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Abstract
We present an extension of the Chao-Ruth treatment of the Vlasov equation
which includes both the head on and the long-range collisions. We also
simplify the multiple bunches treatment by following the time evolution of a
site instead of a bunch. Analytical results are obtained for the dipole mode

and some numerical results for the higher modes.

T. INTRODUCTION

Beam-beam collisions are an important consideration in the operation of
storage rings. In the contemplated Superconducting Super Collider (SSC), the
finite crossing angie « gives rise to long range interactions. The
inclusion of the long range forces introduces the possibility of communication
between bunches of particles.

In this paper, we exploit the symmetries of this complicated problem. It
will be shown that dipole oscillations where the bunches act as macroparticles
can be solved analytically for distributed lattices. For higher modes, the
Vlasov techniques introduced by Chao and Ruth * are generalized to the long
range problem. Unfortunately, 1ike them, we did not analyze the possible
effect of tune spread. It is reasonable to believe that tune spread will

greatly raise the stabijlity of the system.



A1l the equations of this work are the result of a linearization of the
Vlasov equation. This implies that the collisions can be represented by
linear operators (i.e., matrices). To keep the language very general, we will
delay the introduction of actual expressions for the collision operators. We
will start with a group theoritical view of a periodic lattice undergoing
beam-beam collisions.

2. The fundamental symmetry

Consider a ring Qith N interaction sites uniformly distributed. We also
assume that the tune between sites is the same all around the ring.
Furthermore we assume that the beams contain mN bunches evenly distributed.

Figure 1 shows the case N =3 and m = 4,

¢I',:11 1

Fig. 1. he schematic repressntation of a ring with 3 coilision site (N-71)
and 4 bunches per site and per beam {mi-4).

The vectors & and ¥ are supposed to contain the physical information of each
beam. Formally, we can write an equation for the process of colliding and
moving single particles to the next collision site:

+ -

(2.1)



Our operator should be invariant under the exchange of & and ¥. From this
we conclude that it has the form:
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The operators A and B act on & and ¥ individually. The operator A mixes
the two beams.

At this moment, it seems that nothing more can be added. However, the
N-fold symmetry of this problem can be made apparent if we adopt a point of
view used in hydrodynamic calculations. We will make use of the Eulerian
view. Instead of labeling the bunches and follow them around the ring, we
will label the sites. The vectors & and ¥ are decomposed in N smaller
vectors representing the state of each site:

N N

r = (Q'Y) (o' s¥'seveyr @ ¥ ) (2.3a)

K

Y o= (e, v ). (2.3b)

We define the relocation operator 2. Since the superscripts in {2.3) denote
the sites, after each collisions the entries of I' must be relocated. This

can be achieved by Q:

ar = (o, ¥, o', ¥, .0t h, ¥h) (2.4)
Finally, we write the collision and the relabeling in terms of the operators:

A, B, A and Q.



Lt = Q Ar° + QA Bre . (2.5)
The superscript of I' is incremented after each collision and relocation. For

example, one turn of machine or N collisions is given by:
N N
r = (Q A+ QaB) re. (2.6)

Keeping in mind that A and B commute with @ and A, we see that the study of
one turn is related to the study of the products of Q@ and A. By adopting
the Eulerian viewpoint, one does not need to compute the operator for one turn

th t

but oenly for 1/N h of a turn operator QA + QAB

of a turn. Indeed, the 1/N
will determine the stability of the motion.

In addition, it is remarkable that the dimensionality of this problem can
be reduced by a factor of N. The products of @ and A form a group of finite
order. More details are given in Appendix I. The only important result is

given by the following theorem.
Theorem:

There exists a basis for I' where all the operators in (2.6) decompose
simultaneously into blocks of the dimensionality of v*. Hence, in these
subspaces, labeled by u, the operator for the process has the form:

c
Y

wA+twdB (2.7a)
" TRRY!

cos(%ﬁ u) sin(%lu) (2.7b)

-sin(ﬁlu) cos(ﬁzu)



5 = , Dswzg 5 N even (2.7¢)
1 0 0<wusg 52% N odd.

This result can be derived from group theoritical considerations®(Appendix 1)
or by discrete transforms {Appendix II).

We have introduced very 1ittle physics at this stage. A1l the physical
content of the collisions is contained in the A and B operators. 1In the case
of long range collisions, we will discover that some simplifying assumptions
can further reduce the dimensionality. The problem becomes solvable

analytically for the dipole mode and numerically for the higher modes.

III. The study of dipole oscillations.
Let us suppose that each bunch is represented by a position x and a

momentum x'. The counter-clockwise bunches will be represented by y and y'.

3,4

In the simplest model, the head-on collision is of the form:

x; X' + e(x-y).

