

Z ~ ex, y, t, Px' Py' Pt) (2.1)

The variables x and y measure the transverse displacements of a particle from

the ideal orbit. The variable t measures the differential time of flight. It

is closely related to the usual arc length used in matrix theory.
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The variables Px and Py are to first order just

dx and IDl
ds ds

respectively, where the coordinate s is the arc length measured along the

ideal orbit. Finally, Pt is the negative of the differential energy. This

is a simple function of the more commonly used differential momentum 4p.

In matrix theory, one describes the motion from an initial position sin
finto a final one s by a Taylor series. The Taylor series is said to be a

in finrepresentation of the map M from s to s .

..,

..,

Zf i n _ R in T Zin Zin ZinZinZ1ni - ijZj + ijk j k + Wi j kl j k i + ••• (2.2a)

or symbolically,

(2.2b)
•

The matrices R, T and Wcontain all the relevant information concerning the
in inparticle, up to third order in Z . They are, of course, functions of s

finand s

Expressions for the aberration matrices T and Wdo exist. These

expressions, in the case of T, have been used extensively to understand and

design systems without any second order aberrations. [3]

However, the matrix representation for the map M is not ideal. First of

all, it does not make use of the symplectic nature of the map M. Secondly,

as a direct consequence, it is hard to analyze the various symmetries of these

matrices. For these reasons, we will use a different parametrization of M .

3. The Lie algebraic representation of the map M

In this section, we introduce the Lie algebraic representation of M. We

invite the reader to consult the appropriate references for a more complete

exposition. [1, 2, 4, 5]
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-
Consider two functions of the initial phase space iin. We define the

Poisson bracket 1n the usual manner:

- ... ...
- !f.- J H.-[f(Z1n), g(Zin)] , (3. 1a)
- azi n ij aZin

1 j

C:
I )J = (3.lb)
0

(
1 0 0

)- I = 0 1 0 (3.1c)

0 0 1

-
We then define a lie operator :f: associated to the function f with the help

of the Poisson bracket:

:f: g = [f, g) • (3.2)

(3.3c)

(3.3b)

Finally, we construct the lie transformation Mf associated to f as follows:

(3.3a)Mf = exp ( : f: )

(lO

L: : f:
n

exp ( : f: ) = n!- n=O

0:f: = identity .

-

- We remark that Mf is a symplectic map.

It is therefore tempting to replace the matrix representation of equation

(2.2a) by a lie polynomial representation. This is the content of the

factorization theorem. [5]

This theorem states that Mcan be factored as a product of symplectic

transformations. Each one is of increasing order in the deviation around the

ideal orbit. Mathematically, it goes as follows:
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(3.4a)

..

(3.4b)

~ ~

fn(Zin) = homogeneous polynomial of degree n in zin. (3.4b)

The content of M2 is equivalent to that of the matrix Ri j• M2 is a

linear symplectic map transforming iin in the following fashion:.

..

M Zi n R Zin
2 i = ij j • (3.5)

In general, the transformation Mn(n>2) will produce aberrations of order

n-l and higher. For example, all the conventional second order transport

theory can be recovered by the study of f 2 and f3. In fact, all the

polynomial f n can be computed in quadrature involving the Hamiltonian.

These formulae are similar to the expression relating the aberrations matrices

to the Hamiltonian and the linear matrix R. In this paper, we will only look

at properties derived from simple symmetry arguments. This allows us to avoid

the use of the actual expression for the matrices and the polynomials.

However, for the sake of completeness we give the connectio~ between f3 and

the Hamiltonian [4]:

.,

..
sfin

f sin)
~

f 3 "" H3 (R(s ... zin; s) ds . (3.6)

•sin

H3 "" Third order term of H .

..
The reader familiar with matrix theory, will recognize that the presence of R

in (3.6) is linked to the Greenls function of matrix theory. It is

counter-productive to try to establish more connections, as doing so would

4
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destroy the symplectic nature of the Lie representation. Despite this, it is

often useful to connect a matrix to the Lie representation. For example, the

-

- Ti j k matrix is connected to f3 by the formula.

1 -1 -1 in in
f 3 = 3 J ia Taj k Rj ! Rkm 2i Zt (3.7)

....

-

-

-

After this brief introduction, we introduce a decomposition of the Lie

polynomial which provides an insight, as to the symmetries present in a system.

4. The resonance basis

In the standard Hamiltonian theory of accelerator physics, it is

convenient to rewrite the Hamiltonian in terms of action-angle variables. We

will follow a similar path with the map M. To set up a realistic problem, we

assume that M is a map for which M
2

(or R) is stable. In other words, the

eigenvalues of R are on the unit circle. We also assume that the energy

coordinate Pt is conserved.

In such cases, it is possible to make a linear symplectic similarity

transformation A2 on M2 such that M2 reduces to a map N2 of the

form:

1n2
N = exp(:-p J -p J - ~ P .)2 x x y Y 2 t .

