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1.lntroduction.

In a previous SSC-report (SSC-32), we explained how one could get some
analytical results in the study of dipole beam-beam collisions. We
examined three cases. We solved exactly for the stability condition in the
presence of head-on collisions (h.o.). Then we studied the change in these
conditions as we add long·range collisions(l.r.). We obtained analytical
results which agreed very well with the exact computer solution.
The purpose of this paper is to extend to the I.r. collisions a calculation
due to Chao and Ruth. This calculation reported in SLAC-PUB-3400/AP-37
(SLAC-37) used the Vlasov equation in the study of h.o. collisions. They
looked at the effect of modes up to octupole order. In their formalism the
ribbon beams are represented by two distribution functions 'P and <D.

The kick received by a relativistic particle in the 'P beam due to the <D
ribbon beam is given by:

-
6Px=27tNr J<I>(y,Py;s==O) H1(x-y) dry

Lx 'Y

(1.1 )

Here r is the classical radius of the particles, Lx is the horizontal width

of the beams, 'Y is the Lorentz factor and

-1 x<O
(1.2)

-

-

-

1 x>O

One can then write down a Vlasov equation for <I> and 'P.

A=27tNr .

Lx 'Y

A similar equation can be written for 'P.
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2. The long range Vlasov egua!m

The expression for the head-on kick assumed a ribbon beam. For the long
range kick a localised distribution is assumed. The kick is then given by:

6Px= J\fey,Py;s) xs(x-y) dry (2.1)

xs=ALx «(d(s)+x-Yf1-d(sr1)he (2.2)

d(s)=as ; a=crossing angle; s-path Jength coordinate.

Here we imagine a machine filled with mN bunches in each beam. The
machine has N equally space generalized interaction points (or G.LP. see
SSC-32). The state of the machine is contained in a mN vector r.

...

'-
-

-.

(2.3) •

The m-vectors ~ and 'Pj describe the state of a particular G.r.P.

(2.4a) ...
(2.4b)

The problem is quite complicated. However since we will eventually
linearize the Vlasov equation, the machinery of group theory can be used.
This has been described in SSC-32. As a result we need to focus our
attention on only one G.r.P. From now on we omit the superscript j in
equation (2.4). For our problem the Vlasov equation becomes:

dS <1>i + P 0x<1>i-dp<I>i {KX-L B(s-tA.)I xs(x-Y)'Pi+t{y,Py;-s) dry }=O (2.5)
IllsJ

Here J is the number of I.r. each side of the h.o. collision. The parameter A.
is U2 where L is the interbunch spacing. As in SSC-32, we inforce the Von
Karman boundary condition.
There are zrn equations like (2.5). This is obviously a messy problem.
However if we neglect cross terms within a G.!.P., it is then possible to
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-
express all the quantities in (2.5) in terms of a local a-function at s=O.

P-t

Configuration of a G.!.P.

If we denote by P
t
the one particle map which connects the I.P. to the site

of the loth I.r. collision, it is then possible to rewrite (2.5) as follows:

--
dS<l>j +pdx<l>i-dp<l>i KX+ O(S)dZcI>(L ap(pt-

1z) JXs(ptx-p_tY)'Pi+l(s)drY=O (2.6)
Itl sJ

z=(x,p)

If we assume that P
t
is a drift, we obtain:

ptZ=(X+tAP,p) (2.7)- In SSC-32, we kept terms of order loA. only. This simplifies the
mathematics. For this pseudo-drift, (2.7) is replaced by the symplectic
map:

-

-

-

Using (2.8), equation (2.6) reduces to:

ds<l>i + pax<I>i-dp<I>j KX+ o(s)ax<I>iL fA J~A.(~(P+Py))'¥i+.. dry
Itl :;to

3
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This equation simplifies if one notices that sxs is not a function of s. We

denote this function by the letter .h:

00

.h(p+py)=(ALx/mx) 1:(-1/Cl)n(p+py)n =(ALx/xCl)G (2.10)
n=1

In this paper, we will not treat the telescopic model of SSC-32. Actually
this model leads to an even simpler Vlasov equation.
In the next section we linearize equation (2.9) around a fixed distribution.

3. The linearized eguatkm..

Let us assume the existence of a stationary solution f:

(3.1)

-

--..-

-

..
We substitute (3.1) into (2.9) and we linearize the equation:

asf+[f,Ho+V+W] =0

Ho=p2/2+Kx2/2

p

V(p;s)~-2Jo(s>fdllJ .h(Il+Py) f dll dry
o

(3.2a)

(3.2b)

(3.2C)

(3.2d)

..

..

..