(3.7)

Yy =¥+ e(y-x) .

The long range collisions, at a distance s from the head-on interaction site

have the form:

x! = X' + 5% (x-y) (3.2)
S

| - 1 _‘.E -
Ye=y' + . (y-x),

where p measures the strength of the long range interaction.




As we said before, each site has m bunches in each beam. Furthermore, we

assume that J long range collisions are allowed to occur before the separation

of the beams takes place. The vector y" representing the uth mode of the
ring has 2 m components:
VN OGP ey | (3.3a)
o = 0, XY (3.3b)
o =l vl (3.3c)

The bunches are shown in Fig. 2.

l Dipole used for separating the beams
J=5

Fig. 2. Configuration of an interaction region,

The long-range collisions will depend on the single particle transport map
between the long-range sites and the head-on site. It is shown in Appendix
ITI that the collision operator between the 2 m bunches can be expressed as

follows if we neglect cross-terms:



Y, = Hx (3.42)

= exp (:H:) (3.4b)
m J m

H o= H+ Y 3 H (3.4e)

=13 =-3 =1 e

L0
[ ] 2

Hj =3 (xj-vj) (3.4e)
g = %:—f; (Py Xy = Py Vi)’ (3.4f)

Here, :H: is the Lie operator® associated to H and Py is the single particle

map whig

range Ssi

h transports a particle from the interaction point at s=0 to the long

te at s=%L. It is important to realize that the Lie operators in

Equation (3.4) are all expressed in terms of their values at s=0, before the

collisid
noted th
first by
This req
index j|
similar
boundary

The
two mode

the psel

ins take place. This is done to simplify the analysis. It should be
at we added some collisions which do not occur. For example, the

nch e, interacts with L through the first long-range interaction.

ders the system translationally invariant under the raising of the
If m is large this approximation is not very drastic. Indeed it is
to the Von Karman boundary conditicn of crystallography. We neglect
effects.
analytical solvability of the problem will depend on Py - There are
1s for which the computation is done analytically. The first one is
do-drift. Let us assume that Py is a drift:
PeX =X + %L X' (3.5a)
pg X' = x' . (3.5b)




L
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Assuming that the beta function B, at s=0 is smaller than
then the second term in Equation (3.5a) is larger than the first one. Using

this we replace Py by the pseudo-drift o, :

X
o X = ;—'- X (3.6a)
o x'= - 2. (3.6b)
% L : ’

In the second and simplest model, we abandon the exact knowledge of the actual
map. We only retain the change in B function resulting from the drift.
Again, if %L is large compared to B,, we replace P, Dy the telescopic map

91:

8,x = VB X (3.7a)

2

By

o,x' = vB, —x' ,withp = B . (3.7b)
"BL '

It turns out, as we will see, that only the details of the stability limit

depend on the actual model used for p.

For 9 and el jt is possible to evaluate equation (3.4a) in a way which
preserves the symplectic nature of M. Because of its simplicity, we will
first examine the case of 9, - For this approximation, equation (3.4a) takes
the form:

x- —X
j+ 3

J
ap
1 = ) - _‘_2 — - _!'
xj+ xj + c(xj yj) + B, Z (ij an, yj"")L’!’ (3.8)
L=1



The pardmeter p can be estimated in terms of a gaussian®’* model for the bunch.

Due to t

transfor

Under ti

Finally

2

-2 o,
p = T %% = size of beam. (3.9)
[+ 3
a = crossing angle.
he invariance in j of Equation (3.8) it is desirable to canonically
m 2 and wj:
1 & 2
o —— 4.4
N ; FUIZE ) o (3.10a)
f(x) = cos(x) + sin(x) {3.10b)
e effect of (3.10), (3.8) becomes:

X = X

A+ LS
Xy =KL+ () ¢ i—fﬂm(om - a(M)y,) (3.112)
w
48, B
q(i) = S: cos(%!jk) —;'L;—* (3.11b)
3= L5

we introduce the phase advance between interaction points. Since all

the ”j Ind *j are variables at the interaction point, they transformed

identic

11ly. The same can be said of the decoupled variables ¢1and ¥y - The

phase advance matrix R(vo) is just:

cos(Zwvo) B*sin(Zruo)

R(» (3.12)

o) =
—sin(2¢v0)

cos(2av,)
Bx 0




We are now in a position to derive the operators Ax and Bk of Equation (2.7).

1 1}
Ax = R(uo) (3.13a)
e(1422_q(0)) 1
B
0 0
By = R("G) (3.13b)
- (1422 q(3)) 0
B
These operators fit into Equation (2.7):
™= w (A +& B) (3.14)
u TRy N THS S :

The operator C: is in general a 4x4 matrix acting on r: = (q{, w{).
Again we remind the reader that o, and su mix ¢ and ¢, while A and B act
separately on each two-dimensional vector.

