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Alexander W. Chao
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Lecture given at the 1985 Accelerator Summer School, SLAC

ABSTRACT

This article 1s a compilation of some considerations encountered
in the design of storage ring colliders. It consists of two
chapters. The first chapter describes an approach to the collider
design from a particular point of view at an elementary 'level. The
second chapter discusses a few semi-empirical scaling properties in

_ the collider parameters.
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I. Elementary Design Considerations

In this chapter. the design of a storage ring collider is
described from a particular point of view. We begin with the
luminosity requirement on the collider and proceed to describe the
various design features needed to provide the luminosity. Design
features chosen to be discussed follow from the view point chosen.
No attempt has been made to coyer all important features in a
collider design.

For illustration. a numerical example 1s carried along with the
discussion. To avoid possible confusion the general equations are
arranged in a numerical sequence. Parameters used in the numerical
example are arranged in an alphabetical sequence.

Luminositv
The end product of a storage ring collider can be summarized by

three parameters: the type of particles. the particle energy E and
the luminosity~ The type of particles is most likely electron or
proton. In the following discussions. we assume that the particle
type and particle energy are given and begin by a discussion on
luminosity.

Consider a certain type of high energy physics events of
interest with cross-section I. The counting rate.$l'of these
events 1n a collider is proportional to I. The proportionality
constant is called the luminosity. i.e.

-.
( 1 )

-

--

* SSC-45
+ Operated by Universities Research Association for the Department
of Energy.
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Consider two beam bunches with N particles each colliding
head-on. Let the beams have a unifonm transverse distribution with
area A, as shown in Fig.l. Let f be the frequency for collisions
occurring at the collision point under consideration. Luminosity i~
given by

N
N

Figure 1. Two colliding bunches.

-

-
The collision frequency is related to the revolution frequency frey

f • frevS.

where B is the number of bunches in each beam. In case the two beam~

have a round gaussian distribution in the transverse dimensions witt
rms size ~. the effective beam area is1

(4""

-
It is sometimes convenient to remove the factor N2 from the

luminosity expression (2). The remaining quantity is called the
specific luminosity. It depends only on the overlapping geometry of
the two transverse distributions and 1s independent of beam
intensities, type of events. particle types and beam energy.

As a numerical example, consider an event type with I =
1 picobarn = 10-36cm2. Suppose a counting rate of~ • 1/day is
required on this particular event type. the needed luminosity is

To achieve this luminosity, a possible set of parameters is

N • 1011

frey :a 105sec-l

A ,. 0.01 111II2

B • 1.

(t-
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The probability that a particle actually collide with a particle
in the on-coming beam is p:. NItotlA. whereI t s t is the total
cross-section of collision. Assum1ngI tot::: 10mb ~

10-25cm2. the probability of collision is found to be 10-10
per crossing. The lifetime of the beam due to actual collisions is
thus 1010 crossings. which corresponds to 105 sec, or about 1
day. since we assumed a revolution period of 10-5 sec.

Beam-Beam Effects
We found that the probability of actual collision is extremely

small per crossing. meaning the bunch is basically transparent as
far as particle crossing 1s concerned. However. particle motion
across the collision points is by no means unperturbed. The
perturbation comes from the elastic scattering by the collective
Coulomb field associated with the on-coming bunch. This
perturbation is referred to as the beam-beam interaction. 2

The beam-beam interaction constitutes one of the main limiting
effects on the luminosity. To achieve a high luminosity. one needs
a high beam intensity and a small beam area. These requirements
must be made so that the beam-beam effect is not made untolerably
strong.

First let the transverse beam distribution be a uniform disc
with radius a. Consider a test particle in beam 1 that passes
through beam 2 with a transverse displacement x from center, as
shown in Fig.2. In the uttra-re tat tvf st tc limit, the electric field
seen by the test particle points in the radial direction
perpendicular to its direction of motion. Applying the Gauss l law
yields

Er = (2Ne/£) (x/a2)

(2Ne/R.) (a/x)

iflxl<a

iflxl>a

unHonn di sc (5 )

-. where ~ is the length of the beam bunch.

Er
X- e !........
f

-

-
Figure 2. The beam-beam encounter seen by a test charge.
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In addition to the electric field, there is a magnetic field 80

of the same strength (in cgs units) as the electric field. The
Lorentz forces due to the electric and the magnetic fields add to
give a force twice that due to the electric field alone. Continuinl
our numerical example with N=lOll and A = .a2 = O.Olmm2 and -
take ~ = lOcm, the electric field is found to be 50MV/m and the
magnetic field is 1.5KG evaluated at the edge of the beam, x = a,
where the fields are maximum.