1 · 2 i 2 i 2 i 2
J = _(Xl n + Pxn ), J = ley n + p n )x 2 Y 2 y

(4.1a)

(4.1b)

Using the properties listed in the appendix, we can derive the effect of A
2

on M

(4.2a)
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2
g2 = -PXJX - PyJy - ~ p~n

(4.2b)

(4.2c)

..

Of course. A2 is selected such that 92 takes the simple form of equation

(4.2c). This can be done by looking at the eigenvectors of the transpose of

the matrix R. [6J

It should be noted. that we assume that the temporal (or longitudinal)

momentum is conserved. This implies that the variable t is absent from the

fls or the gls.

As we already said, we have to introduce a new basis for the description

of M 0 This is easily done using N. Consider the linear eigenvectors of

:g2:. There are four of them [6]:

...

..

h = __1__ (Xi n ± i pixn)
±/2

(4.3a)

The linear functions h and v • have the following properties:
+ +

(4.3c)

(4.4a)

..

..

These functions, with the variable Pt, form a new basis for the polynomial

gn. In general. we can write gn as follows:

0g •. 2·
-v± = + i py v± • (4.4b)

-
(4.5a) ..
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-
or

-
a+j k+i

J 2 J 2exp {-i (a-j)_ -i (k-l)_ }x y x y (4.5b)

To simplify the notation, we rewrite (4.5b) using a new notation:

= L Am 1m >1 aj kl > .
a+j+k+l+m=n ajk.l

(4.6)

We now observe that the monomial 1m >1 ajkl > is an eigenvector of degree

n(=a+j+k.+l+m) of :g2:.

:g2: 1m >1 ajkl > = -i {(a-j)px + (k-l)py} 1m >1 ajk.l> (4.1a)

-

-

-

-

It follows that this relation is true:

exp(:b9 2:) 1m >1 ajkl > = exp {-ib«a-j)px - i(k-l)py)}1m >1 ajkl>. (4.1b)

The term "resonance basis· is suggested by the eigenvalue of 1m >1 ajkl >.

We will see that "problems· arise precisely when the eigenvalue in (4.1a) is a

multiple of 2...1.

In the next section, we will raise the map M to an arbitrary power.

5. The power of a map and the second order achromat

The process of tracking N turns is equivalent to raising the map for a

full turn of the machine to an integer power N. In a large machine, like the

contemplated sse, producing a full arc of a machine is also equivalent to

raising a map to a power. For example, the distributed lattice of the sse

will have at a least of the order of 60 cells in one superperiod. What 1s the

effect of raising the map for one cell of the 60th power?

This question can be readily answered by a "resonance basis· analysis. As

a first example, we will consider a map M known to second order only.

(S.la)
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(5.lb)
-

Raising M to the Nth power. is equivalent to raising the map N to the same

power. In fact. MN is just: -

Furthermore. NN is given by:

NN = exp(:N92: ) exp(:63: ) ...

N-l

63 = L: exp( :-ng2: )9 3
n=a

(5.2)

(5.3a)

(S.3b)
..

This last expression for 63 can be derived using the formulae in the

appendix. To proceed further. we decompose 63 using the Iresonanceh basis.

Then 63 becomes:

exp(in~ajkl)lm >1 ajkl> (S.4c)

Now. we turn to a specific example. that of the achromatic arc. Consider an

arc made of N cells containing chromaticity correcting sextupoles. For

clarity in this presentation. we ignore the presence of any other insertions

(low beta regions etc ... ). For such an achromatic arc. 6
3

is extremely

simple:

..

3 3' 3G3 = Aaaaal3 >1 oaoo > =Aaoaa p~n . (5.5)

How cr~ this be realized? It was discovered using matrix theory [3] that a

special choice of phases for the cells insures the result of (5.5). We will

rederive this result.
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--

Let us choose the phase advance per cell in both planes to be

2..-p (= lJx = lJy) '

We now look at all the possible values of ~ajki with the restriction

m+a+j+k+i=3. These are given in Table 1.

For all the tenms in (5.4) for which dip 1s not an integer, we can perfonm

the sum using a geometric series. The result is:

-

-

(5.6)

For phase advances smaller than 1200 (p=3), the denominator of (5.6) is always

non-vanishing. Therefore we have the result:

-

p > 3

d ~ 0 G~. ajki = 0

H = integerp

There are five tenms for which d=O.

(5.7)

12 >1 1100 > }12 >1 0011 >

- 12 >1 0110 > }12 >1 1001 >

\3 >1 0000 >

-

first order chormaticities

Vx - v y driving terms

3Pt term .

(5.8a)

(5.8b)

(5.8e)

-

...

The chromaticities are locally corrected_ hence the terms in (5.8a) are set to

zero in every cell. The vx-vy tenms are absent if mid-plane symmetry is

satisfied. As advertized_ only (5.Sc) remains.

In the next section, we look at the third order map.

9



G. The third order content of a map raised to a pgwer

Let us consider the map for one cell up to the order of 9
4•

Our goal is

to compute ~. Again in terms of N we must have:

(6.1)

=

And, G4 is given by:
N-l

64 = L exp( :-n92:) '14
n=O

This quantity Y4 is computed using canonical perturbation theory [6].

given by the expression

(6.2)

It is

(6.3a)

(6.3b)

We have to SUbtract the secular term in p~n 3 otherwise the denominator

in (6.3b) would vanish.