The case of the pseudo-drift is slightly more difficult. There we factor

the head-on map from the long range kick.® To first order, this is permitted.

M=M, M (3.15a)
My = % %0 (3.15b)
Bg Ao
AR BLr
M (M) = (3.15¢)
BLr AR

10



A A, +B B

34 T Mr™ * Pr®o

bx = ALRB0 + BLRAO (3.15d)

The matrices Ag and Bp are obtainable from the previous calculations by

setting

The act

p to zero:

Ag = (1 ?) . Bg= (‘38 g) . (3.16)

ion of the long range kick can be exactly evaluated:
J
Xg, = Xy= ep(2] x§ + %é; (Vg * ¥jp) ) (3.37)
1 = '
*+ 7%

Again wE transform to a new set of canonical variables using Equation (3.10):

- - - ]
e = % 2 cp in 2 ep q(\) Yy

J
Vo - 2%
xi,o= %, aa) = Y cos(EE ) . (3.18)
J=1
From (3.18), we deduce the expression for ALR and BLR:
1 - 2epq(0)
ALR = (3.19a)
0 1
0 = 2epq(n)
BLR = . {(3.19b)
0 0
Finally A7L and Bx of equation (3.14) are obtained by advancing the phase using
R(vo}:

Al = R(”O)ak
(3.20)
Bl = R(uo)bk

1N




In the next section, we evaluate the eigenvalues of c: for the two models

and determine the stability diagram.

IV. The stability for the two models.

For each model we must solve the equation:

det (c: - Al) =0

(4.

The matrix c: is a 4 x 4 symplectic matrix. Some standard tricks’ can be

to reduce (4.1) into a quadratic equation in A. We assume that the most

unstable modes will reach their threshold when A becomes +1.°

In the case of the telescopic model, one can show that Equation (4.1)

implies that A reaches *1 when the quantity B, obeys the equation:

8(CFK)* + 8(1+D) S(C¥x) B, + 2(D*- Q%+ 2(D-Q)) S*(eB)? = 0

C = cos(2avp), S = sin(2wvg), « = cos(ﬁﬁu),

0 () = 2y, 0= 0(0) .
Bx

In terms of the usual tune shift parameter ¥, (4.2a) can be solved:

{21 2
Se 7T 23DvQ(M) o+
(2], 2
2 S TPV
=1 C*«
Et T 4w S
eBy
s

12
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2b)

.3a)

.3b)

.3c)
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The quantities D and @ vanish in the absence of long range collisions. 1In
that cage, E+ given by (4.3c) determines the stability of the system.
Figure 3 sho;s the plots of £, and the resulting stable region for positive
E and N=3. )

In the presence of long range collisions, the most unstable modes
determine the boundary of the stable region. To get them we need to find the
extrema [of Q(A) under the variations of the quasi-continuous parameter
A (Y €A <m; m>>1). In Figure 4 and 5, we show the head on and long
range dominated regimes. Indeed, if D+Q reaches for some A the value -2; the

system i{s dominated by long range collisions. Notice that this model predicts

that the stability curve is obtained by multiplying g, by a factor
independent of vg- This is not really true if drifts—geparate the long range
sites. |The pseudo-drift model corrects this qualitative discrepancy of the
telescopic model.

The |pseudo-drift produces a cubic in 8, for the stability limit:
8(C¥x)? + 8(14D) (CFx)S eBx

+ {£8Cx(D-Q) + 45*(D-Q) + 25%(D*-0%) + 8x?Q-8C?D} (eB,)?

+ 4CS(Q?-D%) (eBy)® =0 . (4.4a)
0 =22 q(), 0= q0) . (4.4b)
B

Neglecting terms quadratic in D or Q, we can approximate the solution for

weak long range:

sl v g, (4.5a)

£21= FpEs (4.5b)

13
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Fig. 3. The graph of equation (4.3c) for N=3.
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Y

Fig. 4. The graph of (4.3a), (4.3b) and {4.3c) are shown in a weak tong range
regime for the telescopic model.

H+

E@E ==<33‘£ A ' /

Fig. 5. The graph of (4.3a) and (4.3b) are shown in a long range dominated
system.
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0 1/6 1/3 1/2 v
Fig. 6. The $olid curves are the prediction of the pseudo-drift model for
N:=3, a=50urad and J=4. The circles are the results of M.A. Furman's
simulation where N=3, m=5, J=4 and «=50Ourad.
& l l I
0} A
B b
01 ]
05— ]
- ]
}- o
. .
0 | I
0 1/6 1/3 1/2 v,

Fig. 7. Same configuration as Fig. 6, but a smaller crossing angle is used,
a-10urad. Again we have a good agreement between the theory and
Furman's simulation.