In case of a round gaussian distribution, the electric field is

Er = (2Ne/~)[l-exp(-x2/2~2)]/x round gaussian (t-

The beam-beam interaction imposes limitation on luminosity not
because it is extraordinarily strong but because it is
extraordinarily nonlinear. The linear part of the force acts like (
quadrupole magnet, whose effects can be compensated by adjusting thl
strengths and arrangements of the neighboring quadrupoles. In -
particular, for the case of gaussian distribution. the linear force
gives rise to a beam-beam tune shift given by2

Nr B*
o

where B* is the B-function at the interaction point, y is the
relativistic factor. ro is the classical radius of the particle
type under consideration. Unlike the linear part. the nonlinear
part of the beam-beam force is not so easy to deal with. Fig.3
shows the beam-beam force as a function of x for gaussian and
uniform disc beams. The nonlinearity starts around x > ~ for the
gaussian case. For the uniform disc case. the force inside the bear
distribution is strictly linear. No particle feels the nonlinearit~

since the nonlinear region is not populated. If beams can be
prepared with strictly uniform disc distributions at the collision ­
points. it follows that there will be no beam-beam problem.
However, there are two potential obstacles to this idea that we wil"
only mention here. One is obviously the practical difficulty to
provide a uniform disc beam. The other is that there is another
type of beam-beam interaction -- the type that involves coherent
motion of the bunches -- that perturbs beam motion; unifonm disc
beams are not exempted from the coherent beam-beam effects.

10 compare the nonlinearity of the beam-beam force with that of
a multipole magnet field error. note that the beam-beam force
deviates from linearity at a transverse distance of the order of thE
beam size at the interaction point (of the order of 0.1 mm) while a_
magnet field nonlinearity has the characteristic distance of the
magnet coil or gap size (of the order of centimeters).

-

-



Figure 3. Beam-beam force as a function of the transverse displace­
ment of the test particle for (a) a uniform disc beam and (b) a
round gaussian beam.
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Beam-beam
force
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(b)
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It turns out that the strength of the beam-beam nonlinearity is
specified by the same quantity that specifies the linear part of the
beam-beam force, namely the beam-beam tune shift~. To control the
beam-beam nonlinear effects. it is therefore necessary to limit~ .
One of the fundamental constants in the design of a storage ring
collider is in fact the maximum ~ that allows stable motion of
particles in the presence of the nonlinear beam-beam perturbation.
For the purpose of our discussions. we assume without elaboration
that the beam-beam limit is reached at

-
~ limit = 0.005 for protons

0.05 for electrons ( 8)

(9)

-

-

-

-

By comparing the expressions (2) and (1). the condition imposed
by the beam-beam limit puts a limit on gaining luminosity by
increasing N and decreasing A. However. there 1s still the factor
6* in expression (1) free to be used for optimization.

To proceed. we need to consider the condition imposed by the
beam emittance. For a round beam. the beam emittance is given by

C = (12/6*

For protons. €is inversely proportional to y due to the
adiabatic damping. For electrons. € is proportional to y2 due to
Quantum emission effects. l For a given beam energy. we assume for
now that the beam emittance 1s given. The luminosity and the
beam-beam tune shift are then rewritten as



-
(,
-

The only free variable that appears in ~ is the number of particles
per bunch N. Take a proton storage ring for example, we may have a
normalized emittance cy = 2xlO-6m-rad, the beam-beam limit is -
reached at N = 1011, 1.e.

~ = 0.005

W1th N given, luminosity can still be improved by 1ncreas1ng th
number of bunches per beam B and by decreasing B*. A small S* is ­
benefic1al because (a) it makes the beam area A small which in turn
makes higher luminosity and (b) it makes particle motion less
sensitive to the nonlinear beam-beam perturbation. In the
following, we will set B = 1 and concentrate on the choice of S*.

low-8* Insertion -
We have assumed in our numerical example a revolution frequency

of frey a 105sec -1. This means the storage ring has a
circumference of 3Km or the ring radius is about 500.. For a
superconduct1ng proton storage ring, this means a beam energy of 50
GeV using a scaling property to be discussed in the next chapter,
i.e. -

R = 500 m
(

E· 500 GeV. ..
The value of T is therefore about 500 and the beam emittance is

c = 2 x 10-6 m-rad/500 = 4 x 10-9m-rad. (

Substituting in Eq.(10), we find that the design goal of~·
103lcm-2sec-1 can be reached if -

a* • 0.2 1ft.