..
as ~<I>i +[ ~<I>i,Ho+V+W] - o{s)axf L f .h{P+Py){ ~'PiH.+ ~'¥i-!) dry

t>O

(3.2e)
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--
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Equations (3.2a) and (3.2e) constitute the basis of Chao and Ruth's
treatment. The only difference here is the inclusion of I.r. forces. To
proceed further, we take advantage of the Von Karman condition by a
Fourier transform of equation (3.2e). Here again we follow the procedure
described in ugly details in SSC-32:

m-1

D¢lA= L exp(i21tjAlm) ~tI>j (3.3a)
j=O

as O<D).. +[ D~,Ho+V+W] - 8(S)axf Q()..) f .h(P+Py) D'I\ dry (3.3b)

+ apf 6(S) Ixo(x-y) D'PA. dry =0

J

O(A.)=L cos{21ttAlm) (3.3c)
!-l

In the next section, we transform (3.3b) into a mapping problem.

4. ~ransfer map techniQue.

It is possible to integrate (3.3b) around s=O taking advantage of the delta
function. Notice that f is a stationary solution if it is a function of the
Courant-Snyder invariant of Ho+V+W. Furthermore we assume that this

Hamiltonian is still quadratic. This is of course incorrectl Also we will
assume that the Twiss parameter a. is zero at the I.P.. This is correct if
the initial Ho has a vanishing a at the I.P.. With all these remarks and

assumptions, we can rewrite (3.3b) in the action-angle variables (</>,J):

--,

-

- 8(S) aJf V{2J/f3} cose O(A} f.h(-"{2J/f3)(sin</> + sin</>y}) D'P)., dry =0 (4.1)

We can integrate (4.1) around s=O:
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At this stage, we assume a water-bag distribution for f. This forces all
the perturbations to be at the edge of the beam:

f(J}=H (£12·J)/rte

aJf=S{J-£I2)hte

(4.3a)

(4.3b)

With this choice (already assumed in (4.2)), one can rewrite D<f)).. and Dl£')..

in terms of multipole modes:

t.-co

With the help of (4.4), equation (4.2) is rewriten :

...

21t 21t

N....=fJe-i" COScf> dcf> G(-;I(dP)(sincf> + sin<f>y))ei~<f>y dcf>y

00

21t 21t

M ....=fJe-i" sincf> dcf> H1(cos«>-cos<f>y) ei>.<f>y d<f>y

00

(4.5a)

(4.5b)

(4.5c)

..

The matrices Nand M have many properties. Their traces and squares are
zero. By factoring (4.5a) we can take advantage of these properties. The
reader can check that the map will have a unit determinant. This is

6
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(4.6b)

-

-

,..

consistant since we worked out the Vlasov operator only to first order in
the beam-beam collision. The factorized map is given by :

v+ =(1-(A"(J3/£)/2x2)M~) (I-(ALx/21t
3aV(J3/e}}N~) v: (4.6a)

=VW v:
A.

ve. =(ft ,9e.)

The matrix A mixes the two beams. It is fully described in SSC-32.
Finally we introduce the phase advance ~ between the interaction points
(I.P.).

_.
(4.7a)

(4.7b)

At the the beginning of this paper we decided to focus on one G.I.P. only.
This is permissible because of the symmetry of the ring. Using the group
theoritic formulation of SSC-32, we introduce the kth irreducible
representation of the ring. In this representation, the transfer map for
l/Nth is given by:

-
vt+1 =T vt =Q R(~)VW vt

)"k k A.
)"k)"k )"k

(4.8)

-

-

-

The letter t labels the tth collision in the (x.k) representation. The matrix
n rotates the two beams f and 9 into one another by an angle 21tklN.
In the next section we determine how one finds the stability curve for the

rnap r.

5. The determination of tlliLstability curve.

By comparison to the dipole studies of SSC-32, we define a tune shift

7



parameter ~o :

(5.1)

Our goal is to find for what value of ~o the matrix T becomes unstable. We

assume that this happens when one of its eigenvalues is unimodular.
Implicitly, we define ~Ak to be the minimum ~o which satifies the relation:

-..

-
det( TAk+ 1)=0 (5.2) -

Clearly, we want the most unstable mode. This implies that the smallest
value of ~Ak must be chosen.The index k is discrete. It is related to the

number of I.P. The index A is practically continuous since it slices the unit
circle in "rn" sectors (m>2000 for the SSC). Hence we are allowed to
differentiate ~Ak with respect to A:

..

(5.3)

One can show in the dipole treatment that (5.3) is realized when dAQ is

zero. As shown in SSC-32, this has two solutions: ..
(5.4)

The quantity Amax is only a function of J (# of I.r.) in the pseudo-drift and

the telescopic model. This simplifies the search for the stability curve. In
the case of the sse with six sites, we scan through the following values:

..