16



The coef

infinite

ry = 1-D+{(D-0) (25*+4Ck) + 4x7Q - 4c’n}-—‘—; (4.5¢)
as
ry = (ra+D—'|)'1 (4.5d)

ficient ra modifies the existing head on 1imit while b becomes

in the absence of long range collisions. Again the stability limit

is determmined by the values of A which extremize the function q(A). B8y

analyzin

Remarkab
considen
In t

For this

inte 1/0.

result o
The agre

inclusio

5. The
In t

a model

gr, around the point obeying C¥x = 0, we get the result:
1

0< vy <\ ry = ra(q=d) =1 (4.5a)
1

N S v < 0.5 Ty = ra(q=qmin) {(4.6b)

1
0< vy < 0.5 - N Ty = rb(q'qmin) (4.6c¢)
1 - =d) = L

0.5 - NSvs 0.5 ry = rb(q-d) =D (4.6d)
1y, the results of (4.6) are exact even if the full cubic equation is
ed.
he 1imit of large long range, equation (4.4) turns into a quadratic.

equation, we find that ra in (4.6b) becomes infinite and s turns
The results are shown in Figures 6 and 7. The circles are the

f an actual simulation with real drifts in between long range sites.*

ement is quite remarkable. In the next sections, we will look at the

n of higher modes using the Vlasov equation.
Long Range Vlasov Equation.

he rest of this paper, we will present a straight forward extension of

proposed by Chao and Ruth. 1In their model, the head on kick between

17




two bunches represented by the distribution functions ¢(x,x';s) and
v(y,y';s) is:

_ 2wNr

Ax' =
LxY

[wH, (x-y) dydy' . (5.3)

Here r is the classical radius of the particles, Lx is the horizontal width of
the beams and y is the Lorentz factor. Finally Hl(x—y) is a step function:
-1 x <0

H1(x) = (5.2)
1 x>0

Assuming that the interaction takes place at s=0, the Vlasov equation® becomes:
age + x'3,9-3, ¢ {K(s)x-Ad(s) [H,(x-y) ¢ dydy'} =0

_ 2aNr _ 8
A= v 37 =537

K(s) = lattice gradient. (5.3)

A similar equation can be written for y.
The kick (5.1) assumes that two ultra-relativistic ribbons are colliding.
For the long range, we assume that two localized ultra-relativistic beams pass

by each other. The long range kick is given by:'°

Ax' = fy(y,y';s) xg(x-y) dydy' (5.42)
AL
X .1 1
Xs = "w (us+x—y as) (5.4D)

a = crossing angle; s = path length from the head on site.

As we did previcusly, we will concentrate on an individual site (see Figure
2). For this system, with m bunches in each beam and J long range sites on
each side of the head on, the Vlasov equation becomes:

J
‘ _ _ At
as¢1 + X ax¢1 ax,¢1{Kx &(s Z)Ixsw

jeg(Yo¥'s —s) dydy'} = 0

where X = AH1(x-y) . {5.5)

18



Notice

ance mo

that all the approximations used in the dipole mode analysis are used

re. At we did before, it is possible to rewrite (5.5) in terms of a

local eguation at s=0 provided that cross-terms are neglected. It is shown in

Appendi

Again t
approxi
we will
telesco

For

X V that the resuilting equation is:
J
' _ . -1
asq.i + X Bx(p,i ax,tp_i Kx + &(s) az(pi ; ax.(p!’ Z)
Ing(ogx =p_g¥)w; o (y,y'is)dydy' =0 (5.8)
2= (x,x').
his very complex equation is solvable under Chao and Ruth's
mations for the telescopic and the pseudo-drift models. In this paper.
only look at the pseudo-drift. It is a more complex case than the
pic map.
the pseudo-drift, we replace Py by % and equation (5.6) becomes:
J
K'axvi - axn P4 Kx + 5(5)3)(‘?1 ZG(X'+¥')[¢1+1W1_,’}dydy' =0
t=1
[ -]
AL n
B(x'+y') = % ) b xwn (5.7)
n=1

The next step is to linearize (5.7) around an equilibrium distribution f. We

must ha

ve!

