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EQUIVALENCE OF MICHELOTTI'S NORMAL FORM
AND THE MAP NORMAL FORM AS USED BY THE MARYLIE CODE

Introduction

The purpose of this paper is to establish the connection between
Michelotti's normal form and our approach. We will show that they are equiva­

lent. Our demonstration will be carried only to order c in the perturbation.
To carry it further is just a matter of Mbookkeeping M and is not so essential.

First of all we start with Hamilton's equations in Floquet variables as
Michelotti does.

I. The Hamiltonian of the System in Linear Floguet Variables

If the system described represents a circular machine it must have

periodicity in the path length s. Without loss of generality we can write for

the Hamiltonian K:

K(~;s) = K(~;s+l)

~ = set of canonical variables.

(l.la)

(l.lb)

(l.lc)

Michelotti's algorithm assumes that all the planes undergo oscillations. It
could represent the transverse phase space without synchrotron oscillations
and on momentum (6p = Pt = 0). It could also represent a ring with a
rf-cavity turned on. This translates in the existence of Floquet variables.
To get the Floquet var ieb les , we· solve the linear problem for one period.
This is represented by the equation:

-
( 1 . 2a)
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By definition M2(~0;s) brings the initial '0 to its final linear value

~(s). Let us denote HZ(~o;l) by H2. The assumption of oscillations in
all planes is mathematically equivalent to the following statement:

where

AZ ::: exp ( : '" - v .... (X. 2 + p. 2) :)L 1 1,0 1,0
i

Now, we make the following change of variables:

-1
~(s) ::: F

2
(1;;S) ~ (s)

( 1 . 2b)

(1 .3)

(l.4a)

•

•

-
....

-

...
(1 .4b)

One can show (see appendix) that ~ undergoes pure linear oscillations when c

is set to zero. In fact, K is changed into Haccording to the formula:
..

H(~;s) ::: >"2 + cW

A.
2

::: • '" V • ( X•2 + p. 2)L 1 1 1
i

W::: F2 (~;s) V(~;s)

This new Hamiltonian is the starting point of Michelotti's treatment.

II. Computation of the Map for One Turn to Order c

( 1 . Sa)

( 1 . 5b)

( 1 • Sa)

-

-

According to the lie algebraic treatment, the map for one turn can be

factorized:

-
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H = .•• exp(:cf:)exp(: - ~2:)

The function f is related to Wthrough the equation:

To proceed further we decompose f in eigenfunctions of :~2:'

eigenfunctions of :~2: are given by the equations

+ -V.- = x. + ip.
1 1,0 1,0

(2. 1)

(2.2)

The 1tnear

(2.3a)

(2.3b)

-
+In general, Wcan be expanded in powers vi - . For the sake of the argument,

let us assume that the system has three degrees of freedom (rf-cavity turned

on). Then Wbecomes:

,..,

-

W(;;s) = L A.(S)[.>

•
• = { (a-b)v1 + (c-d)v2 + (e-f)v3}2.

I.> = V +a V +b V +c V +d V +e V +f
1 1 223 3

If we compute f«(o) in the ,.> basis the result is given by:

f «0) 111 L f .1.>
•

f. =~1 .xp(-Is.) A.(s) ds

o

(2.4a)

(2.4b)

(2. Sa)

(2.Sb)
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We are now ready for the calculation of the map A , which brings Minto
c

norma 1 form.

II I. The Map A
t

Suppose we apply a similarity transfonmation A on M.
c

A == exp(: I:g: ) ( 3 •1a)I:

..

...

...

(3.lb)

TO order t, we can combine the exponents in (3.lb):

M+ == exp(:cg:) exp(:cf:) exp(:-k2:) exp(:-cg:)

== exp(:-k2:) exp(c:A:) (3.2)

We can decompose A and 9 in the I,> basis. The equation for A becomes:

{l - exp(-i,)} g, + f, == A, (3.3)

If , equals zero for all tunes or equivalently if a=b. c==d and e==f, then A,

cannot be set to zero. These are the tune shifts. The other tenms can be set

to zero if so desired. Michelotti, for example. keeps some of the terms con­

tributing to dangerous resonances. In order to compare with his approach. we

rewrite (3.3) in terms of Wusing (2.5b):

...

..

-
...

