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where 11* is the tune between the centers of two
neighboring IRs and 6* is the value of the beta
function at the center of the IR.

The configurat ion of the. machine is therefore
described by the number of IR's, the number of
bunches within an IR, and the number of bunches
within an arc. Thus we have

gether. This dipole approximation to the charge dis­
tribution may be taken as the starting point of a
more realistic calculation in which higher multl­
poles are treated.[6, 1, 8, 9, 10] Furthermore, we
study the motion in one dimension only, so that each
bunch is fully described by its transverse coordi­
nate x and its slope x'. The bunches are evenly
spaced and populate the beams uniformly. Both beams
are identical. All the interaction regions (IR's)
are also identical, as are the arcs between them.
Thus the superperlod of the machine equals the num­
ber of IR's.

( 1)

6"'Sin(1I1I*)J
(2)

cos(1I1I*)[

COS (111'*)

-sin(1I1!*)
6*

where Nb is the number of bunches per beam, Ni r
is the number of IR'S, m is the maximum number of
bunches that can fit simultaneously within an IR and
m' is the minimum number of bunches that can fit
simultaneously within an arc.

The bunches are assumed to interact only within
the IRs. A given bunch interacts every time it moves
a distance liZ, where L is the interbunch distance.
Within the IR, the bunch is drifted between inter­
actions by a simple 2xZ drift matrix O(L/2). In the
arcs, it 1s transported by a phase advance matrix T
from the end of an IR to the beginning of the next
one. The matrix T satisfies the relation

There is one "head-on" collision at the center
of the IR plus several "long-range· interactions
away from the center. We assume these interactions
between bunches to be kicks which can be linearized
as follows: consider two opposing bunches, one from
each beam, whose coordinates are (Xl,x',) and
(x2,x'Z)' The xs and x's are measured relative
to the respective design trajectories. They "collide"
at a point where the distance between the design
trajectories is d. If the distribution is Gaussian,
the slopes change according to x', ~ x', + 6X',
and x'2 ~ x'2 - 6X', whereAssumptions

Analvsis

The SSC has one feature that may have an import­
ant effect on its design: the fact that the beams
have several thousand bunches makes the interaction
between beams significant, so that beam stability is
potentiallyaffected.[l] This, in turn imposes a
restriction on the choice of tune, and may weaken
the conclusions of tracking studies which ignore the
beam-beam interaction. Basically, the effect arises
from the fact that there are many bunches in a given
interaction region simultaneously, so that they
interact several times (with different strengths,
which depend on the value of the crossing angle)
before leaving. The induced transverse motion gets
quickly compounded, and this has a potential effect
on the stability and the choices of tune and cross­
ing angle.

Ideally, one would want to include, in beam-beam
interaction stUdies, the effect of the forces on each
particle produced by the electromagnetic fields of
the other particles within its own bunch and of those
with which it collides, in addition to the forces
produced by the magnets and the walls of the beam
pipe. This is a formidable task from the programming
point of view, and, in any case, no computer exists
nOw nor will exist within the SSC design time scale
which would be able to produce significant results
from such a program.

The coherent effect of beam-beam forces on the
stability of the motion of beams as rigid bunches in
a collider is studied by means of simulation. The
number of bunches per beam is taken to be large, with
many bunches colliding simultaneously within each
interaction region. It is also assumed that they
populate the beams uniformly, and that they are
equally spaced. The interaction regions are all
identical and evenly spaced. The collision forces
are assumed to be one-dimensional linear kicks.
Results for stability limits are presented, as a
function of tune, for various beam configurations
and several values of the crossing angle.

Introduction

In this note we present first results on the
effect that the beam-beam interaction has on the
stability of the beams. While we make (so far) many
simplifying assumptions, the key ingredients of many
bunches per beam and multiple, simultaneous, bunch­
bunch interactions within all interaction regions are
kept. We present results for several beam configurat­
ions and crossing angles. While these results are
preliminary, they do suggest an important effect on
beam stab1l1 ty.

-
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We consider here only the motion of the center
of charge of the bunches.[Z, 3, 4, 5] In practice,
this amounts to treating them as rigid, disk-like
objects. In this sense the effect 1s "coherent",
since all the particles within a bunch move to
* SSC-ZB
t Operated by Universities Research Association for

the Department of Energy.
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where N is t~e number of particles per bunch, ro
is tht classical radius of the particle and y is the
usual relatIvistic factor.

For the purposes of our simulation, we linearize
the above expressions about AX-O, and assume the
following values for the parameters: 0*-7 ~m, 0*
=1 m, L-15 m. Then the expressions for the kicks
are well approximated by the following:

The parameter 0* is the effective transverse
size of the beam at the center of the IR. The effec­
tive "focal length" f determines the strength of the
kick. For the head-on collision, d~, 0 = 0* and
f=f* . For the long-range interactions, 0 2 = 0*2
(1+s2/ 8*2) where s is the distance from the col11sion
point to the center of the IR; f 1s related to f* by
f=f*(0210*2) , (see eq. (5».