This value of a-function at the interaction point is to be compared
with the average a-function in the storage ring. For a storage rin
with sOOrn rad1us, as will be explained in the next chapter, the -
average 8-function is approximately given by

<8> = 22 m.

•

-



-

-.

-

-

-

We thus conclude that there needs to be a special lattice
insertion consisting of a sequence of quadrupole magnets to focus
the B-function from an average value of 22 m down to 0.2 m at the
interaction point. This special insertion -- the low-B* insertion
"- is an important invention that has strongly enhanced the
luminosity of storage ring colliders. 3• 4 The price to pay is
that it also makes the optics of the storage ring Quite strained. as
will be discussed next.

Optical Aberrations Due To Small B*
There are several limitations in reducing B* indefinitely in

order to gain luminosity. Practical limitation on the strength of
the low-B* insertion quadrupole magnets is one example. Another
limitation is that 8* should not be smaller than a length'of the
order of the bunch length. S• 6 These limitations. however. will
not be discussed below. Instead. we discuss a third limitation.
i.e. the aberration of the storage ring optics caused by the low-B*
insertions.

At the start. a storage ring is composed of bending magnets and
quadrupole magnets -- bending magnets to guide the trajectory of
particles and quadrupoles to provide the focussing. The 8-function
around the storage ring is sketched in Fig.4. The insertion has
produced a small 8* at the interaction point. but it also produces a
large B-function. which we assume to be ~ ~ SOOm. at the insertion
quadrupole magnets.

fJ (5)

-

-

~-500m

-

-

Figure 4. Sketch of the a-function in a storage ring collider.

If the particles in the beam do not have any energy spread. a
storage ring consisting of only bending and quadrupole magnets will
satisfactorily produce the behavior shown in Fig. 4 and there will
be no optical restriction on indefinitely reducing B*. The motion
of particles maybe wild going through the variation of B-function
but the motion is linear and is perfectly stable.
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The difficulty arises when the beam has a finite energy spread.

The low B*. and thus the large a at the strong 1nsertion
quadrupoles. has associated with it a strong chromatic optical
aberration. To see that. consider the effect of a quadrupole magnet
an the motion of an off-momentum particle with energy error &= ­
6£/E. The kick angle is given by

6X' = K x

a "0 X I (1+4)

· "0 x (1 - & + &2 - ... )

..
(11

where Ko is the quadrupole gradient seen by an on-momentWm
particle. The factor 1/(1+&> represents the rigidity in the kick to
the off~mentwm particle under consideration. This r191d1ty fatt~

is expanded in Eq.(ll) into a power series to show its nonlinear
behavior 1n &. It is very nonlinear even it may not look like so.

One consequence of Eq.(ll} is that the betatron tunes for an
off-momentum particle will be different from the on-momentuM
values. In particular. one can define a quantity called
chromaticity.' to be the linear variation of tune with cS. 1.e. ..

•••0 + .1& + .••.. (1,

•

•

...

In a storage ring with only bending and Quadrupole magnets. VI

tends to be negative because the focussing effect provided by the
quadrupoles is weaker for a higher energy particle. There are of ..
course two chromaticities. one for the horizontal tune and one for
the vertical tune.

It is mathematically possible to design a storage r1ng with onl;
bending and quadrupole magnets and ach1eve .' - O. These designs
however tend to give unacceptably strong nonlinearities in higher
orders in 4. So far no such design has yet been regarded as
practical.

Take now an electron storage ring collider for example. As we
will discuss in the next chapter. the MIS beam energy spread almost
always is of the order of 4& • 10-3. Furthermore. in electron
storage rings. the momentum aperture needed is of the order of
10 4& for the purpose of maintaining a good quantum lifetime. l
leading to a needed total energy span of about ~ll.

The finite energy spread. together with a finite chromaticity.
gives a finite spread in the tunes. Since the tune spread 1n a
storage r1n9 is limited to avoid resonances. we need to impose the
condition

I .' & I~ 0 .03 • (13

the absolute value of the chromat1c1ties must not exceed a value of
the order of 3 or so.

•

•
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(14 )per insert ton

There is another restriction on the chromaticity due to the
head-tail instability effect,l, B which we will not elaborate on.
To avoid the head-tail instability of beam motion, it is necessary
to have a positive chromaticity, in conflict to the natural
tendency. The range of acceptable chromaticity is thus
approximately 0 < Vi < 3.