As we did before, we proceed to analyze G4 in the "resonance" basis:

N-l

64 = L rm·ki. L: exp(:-ng
2

: ) 1m >1 ajkl>
m+a+j+k+l=4 aJ n=O

Again, the effect of the map is easily evaluated in this eigenbasis:

(6.4a)

(6.4b)

N-l

64 = L r:j kl L exp(inAajk i ) 1m >1 ajki >. (6.5)
m+a+j+k+i=4 n=O

10
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We now produce in Table 2 every possible value for m and d. Table 2 tells us

that secular terms are produced for all values of p. These are the d = 0

terms. They are given in Table 3.

These tenms are always present even if the product Nd/p is an integer.

Symmetry alone cannot remove these terms. As before their value for one arc

is N-times the individual cell value.

One notices that dIp can also take the values ±l. This adds an additional

set of secular tenms for the commonly used 900 lattices. Indeed. for a 900

phase advance dIp can be ±l. Table 4 lists the additional 900 secular tenms.

It should be noted that these tenms are more detrimental to the dynamic

aperture of a lattice than those of Table 3. They are all sum resonances.

It can also be proven that the dispersion is related to tenms of the fonm:

1m >1 ajkl> => d = ±l.
a+j+k+l=l

(6.6)

...

It should be noted that these tenms cancel by group of "p" cells. The larger

p is, or, the smaller the phase advance is, the sooner the cancellation

occurs. This is a well known result. The dispersion of a 900 lattice tend to

be smaller than the 60 0 lattice dispersion.

Another famous consequence of this analysis resides in the terms of the

- form:

11 >1 ajkt > = > d = ±2 (6.7)

Suppose we combine two cells. For simplicity, let us assume that the map of

one cell as the trivial fonm:

N= exp{:g2:) exp(:all >1 2000 > + b 11 >10200 >:)

We can compute N2:

11
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6
3

= (1 + exP(i~.» all >12000 > + (1 + eXP(-i~·»bll >\0200 >

64 = -iab sin4; [11 >12000 >. 11 >[ 0200>]

4. 4 i 2= -4ab sin-- 12 >1 2000 > = -4ab sin~ p n Jp p t x

(6.9b)

(6.9c)

The polynomial 64 for this simple model is modulated by sin 4./p. If

the phase advance is 90°. this contribution to 64 vanishes. Notice that

(6.9c) is a chromaticity term. Chromatic terms of a 90° lattice are usually

better.

7. Conclusion

The purpose of this paper was to show how one can use the concept of a map

to understand the various symmetries of an ideal lattice. We stress here the

word ideal. Indeed. the presence of errors will break this symmetry. On the

contemplated SSC. our analysis. confirmed by tracking. had to be modified to

take into account magnet errors.

This resonance analysis can also be used to understand the behavior of a

full ring with or without errors.
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Appendix

Some Useful Formulae

If A is a Lie algebraic map:

A:f: A-l = : Af:

-1Aexp(:f:) A = exp(: A f:)

exp(:f:)-l = exp(:-f:)

-+in
If f2 is quadratic in Z ,then exp(:f2: ) is a linear map:

4 f 1n in in
Zi = exp(:f2:) Z1 = R1jZj

(A1 )

(A2)

-
Ri j 1s a matrix.

In a ring with mid-plane symmetry, if exp(:f2:) corresponds to a full turn

of the machine (or a cell), then we have:

.....

-

-p 2 2
f
2y

=~ ( yin + 2 yinp1n + B pin)
2 Yy OI.y Y Y Y

13

(A3)



-
If the following are true:

(A4 )

-

then.
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Table 1

- Possible values of m and d for a third order polynomial

I

m=O

I

m::: 1 m = 2 m= 3

d ::: !:R. ±1, ± 3 0, ±2 ±l 0
2"-

-

-

-

-
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Tab1e 2

Possible values of mand d for a fourth order polynomial

m=O m = 1 m = 2 m = 3 m = 4

d =~ 0, ±2, ±4 ±l, ±3 0, ±2 ±l 0211'

16
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Table 3

Table of fourth order resonance terms for a second order achromatic arc

- m= O. d=:O 10 »1111 >

I10 >1 2200 > tune sh1fts with amplitude
10 >10022 >

10 >12002 > I2 Vx - 2 vy coupling terms
10 >[0220 >

m= 2, d = 0 12 >11100 > I12 >10011 > second order chromatic1t1es
-.

12 >11001 > Vx - vy coupling terms.

12 >10110 > (Absent 1f mid-plane symmetry
is satisfied)

m= 4, d = 0 14 >10000 > 4 fl1ght term.Pt time of

-.

17



Table 4

Table of additional resonances found in a 900 phase advance arc ..
m= O. d = 4 10 >1 4000 > I10 >1

4vx terms
0400 > ...

10 >1 0040 > I10 >1 0004 >
4vy terms ..

10 >1 2020 >

10 >1 0202 >
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