?; =f+Acp_i. T

i< f + by, . (5.8)

Substitution of (5.8) into (5.7) produces two equations:

asf + [f, H0 +V+HW]l=0 {5.9a)
J
3ap; + [Beg, Hy + V + W]-3(s)af J&(x'+y') (Aw;  +oy, o) dydy’
o=
+ ax.f $(s) Jxo(x-y) Awidydy' =0 . (5.9b)

19




The function Ho’ V and W are defined as follows:

' 2 2
Hy = §- + K % (5.10a)
xl
V(x';s) = -2 &(s) I du [G(u+y') f dydy! (5.10b}
0
X
W(x;s) = - &(s) 0! du Ixg(u-y) f dydy' . (5.10c)

Equation (5.9a) and (5.9b) are the basic equations found in Chao and Ruth's
treatment. What will now follow is a marriage of their techniques with what
we described previously for the dipole mode; all of that ieading to the "“good

old" operator C:.

VI. The transfer map technique.

Again the dimensionality of the problem is gigantic. We reduce it by
applying the transformation (3.10) on bo, and By, . The resulting equation
is

380, + [b@,, Hy + V + W] - &(s) 3, f q(X) [G(x'+y') Ay,dydy"

+3,,f 8(s) fxp(x-y) 8y, dydy’ =0 . (6.1)

The function gq(\) is given again by (3.18). At this stage we must assume a
certain distribution for f. The simplest one is the water bag distributioen.
Assuming that the perturbed Hamiltonian H° +V + W is integrable, a stationary
f obeying (5.9a) depends only on the action variable J*. The water bag
distribution is given by:

0 x< 0

[
f(3,) = H(EE - 3 ) /we, H(x) = 1 . , (6.2a)
X >

20



€
= - X
afo = G(Jx 3 )/a'cx . (6.2b)

As Chao land Ruth did, we assume that the Hamiltonian Ho + V + W is quadratic.

In that |case, it is possible to relate (¢x, Jx) to {x,x'):

X = JZBJx cos ¢ (6.3a)
f ZJX
x!' = - §~— sin ¢, (6.3b)

The funcition B is slightly different from B,. On the other hand, the Twiss
parameter « is still zero due to the symmetry around s=0 of V + W. Taking

advantage of (6.2) and (6.3) we can decompose A¢, and Ay, in multipole modes.
A A

<y OZ ‘i!.¢x
A°1 = s(Jx-§~) f!(s) e (6.4a)
§=—o
€x = i!.tbx
A“’x = G(Jx— -2—) ;gl(s) e . (6.4b)
Integrating (6.1) around s=0 leads to the following equations:
e AR S Wyl - A VBTey S Mo (6.5a)
L 2 [2¢« vBeo ekIk 2«2 L ek Ik
X
2% 2v te _ 1k¢y
Nzk = d’. e CoSé G(—VE;7B {sinp + sinoy))e d¢d¢y {6.5b)
0 o0
- ¢ &6
ALx

21




2w 2«
BT Tkey
L -v/ﬂ.}r e sing H1(cos¢—cos¢y)e d¢d¢y . (6.5¢c)
0 0o

The matrix “1k was evaluated by Chao and Ruth.' 8oth N and M are traceless and
their square is zero. This insures that to first order the determinant of the
transfer map is one. To preserve this property to all order, we factor the

transfer map as we did for the dipole mode:

. A vETe; AL _a(2) _
Y = (I -——" M) (I - ————— Na)y (6.6)
21’2 2“’ ot /B-c-x
= L
= MoMiRY
Y = (f » 9 ) = (f]- f__-lo g'lo g_-!’ ---’f"g f_,'!g!l g_!"-)

Here again, the matrix A interchanges the components of y. Notice the
structure is identical to the dipole case (3.15).
Finally, the phase advance matrix R(v») is given by:

R(v) vy = e 0™y . (6.7)

Using the group theoritical tools of section 2, we can write the map for the

full N-sites ring:
1 A
Cu = m“ R(v) HOMLR' {(6.8)

) N .
The dimension of C" will be 4!.max where lmax is the highest mode considered.
0f course, we must examine g values of y and a continuum of values for A .
But, quided by the dipole mode studies, we will present in the next section

the tricks which makes this problem finite.

22



VIiI. D

The
vo- To
and v i
the sam

In
be:

ktermination of Stability Curve
final curves will exhibit the stability limit in terms of 50 and
compare with the dipole studies done previously, we will compute §

h terms of EO and vg- Also we will compute the Tong range with

i coefficient p as used in the dipole studies (Fig. 6 and 7).

ppendix Vv, it is shown that p from the Vlasov equation is predicted to

p=-—7". (1.1)

The tung shift parameter Y is given by:

A vB,
= 7.2

i (1.2)

X

In terms of these quantities, we get for vg and B,:
vg =t (;—6 + %E) Eg (7.3a)
B

B, = B sin(2ww) (7.3b)

sin(Zwuo)

This tune shift is computed at Jx = cx/2 and is a first order result in

the beam-beam parameters. It is obtainable from V + W through the formula:

2% ‘
2w(v-vg) = g‘]_x %; f (v(x') +w(x)) do (7.4a)
0+
v(x') + w(x) = f (V(x';s) + W(x;s)) ds . (7.4b)

0
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Finally, by manipulating N!k’ it is possible to write relations obeyed by this

matrix:
jw

N = - exp(— (k-2 .

ok D(2 (k-%) ) L (7.5a)
u* = -y

= = u’= 0 => N*= 0 7.5b

Mok T Mg > = 0= N= 0. (7.5b)
gk T "Mk

One can also get a messy generating function for Yor®

u(x,y) = }E: xlyk Moy (7.6a)
!,'k = -0
n
w(x,y) = - sx¥i(x—x"") 2 (&) (xexTayayTH™! (7.6b)
n=0
cx/ﬂ*
s =Y . (7.6¢)

x

The parameter 8 measures the ratic of the beam size to the beams separation
during long range collision. For our model to be consistent, & has to be
much less than one.

Armed with all these results, we can substitute them in C:, and find its

eigenvalues A:(k). Inspired by the dipole study we try to extremize Ai(k):

. dAT (3)
d i - u_ ' dg _
& AL = -0 (1.7¢)
1=1, 48

Again, dgq is zero for A = 0 and X = X\ Assuming that the most

dx min’
unstable mode occurs at one of these two values, the search of the stability

1imit is now a finite problem.
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vely. The highest multipole mode included is the sextupole mode,

e reader will notice the degradation of the 10 urad case of Fig. 9.
shows a much higher stability 1imit. This is due to the size of &
s the value 0.7 at i0urad. If only the linear terms in § are kept,

j1ity curve for 10urad Jooks again like Fig. 7 as indicated by Fig. 10.

Conclusion

series of tricks, we succeeded in adapting the matrix techniques of
Ruth to the complex problem of the long range interaction. Qur
jfons suffer from the same inadequacies as theirs. In particular, it
ative to include tune spread into the calculations, even at the

of further approximations.
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Fig. 8. The configuration of N=3, J=4 and a=50urad is studies with the Blasov
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We factor the map in order to preserve the sympletic nature of the total
map. Factorization is used again in the treatment of higher order modes,
equation (6.6).

See reference 5, p. 168.

This assumption is hard to justify in the presence of a complicated long
range operator. Indeed, we have checked that some individual modes become
unstable through a Krein collision on the unit circle. During a Krein
collision, the eigenvalues meet on the unit circle away from the real
axis. However, these modes were more stable than the modes becoming
unstable at #1.

It is our belief that the coefficient A in reference 1 is to large by a
factor of 2. 1In any case, it does not change the results of this paper or
those of reference 1.

In equation (5.4b), we subtracted the d.c. term of the long range force.
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Appendix I. The Group Theoretical Approach.

The

is easy

structure of the group generated by @ and A is quite simple. It

to show that this group has 2N elements. In fact, the group is

composed of the following set of elements:

A1l oth
the stu

jrreduc

k k

G=(x|x=Q,x=482; k=0, N-1} (A1)

r products of Q@ and A must reduce to one of these 2N elements. In
y of the operator C(= QA + QAB), it is convenient to find all the

ble representations of G. According to the theory of finite groups,

the number of distinct irreducible representations is equal to the number of

equival

Those ¢

Nod

k=1

Countin
odd N a

As
repres

their W

nce classes of the relation P defined as follows:
-1
XPy © 3 acG such that axa =y. (A2)

lasses partitioned G. They are given by:
—k

436 = (I} U (ae*: k =0, N-11 U (&, &%)
k=1, N-1
P k., o _ N_ K+a, . _ N_
oni 6= {13 U (2% k=0, 51} U (80" k= 0, §1) (A3)
N
u <, eXrvi@®n
» N-a

g the number of classes, we conclude that there are (N+3)}/2 classes for
nd (N+6)/2 classes for even N.

mentioned in section 2, the dimensionality of the irreducible

ntations of G does not exceed two. This is in contrast with @, A and

arious combinations which in our problem are 2N by 2N matrices. In the

2%




next tables, we list the irreducible representations as well as the frequency

of their occurrence in the original 2N by 2N representation:

Total contribution to

Nodd 1 Q A Frequency the dimensionality
0-mode 1 1 1 1 1

a-mode 1 1 -1 1 1

u—-mode @ w, Au 2 2(N-1)

Total contribution to

Neven I Q A Frequency the dimensionality
0-mode 1 ] 1 1 1
w-mode 1 1 -1 1 1
0 -mode 1 -1 1 1 1
* -mode ] -1 -1 ] 1
u-mode “g w, AH 2 2{N-2)
cos(2%¥) sin(25¥)
‘l’ =
¥ 2 2
-sin(<gH) cos(<ZY)
(A4)
0 1
8 =38 5=
1 0