-/'{l - exp(-i.)} g.

o
(3.4)

In the next section. we use the concept of a time-dependant canonical

transfonmation in the normal fonm algorithm.

...
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IV. The Michelotti Method

Consider the map M (~o;s) which brings ~o to ~(s). It obeys the

equation:

~ M(~ ·s) = M(~ ·s):-H(~ ·s):ds o' 0' 0'

Now, we make a canonical transformation to a set ~*:

~*(s) = exp(:cG(~(s):s):)~(s)

(4.1)

(4.2)

One can show that to order c, the Hamiltonian H*(~*:s) governing the motion of

~* is given by:

aG 2
H* = ~2 + tW +c:~2:G - ciS + O(c )

If we denote by cL the new c-contribution to H*, we get:

l = :~2:G - aG + Was

(4.3)

(4.4)

This equation is solved by Michelotti with the help of a Green's function.

This is not essential to the problem. What is important are the boundary

conditions imposed on the Green's function. let us assume that we choose G

such that:

(4.5)

With this condition. what is M+ for one turn in tenms of M1

(4.6a)
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But, according to (4.5), we must have:

We deduce from (4.6b) that the expression for M+ is:

Comparing (4.7) and (3.lb) implies:

..

..
(4.6b)

..
(~. 7)

-
or,

In the next section, we prove the equality (4.8).

V. Derivation of the Michelotti Map

We first decompose all the relevant quantities in the ,.> basis:

(4.8a)

(4.8b) ..

..

w= L A.( s ) [.>

•
6 = L 6. I'>

•
L =2: L. I'>

•
We substitute (5.1) into (4.4):

(5.la) , ..

(5.1b)

..
(5.le)

..
(5.2)

There are two possibilities. Either A. is left untouched (6. = 0) or it

..
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is removed (L. = 0). Of course, for the sake of comparison, we want to

remove it. In that case. (5.2) becomes:

We first solve the homogeneous equation:

G. = rexp(i.s)

(5.3)

(5. 4a)

(5.4b)

Using the techniques of variation of parameter, we now solve (5.3) for a

particular solution:

~

-A.(S) = - ~~ exp(i.s) (5. 5a)

~ 1s
res) =

o
(5.5b)

-

The general solution is:

s
G.(s) = exp(;.s) [ exp(-;.sl) A.(s')ds '

o
+ rexp(i.s)

We now apply the boundary condition, which is:

1
r = fexp(i.) + exp(i.) 1 exp(-i.s) A.(S)dS

o

(5.6)

(5.7a)

(5.7b)
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Solving for r(=G,(O», we obtain:

1
G.(O) = r = exp( i,) /

1 - exp(ill)
o

exp(-i.s) A.(S)dS,

..

If one sets A. to zero in equation (3.4), the resulting g, is given by:

=

1 -

1 - exp(-iIlS) A,(S)dS (5.8)

(5.9)

-
..

Hence, as expected, 9. is just -G,' Q.E.D.

VI. Conclusion

As one sees, there are no formal differences between the two methods.

Our technique goes after the map (f,) and then computes the normal form (9,).

Michelotti1s technique goes after the map and the normal form at once. -

The use of Green's function in Michelotti1s paper is not central to the

method. Perhaps his treatment would gain in simplicity if he used our

interaction picture approach.

As far as higher orders in c are concerned, the equivalence is obvious.

Indeed, at each order in t, the equation to be solved is of the form (5.2) for

Michelotti and (3.4) for us.

Appendix

Here we show that we properly constructed the linear Floquet variables.

..

•
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let us write H(~o;S) in term of ~(~o;s).

before turning into Floquet variables.

Now, we take the s-derivative of (Al):

His the original map.

(A.1)

-

( ) '0 HA Fs- l + FO
Z

H~ F
Z
S- l + FO

Z
HA F'S

Z
- l

H ~o;s = F2 2

We must evaluate each tenm in (Al):

-1 . -1 -1
Here we used the equation for Hl ("Z = :Kl(~o;s):MZ ).
Proceeding similarly for F~:

(A.2)

(A.3)

'0 .
F = A (~ ) = a (A.4)z Z 0

Finally, the equation for Mis just:

Substituting 1n (A.2), we get:

(A.S)
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Since H= M:-H:, we deduce from (A.6):

This is what we claimed at line (1.5).

(A.6)

(A.7)
-

..

..
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