A 10w-B* insertion contributes to the chromaticity a tenm
approximately given by

VI = L lii
2.. V;*

The smaller we make B*, the higher j becomes, and the larger the
chromaticity contribution from each insertion. In our numerical
example. there is a chromaticity contribution of about -10 from each
insertion, which is large and negative.

In a storage ring consisting of only bending and quadrupole
magnets, therefore. the on-momentum particles enjoy a purely linear
motion and no instability limit but the motion of an off-momentum
particle will most likely be unstable because of unfortunate tunes.
F1g.S(a) shows schematically the stable region in an aperture
diagram.

""

-

-

"" (a) AIJ

•I)Dynam~ .:-"ure
- --Momentum

apenure

(b) AfJ

- <zzzzzlzz22z~
A~

(c) a-
d

-

-

Fig. 5 Aperture diagram for a storage ring that consists of (a)
dipole and quadrupole magnets only, (b) dipole. quadrupole and
sextupole magnets. and (c) same as (b) but with special sextupole
arrangements. AS is the betatron amplitude. 6 1s the relative
energy error. Shaded regions indicate region of stable motion.

....
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In the aperture diagram. the maximum stable betatron amplitude

is called the dynamic aperture. The maximum stable energy width is
called the momentum aperture. Fig.5(a) shows an infinite dynamic
aperture and a very small momentum aperture 1n the case when the
ring consists of only bending and Quadrupole magnets. The momentum. -aperture 1S too small to be acceptable.

Sextupoles
The question is then how to control the chromat1cities. The

answer is to install sextupole magnets in the storage ring.
Sextupoles have the property that they act like quadrupoles when th~

tenter of the beam passes through them off-centered horizontally.
We recall that a particle with &~ 0 has its closed orbit displaced
horizontally by an amount q&. where q is the horizontal dispersion
function. The kick given by a sextupole is therefore

tax' =- S(x + q&)2

• 5 x2 + 25 " x & + S "2 &2

..
(1 ~

•

There are three tenm5 in Eq.(15): one good. one bad and one
irrelevant. The good term is the middle one which 1s linear in x.
providing a Quadrupole type of action and contributing an additiona~

tenm to the chromaticity. If the sextupole polarities are such that
its equivalent quadrupole field 1s defocussing for particles with
& > 0 and focussing for &< O. it is possible to make the net
chromaticity small and positive. The momentum aperture is thus
greatly increased. To control the two chromaticities. there need tc
be at least 2 sextupole families. The third term is Eq.(15) gives •
rise to a dispersion second order in &. We do not consider its
effect here.

The bad term is the first te~ in Eq. (15). It produces a
serious side effect due to its nonlinear nature in x. As a result,
although we have compensated a large fraction of the chromatic
aberrations. we have introduced new nonlinear1ties in the x
variable. which substantially suppress the dynamic aperture. The
situation is sketched in Fig.5 (b). The achieved stable region is
still not acceptable.

Sextupole Schemes •
It is possible to improve the situation substantially by

cleverly choosing the locations and streng~hs of ~he sextupoles.
The idea is to make the sextupole nonlinearit1es to cancel among
themselves to a large extent. There are a few schemes to do that
but we will describe one that is particularly simple. namely the
achromat scheme. 9 -

The spirit of the achromat scheme can perhaps be summarized by
the simple principle of always fo~ing pairs. In other words. if a
sextupole is needed in the lattice. do not insert one sextupole;

..

..
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insert a pair instead. A properly arranged sextupo1e pair has much
less nonlinear content than a single sextupo1e alone.

To make a sextupo1e pair. the two sextupo1es of equal strength
are spaced by a -1 transformation in the betatron motion. as shown
in Fig.&. It is easy to show that if a particle enters the first
sextupo1e with coordinate and slope of (xo. xo')' the coordinate
and slope of the particle as it exits the second sextupo1e is
(-xo. -XOI). independent of the existence of the sextupo1es.
The nonlinear effects of the sextupo1es thus cancel each other as
far as the betatron motion (the bad tenm) is concerned. On the
other hand. the focussing effect for off-momentum particles (the
good tenm) can be arranged to be additive between the two
sextupo1es. yielding the needed chromaticity control.

Fig.5(c) shows the aperture diagram when sextupo1es are arranged
to minimize their betatron nonlinear effects. The arrangement does
not affect the momentum aperture much but it increases the dynamic
aperture substantially. Hopefully the operation region needed by the
beam is inside the stable region finally achieved.