The last column adds up to 2N as required. The results can be checked by

standard tools of group theory. 1In particular, the two following relations

are useful:

ZTr"(x) Tr¥(x)" = 2N & (AS5)
xel V¥
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The freq

In thes

th

uency of the v irreducible representation is given by:
f = 5% :E: Tr(x) Tro(x)* . (A6)

xeG

sums, Tr(x) denotes the trace of x in the “th irreducible

representation. In (A6), Tr(x) is the trace in the reducible representation

under study. Finally, we conclude with a word about the relocation operator

Q. The readers familiar with group theory will notice that, by the very

nature of @, the original 2N by 2N representation is the so-called reqular

represe

tation of a finite group. It obeys the relation:

0 for x =1
Tr(x) = (A7)
2N for x = 1
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Appendix II. The finite transform approach.
The group theoretical results of Appendix I can be rederived with the help
of the transformation introduced on line (3.10). To use this technique we

must rewrite (2.5) in component form:

F:(QA+QAB)F
is replaced by (81)

=i+ i
® Ag

i
+ By

=i-1 i

¥ Bo' + Ay

Here, the superscript "i" is a modulo N number.
1 ¢ Z/NZ . (B2)

Using (3.10), with m replaced by N, we transform (B1) with the result:

COS(gﬁn) " - siN(gﬁE) ¢ ¥ = Ap" + By

(B3)

COS(gﬁn) M sin(gﬁ“) w o= B + AYY

Equation (B3) involves four components. These can be decoupled further by a

transformation to the new vector w;:
W= (EL L 6
g = (o £y A2 “(B4)
&= (et 22

In term of w, (B3) takes the form:

oM o= H
©_, wi = (Ae + B3&) wi
(BS)

NZ

(1 0) s (0 1) 0
= » = » &
*= % 1 T R
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To lget (B5) into a form identical to the group theoretical description of

Appendix I, we transform w: into two new vectors V: and V::

¥ _ H
V1 =W,
uo_ ]
V2 = mﬁ W (B6)
2

VW= (w A+ w 8BV, i
1 H 7] 1 0

IN
b~
IN N
na =z

The connection to the group theoretical approach can be made more exact. For

w03 %, we regained the two dimensional representations referred to as

the u-modes in Appendix I. They indeed appear twice (i.e. v1 and V:)'
Finally for even and odd N, we get two medes at u = Q0 (0-mode, w—mode).

For even N, g is an integer. We get the 0 -mode and » -mode at p = 3.
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Appendix III. The collision operator in the dipole mode.

This appendix as well as the subsequent one, will treat the problem of
rewriting a non-local process in terms of a local one. Our final result in
Appendix III will be equation (3.4). To start, we write a kick in terms of
its Lie operator. We assume that the collisions take place at some location

s, where s = 0 is the head on site. At a given s, the kick has the form:

x+(s) = x(5)
(C1)
'
x,(s) = x'(s) + e (x(s) - y(-5)).
In Lie algebraic language, {C1}, is just represented by the operator:
s s 2
H.ij = 2_ (X(S) - y(—s)) . (cz)

Our goal is to write an operator which is first order in <5 and is
expressed in terms of the s = 0 values of the bunches coordinates. First of

th bunch can only collide with the (1+s)th

all, we notice that at s the i
bunch. Here we assume that collisions happen at s = 0, +1, ...+J.

The transformation representing this collision, can be written as follows:

= exp(:H§1+s:) (c3)

Mii+s
This operator acts cn the vector (@i(s), ¢i+s(—s)). Neglecting the existence
of other collisions, we can write a relation connecting this vector to its

s = 0 value:

[}

9;(5) = p9;(0)

(C4)

Vips(™S) = p_g¥;,(0)
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The operator Pe ijs the single particle map bringing a particle from s

0 to

s. It is, of course, a canonical transformation. Using (C4), we can write

. 5 - -
the operator Hii+s at s = 0:

0 €

_s 2
Hijes =2 (pg %4(0) = p_¢ ¥4,.(0))

(C5)

Since all the cross terms are neglected, the total operator will just be the

0
sum of &11 the Hﬁ+s operators.
m J
_ 0 0
He D M+ > Hyjes
i=] g=-~]
s#0

One intgresting question is why we can neglect cross-terms within an

(Cs)

interaction region. The answer can be understood in terms of a resonance

analysis of the total map. Instabilities occur when the bunches hit a

rescnan
Therefo
achieve

notice

te. This resonance is driven by successive appliication of the map C.
re a correct treatment of the power of C is important. This was
1 without approximations in the appendices I and I1. The reader will

that this approximation must be very accurate since Figure 6 and 7

agree very well with an exact simulation.
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Appendix IV. Turning the long range Vlasov equation into a local equation.