(A,k)= (O,O) ; (0,1) ; ( Amax ,0) ; ( Amax ,1). (5.5) ..
Notice that the dimensionality of Txk is 4tmax ' where t max is the

maximum multipole mode under consideration. The case t=O is not
considered because it amounts to a change in f(J).
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A final word about the phase advance 1.1 and the Jl function. These are
evaluated for the perturbed Hamiltonian Ho+V+W.

At the edge of the water-bag Ilo is shifted to first order in ~ by:

-
(5.6)

For Jl we use the linear formula:

(5.7)

-

In the next section we display the numerical results.

6. The stability curves with long range forces.

The curves we will display here have to be compared on one hand with
SSC-32, and SLAC-37 on the other hand. One can show that that the factor
P (see SSC·32) relating the h.o, to the I.r. is given here by the formula:

(6.1)

We chose Lx in such a way that we reproduce approximatly the P values of

SSC-32. In that note we had at 50llrad a P of -0.0396. Here we took the
following numerical values:

-
The figures are displayed for the following values of the parameters:

(6.2)

-

-

-

figure#

1
2
3
4
5
6

J lmax a (urad)

4 2 50
4 3 50
12 2 50
12 3 50
12 3(only dipole for the 1.r.)50
4 2 10
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figure#

7
8

J

4
4

'max
3
3{The lor. contains the

first order in ~{e/~)lex }

ex {Jlrad}

10
10 ..

In the first five figures we notice that only the dipole mode is influenced
by the I.r. forces. Indeed the l.r. matrix N is a function of 0= -.J{e/~)/ex. This
quantity is about 0.14 at sourad, The higher modes will contain higher
powers of a There are virtually no differences between fig.4 and fig.5
proving the point just mentioned.
The situation is dramatically differentat 1Ollrad. There 0 is five times
larger! The results are in qualitative disagreement with SSC~32. In that
note we included only one power of o. In fig.8, we truncated the I.r. matrix
N at the first power in s, The stability diagram went up by a factor of
three, in quasi-aqreernent with SSC-32. The reader will notice the strong
I.r. coupling in fig.6 and 7.
The moral is that as the beams approach each other, the situation
deteriorates faster than what is predicted by a linear theory in 0 (s-eize
of the beams/separation of the beams).
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Appendix A. Connection between the Vlasov technique and the
dipole treatment of SSC-32. The factor P.

We want to derive an expression for <p>+-<p>- for the h.o. as well as the
l.r.,

- Treating the two types of collisions simultaneously ,we can write a
Vlasavequation:

(A1)

Multiplying by Pand integrating accross the delta function, we get:

c::p>+=<p>- - Jp apC1l drx fX$ 'II dry

We integrate (A2) by parts:

<p>+=<P>- + Jelldrx Jxs 'II dry

(A2)

(A3)

First, we look at the long range operator. In this case we expand xs:

(A4)

Substitution in (A3) gives immediatly the result far t.r, collisions:

(AS)

The case of head-on collisions is harder because the operator ;s not
analytic in x-yo The best way to proceed is to linearize the distributions in
the integral of (A3):

-
I=A SS {f(x,p} A'P(y,Py) + f(y,Py) AC1l(X,p) } H1(x-y) drx dry (A6)

-

-

Calling Po the space density resulting from f, we can derive the relation:

11



+00

Jpo(y) H1 (x-y) dy= 2 poCO) x

-00

(A9)

..

•

This mysterious relation is easely understood if we examine the domain
of integration of H1:

<-- H1(x-y)=-1 H1(x-y)=1 -->

I I
~x 0 x ------ ------>y-axis

'perfect cancellatio I

Using the symmetry of Po and the antisymmetry of H1 ' we can deduce

(A9) from the above figure for a slowly varying f. Applying (A9) to the
integral (A6), we get the final result:

•

•

•

(A10) -
From this we obtain the factor P of SSC-32, which is simply the ratio of

the I.r. over the h.o. times the square of the distance separating them:

(A11)

We can substitute the water-bag for Po:

(A12)

12
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Appendix B.The long range matrix N.

In this paper we introduced a new matrix for the long range interaction.
In general (when atwiss*O) this matrix is easely evaluated in the

following set of action-angle variables:

x= ",,(2J/y) (cosv-« sin",)

p=-V(2Jy) sin,!, 'Ftwiss parameter

(81)

This set is related to the more conventional one used by Chao and Ruth by
the relations:

v=4>+tan -1 a

J=J4>

(82)

In this set, the matrix N takes a simple form even when <Xfwiss is not

zero. In fact, is is given by (4.5b) provided that pbe replaced by 1/y.