-

-

s

-

-

-

Figure 6. A sextupo1e pair used in the achromat scheme.

Recap
We started the discussion with the end product. in particular

the luminosity. requirements. Particle dynamics was introduced by
asking the question what does a particle experience as it collides
with the on-coming beam. The beam-bea. interaction was then
discussed. It was pointed out that the beam-beam interaction is a
highly nonlinear effect. To limit its damage to the beam stability.
a 10w-8* insertion is needed around each collision point. It was
then found that these low-8* insertions have severe side effects;
they cause strong chromatic aberrations which impose on the rest of
the lattice design. To compensate for the chromatic aberrations.
sextupo1es are needed. The sextupo1es in turn have their
unfortunate side effects; to minimize those effects. it is necessary
to arrange the sextupo1es according to some clever scheme.
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The design of a storage ring collider obviously does not stop

here. The discussions offer only a possible elementary view, with
its over-simplifications, of the design effort from a particular
angle of single particle dynamics. To proceed further along this
line, it is necessary to discuss another source of optical
aberration, i.e. that from the magnet field errors. After that.
there is the study of the effects due to the magnet alignment
errors. Then there are issues such as how to make closed orbit,
dispersion function, a-function and linear coupling corrections.
One shortcoming in discussing the design along this direction is
that the important subject of collective effects is not discussed. _

II. Some Scaling Properties

In the previous chapter. we have carried along a numerical
design example of a proton storage ring. We assumed it has a radius
of R = 50Om. We mentioned in Eqs.(d) and (g) that for a storage
ring of this size. the beam energy is going to be 500 GeV. average
B-function is 22m. We also mentioned that an electron storage ring
c~llider will have an nms energy spread of ~& = 10-3• regardless
of its energy or size. These results are explained in this chapter
by a few general scaling properties of storage ring collider
parameters .

We first list three scaling laws together with the Mexperimenta
data· that confinm them. A few corollaries are derived from these
laws. We then give the -mathematical proofs· of these laws. No
attempt of being rigorous has been made. The three semi-empirical
scaling laws relate the design beam energy E. the ring radius Rand
the betatron tune v. -

The fi rst law: v : Vi.
To apply this law. take the ring radius R in unit of meters and takl
the square root to obtain an approximate value for the betatron
tune v. This law applies to both electron and proton storage ring -co11 iders.

The second law: E : vi.
This law applies only to electron rings. Again. R is expressed in
meters. The result expressed in GeV is approximately equal to the
beam energy.

The third law: E = R for superconduct1ng ring, R/4 for
conventional ring.
This law applies to proton rings. Rand E are expressed in meters
and GeV. respectively.

Before discussions of these scaling laws. Figs.7 and 8 are the ­
experimental data confinming them. F1g.7 1s a plot of the
horizontal betatron tune versus the ring radius for several electror
and proton storage rings. The dashed line represents the predictior

..
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according to the first scaling law. Fig.8 is a plot of the beam
energy versus ring radius. The dashed line represents the second
scaling law. The solid lines represent the third scaling law. We
see that the experimental results fit the first and the second laws
Quite well. As to the third law, not yet enough data points are
available.

Cora llad es
There are a few corollaries of the first law. First. we learn

from elementary lattice theory that the average B-function <8> is
given by R/v; therefore applying first law gives

-

..

..
corollary: <8> =~ (1 &)

where <8> 1s in meters. Second. the average dispersion function <q>
is given by R/v 2• therefore -corollary: <,,> .. 1m, ( 11)

which says all co11ider rings have average dispersion function of
1m, regardless of whether it 1s electron or proton ring, or its
size. A third corollary applies to the momentum compaction factor
o. It is approximately equal to 1/.2. Therefore, ..

corollary: 0 • l/R ( 18)

..

-

-

where R is in meters. 0 1s dimensionless.
Our numerical example is meant to be a superconducting proton

ring. It has R = 500m. Applying the corollary (16), it has an
average a-function of~ .. 22.. Applying the 3rd scaling law, the
ring energy is 500 GeY. As a more realistic example, the electron
storage ring ~ has R = 350m. The scalinjL}aws predict a betatron
tune of ••~ a 19, a beam energy of \fJ5U = GeV. and an average
B-function of~350 • 19.. These values agree quite well with the
PEP data. It is also interesting to see that _, E in GeV. and <6>
in meters are approximately equal for electron storage rings.