We start with equation (5.5). First we integrate it around Sg = %L:

+ - - —

@i(sy) = @5(s9) - 3,10(s,) ! xsl(x—y) ¥ipg (¥s ¥'5-s,) dydy! (01)
Neglecting the collisions, ¢; can be progated with the inverse of the single
particle operator:

o (X, x'5 s0) = o te(x, x'5 0) (02)
Substituting in (D1) this last result:

1(Zi 0) = 97(Z; 0) = py (3,407(s.)Ixg (x-R) w5, (p7*T; 0)dT)
L

(D3)
Z=(x, x')
We must manipulate the derivative in (D3):
“5) {awgtp;*z; 0) a(p;‘Z)}
P01 9:(5,) = p = . o
Lx'vitTy ) 1 9
apy 2) X
(D4)

1l

- -
3,9:(2: 0) . 3,.(p, 2}

In the linear model, p;1 Z is linear function of Z. Therefore the second
term in (D4) is just a number, independent of Z. We substitute (D4) into (D3)
and change the integration variable:
J
v¥(2;0)=¢;(Z;0)-azw;(2:0)'zz:Px.(leZ)Ixséplx-p_2;)¢;+!(7:0)df (05)
=-J
In (D5), we added all the long range collisions. Since we neglect
cross-terms, (D5) is the final result. the reader will notice that (D5) can

be obtained by integrating (5.6) around s = 0, hence these equations are

equivalent.
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Append
Th

Vlasov

ix V.
T purpose of this appendix is to connect the parameter appearing in the

model to the simple dipole mode picture derived from a gaussian model.

In particular, we would like to derive the parameter p connecting the head-on

kick to the long range kick. Let us assume that a coilision of unspecified

type o

Multip

ccurs at a location s. This is described by the Vlasov equation.

3o + [o,H)] + 8(s) 3 .0 [ x ¥ dydy’ = 0 (€1)

lying (E1) by x' and integrating across the delta function, we obtain:

<x'>+= <x'> - [ x'ax.¢ dxdx' | X ® dydy' . (E2)

Intengting (E2) by parts, we eliminate the derivative:

Fi

form:

Substi

Th
analyt
f(Jx)

'
<X >+

il

<x'>+= <x'>_ + [ ¢ dxdx' | X ¥ dydy' . (E3)

rst, let us consider the long range operators, in that case X has the

ALx
Xg =~ (Y - X) - (E4)
wa S
tution in E5, leads immediately to the final result:
ALX
Iy = 1 -
<x'> = <x'>_+ — (<y > - <x >)) (ES)
wx S

e case of the head on collision is more complex because x(x-y) is not
ic. We can approximate (E3) by introducing the unperturbed distribution
and linearize around it:

= <x' >+ ALK (x=y){F(3,)aw(y,y' }+F (I, ) 8w(x,x ") Jdxdx ' dydy'
(E6)
<x'>_+ AIp(x)Hl(x-y) Awdxdydy'+Ajp(y)H1(x-y) Apdydxdx'
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Here, p{x) is the particle distribution in x resulting from f(Jx). Under the
assumption that p(x) is even in x, the first integral in (E6) can be

simplified using the following relation:

+o -y +o y
[ p(x) H(x-y} dx = - [ p{x) dx + [ p(x) dx - [ p(x) dx
- ~ y -y
Y
= - [ p(x) dx (E7)
-y
= -2yp(0)

A similar relation applies to the second integral
4+
I p(y) H(x-y) dy = 2x p(0) (E8)

-0

Substituting of (E7) and (E8) into (E6) leads to the final result:

<x’>+= <x'>_ 4 2A p(0)(<x > - <y >_). (E9)

From (E5) and (E9), we can compute p:
-l

paE. SR (E10)
27a’p(0)

In the water bag model, p{x) is given by the formula:

2 € - X
p(x) = p— X
“‘xfﬂ* B
(E11)
2
p(0) = y
4 CXB*
Hence, we cbtain:
L ve By
- - X X 7
pwaterbag - 4o? (E12)
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Finally, we can compute EO' with the help of (£9) and (4.3d):

4v E5 = 2Ap(0) By
(E13)
A vB,
Eo=

3‘/
L 4 ex

In the numerical studies in this paper, we always used EO defined by
(4.3d) and p defined by (3.2) as the numerical inputs. A1l other quantities
in the Vlasov treatment were re-expressed in terms of EO and p using the

formulae of this Appendix.
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