21t~

Na =Jfe-il4l cose d4> G(-"(ey)(sin4> + sin<Py))eik$y d<Py (83)

00

We re-express N by changing the variables of integration:

-

-

ct>='l'+7tl2

N =-exp(i(1tI2)(~-t}) Jl
U tl

13
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21t21£

/l... =Ife-it'l' sin>vd'l' G(-"(ey)(COS1J1 + COS1J1y»ei~'I'y chvy (B4c)

00

The matrix Jl has the same properties as the matrix M of Chao and Ruth

(equation 4.5c):

..

..

J..l is pure imaginary (B5) ..
(Jl =J..l and

2
J..l =J..l ~ J..l =0)t-l ll. -tit l!.k

..
From these relations we deduce the properties of N:

N *=N (B6a)
u. ·e.~l ..

N =(_1)l N (B6b)
t-l u.

N =(-1)t+1N
..

(B6c)
-tl u.

~N=o. (B6d) ..
By manipulating (B~c), we can derive a recurrence relation for f.l :

e.l

(B7b)

(B7a)
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(87c)

-
0J.,t is the Kronecker delta.

This can be formally solved by introducing a messy generating furnction

J.1:xy
00 00

(B8a)

-00 -00

00

The quantity 0 is usually small compared to one for our approximations to
be valid. In our studies, we kept powers as high as n=5. This gives us
sextupole long range contributions. It is easy to show using (B8a) that the
leading multipole contribution of order l is given by :

(B9)

-

-

Appendix C. Derivation of the shifted to the I.P. Vlasov equation.

We start with equation (2.5).

as <I>i + P dx<I>i-dp<I>i {KX-1: o(s-lA)1 Xs(x-Y)'Pi+l(y,Py;-s) dry }=o
Itl~

To solve (C1). we integrate around one value of 5, 5= a for example:

15
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To the order of Ho I the function ~i(t~) is propagated by the inverse of the

Hamiltonian map generated by Ho :

<1>j(X,p;IA)== P-t et>j(x,p ;0) (C3)

Using this result, we can transform (C2):

<1>j+(z;O)= ct>i-{z;O) - Pt { ap~({u..) JXIA(x-Y)'Pi+t(p.t -
1Z

I ;O) dz' (C4)

z=(X,p)

We must manipulate the derivative in (C4):

The vector 0p(pt-lz) is not a function of z if p
t
- 1 is linear. We then

substitute (05) into (C4) and we change the integration variable Zl into
2"(= P.t-1z'):

cIJj+(Z;O)=<1>i-(Z;O) - Oz<1>j-(Z;O) or, dp(Pt-1Z)J Xt'A.( ptX- P-tY )'Pi+t(Z";O} dz"
itl~

(C6)

To first order, all the kicks are additive, therefore we sum them up in
(C6).
Now, one notices that (C6) can be obtained by integrating (2.6) around 5=0.

Hence the problem of solving (C6) or (2.5) are equivalent.

16



-

-

-

Appendix D. Computation of the tune shift due to long range
forces.

The tune shift hll can be computed from the potential V+W. The map of the
Hamiltonian Ho can be represented in Lie algebraic form:

11l.exp( :-Jl1:) (02)

0+

11l
t"exp(J(v+W)

ds:) =exp(:III1''W:) (03)
0-

Here, :F: is the usual Deprit Lie operator: :F:=[F, ]'l') •

We now Fourier analyze the Lie operator of~ :

...

1II1''W.kO(J)+L kt (J) eiuv

t#O

To first order in the perturbation, we can rewrite (01):

Yl1.o.exp(;-~+ko:) exp(:Lkt(J) eit",:)
t:;tO

CLearly, the first factor will contain the leading tune shifts:

Let us concentrate on the long range lit:

17
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21t

aJkO· ( l/21t) aJ J'U(P) d,!,=-(1/21t\"(2J/y)) Jsin'!' 'U{p) d,!, (07)
o

After substituting for the various functions, we obtain:

21t 21t F12

dJkO=(JAIrn2" (2J/y» fd'lffd$fdr .tLH(2Jy)sin'lf-"(2J'y) sin$») sin'lf
o 0 0

(d8)

For simplicity, we assume that only the leading term in 8 matters:

21t 21t F12

dJko= (JALxytrn3a2)fd'lffd$Jdr sin~d'lf
000

(D9)

If Utwiss is zero, y can be replaced by 1/13.
This result was used in equation (5.6). The other tune shift can be
computed by the same method. One needs to replace", by 'hl. This is
outlined briefly in Chao and Ruth's paper.
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