The above scaling laws obviously do not have rigorous proofs.
Howeyer. some understanding of storage ring designs can be obtained
by studying the underlying reasons of their validity, even an
approximate one. We shall begin with the proof of the third law,
which is the most straightforward among the three.

Proof of third law
For a proton ring. the limit 1s the strength of the bending

magnetic field. The higher the beam energy, the larger the ring has
to be in proportion. Thus Rex E and the third scaling law is -
basically proven. The difference between the conventional and the
superconducting rings is due to their different bending strengths.

...
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Proof of second law

This law has two proofs. a wrong one and a right one. The wrong
proof associates the scaling with a cost minimization consideration.
The storage ring cost is first written as the sum of two terms.- cost = ring cost + rf cost ( 19)

(20)cost = fR + g E4/R.

where the ring cost refers to the cost of magnets. tunnel, etc. The
rf cost refer to the cost of the rf components needed to compensate
for the energy loss by an electron due to synchrotron radiation.
The ring cost is proportional to R and is basically independent of
the beam energy. The rf cost on the other hand is proportional to
the synchrotron radiation loss per turn. which is proportional to
E4/R. Thus,

-

By differentiating the cost expression with respect to R for given
beam energy E. the minimum cost is obtained when

f .: gE4/R2 = O.

-
or

R 0: E2 or E 0: v'if, (21 )

-

-

-

-

thus proving the second 1aw. 10
There is nothing wrong with the argument itself. In fact, this

exercise leads to the im~ortant conclusion that the size and cost of
large electron storage rings increases quadratically with increasing
beam energy. unlike proton rings whose size and cost increase only
linearly. As a consequence. super electron storage rinas are
unfavorable as compared with electron 1inac colliders. l ,11 The
reason this proof is incorrect here is that it applies only when the
rf cost becomes a significant part of the total cost. This does not
happen until the beam energy is of the order of 30 GeY or so. Yet
the scaling law is approximately valid already around a few GeY.

A more basic reason of the second law is from the beam dynamics
considerations. We mentioned before that sextupo1es are inserted in
the ring design to open up a finite momentum aperture for the beam.
It 1s important that the beam energy spread does not exceed the
momentum aperture so painstakingly achieved. In an electron ring.
the nms energy spread 1s given byl

2 = 55 i.. E
2

~, 64V3 m3c5 R
(22)

= 10-6 E(Gev)2
R(m)

where ~ 1s the Planck's constant, m is the electron mass, c is the
speed of light.

-
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If we use a high bending field of a conventional magnet and

E=R/4 as the third law predicts. for example, the energy spread will
increase as beam energy increases until the momentum aperture (taken
to be ±lO~& = ±l% in our discussion) is reached around 4 GeV or
so: Beyond 4 GeV. it ; s necessary to impose the scaling E = YR.
thus proving the scaling law.

Inserting the scaling into Eq.(22). one obtains, for all
electron co11ider storage rings. independent of the design energy E
and the ring size.

corollary: -(23

•

Proof of first law
We offer a proof for the electron case only. Basically what

happens is that when u is chosen too large, there will have to be
too many quadrupoles, which makes the ring expensive. On the other _
hand, if the tune is chosen too small, the beam size becomes large.
The transverse bore size of the magnets becomes large
correspondingly until at a certain point beyond which any further
increase in magnet bore size will sharply drive up the magnet cost.

The rms horizontal betatron beam size ~x8 of an electron beam
is1

223
~x6 18 = 2 ~ & R/v (24

where B is the B-function at the point where beam size is observed.
Inserting Eq.(23) for 4& and replacing B by its average value R/v,
we obtain the average nms horizontal betatron size of

(25

To restrict ~x8 under a realistic value, v has to keep in pace at
1east as fast as vA as R increases. To minim; ze the number of
quadrupole magnets, v is chosen to be equal to~. This explains
the first law for electron rings.

SUbstitutinq v =VR in Eq.(25), we obtain

•

coro llary: (Jx8 =Vi 111ft.

Equation (2&) refers to the case in the absence of coupling
between the two betatron dimensions x and y. In case of a total
coupling. the betatron sizes are ~x8 ~ ~y6 : lmm.

The total horizontal beam size is a quadratic sum of the
betatron and the synchrotron sizes. In the absence of coupling,
value is given by

(2&

its

•

..

~x. tot

(27



-
where we have used the property that n = 1m and G! = 10- 3.
Equations (26) and (27) apply to all electron rings independent of
ring size and design energy.
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