The difference in sign between the head-on and
long-range kicks arises from the shape of the force
function E, eq.(3): close to the origin, the slope
is positive. but it is negative out in the tail. In
the linearized form of the kicks. it is obvious that
Ax' is proportional to this slope.

Instead of the parameter f*, we use a dimension­
less one,
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Figure 3 is similar to the previous one except
that it corresponds to the beam configuration
Nir-6, ..5••'·1. The larger number of bunches
wlthin the IR's have a stronger destabilizing
effect. which ~nifest$ itself in downslope curves
farther away from the vertical 11ne. This effect
wilt be even ~re pronounced for the SSC. which is
expected to operate at m-26.

Remarks

As mentioned above, we have also studied the
beam stability by finding the full transfer matrix
and diagonalizing it. If there is at least Qne
eigenvalue greater than unity in absolute value. the
beam is unstable; otherwise it is stable. This is
not a convenient method of programming b~ause every
beam configuration requires a different matrix.
Besides, the matrices, of dimension 4Nbx4Nb, become

Results.

We present here results for only two beam con­
figurations. The simpler one has "ir=2. m=2 and
m'=O. Thus there are 4 bunches per beam. Each
bunch interacts three times within each IR: there
is one head-on co111s10n at the center of the IR,
and two long-range interactions at either side of
the center. Figure 1 shows the stability limits for
various crossing angles. We plot the maximum value
of ( for which the beam is stable vs , the tune" of
the entire machine. The periodicity of the graph is
one unit of tune. so we plot only two cycles. For
50 IIrad crossing angle the limit is given by the
curve ACE. The parameter p takes on the value &.91x
10-4 for the long-range interaction closest to the
center of the IR. The region above the curve is
unstable, below It is stable. For 10 ~rad the
corresponding curve is ABE. In this case p.'.14x
10-2 for the long-range kick closest to the center.
As the crossing angle is increased, the right side
of the curve becomes steeper, until it becomes
vertical. All this means in our calculation is
that. in this limit. the long-range interactions
have zero strength, and only the head-on collision
is present. Thus the curve AD is also the stability
limit for the 2-bunch per beam configuration "\r-2,
-=1, m'=O. In this case there is a simple analytic
expression for the curve [2,3], namely, tan(.,,/2)/4_.
with which our simulation agrees. The right side of
the curves (BE and CE), with negative slope. is
caused by the destabilizing effect of the attractive
long-range interactions. while the rising edge (AB.
AC, AD) is due to the repulsive head-on kicks (for
bea~ with oppositely charged particles the curves
are reversed. i.e., points A and E are interchanged) .

Figure 2 shows the corresponding results for the
3&-bunch per beaM configuration Nir=6, m-m'-3. In
this case each bunch interacts a total of 5 times
within each IR. In this case the periodicity of the
graph is 3 units of tune, and we ,show only one cycle
(the tune is, again. that of the entire ring). For
50 ~rad. the stability curve is AOA'C'A"C"E. For 10
~rad. the attractive long-range interactions have a
stronger destabilizing effect. and the stability
curve is. in this case, AOA'O'A"O"E. In the limit
of infinite crossing angle there is only a head-on
kick per IR. so the stability curve corresponds to
the 6-bunch per beam configuration Nir-&. ~1,
m'-D, which is given by ABA'B'A"B". In this case
there is also a simple analytic expression (11] for
the stability curve. with which our result agrees.

( 5)

(4)
1

AX' - - f ....P Ax

AX' .. 1 Axf*

....a!... B*Nro
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head on:

long-range:

where the parameter p - 2(0*/d)2. The distance d
between the design trajectories at the collision
point is dete~ined by the beam configuration.
crossing angle and interbunch distance.

Method

In practice we start the simulation by assigning
values to It*. ~, B*. L, (1* and the crossing angle G.

Then we assign random values. within a certain range,
to x and x' for all the bunches. We go around the
ring bunch by bunch either kicking it. drifting it
within the Irs. or transporting it through the arcs;
this constHutes one step. At the end of this step,
all bunches have moved a distance L/2. and we repeat
the process until a full turn is completed, After
each turn we evaluate the maximum amplitude x for
all the bunches at the center of the IRs; if this
exceedS a certain value. we call the motion unstable.
If no instability is found after a large number of
turns. we call the ~tion stable. In this way we can
find a stability boundary in the ( ~ .II*)-plane for a
given beam configuration.

For linear kicks it Is also possible to study
the stability of the beams by finding the full tran­
sfer matrix for one turn. and diagonalizing it. If
there is an eigenvalue greater than one in absolute
value. the motion is unstable: otherwise it is stable
(the simplecticity of the matrix ensures that it is
not possible to have all eigenvalues less than one
in absolute value. so there can not be damping). we
have used this method as a check for one beam con­
figuration only, as explained below.
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••Even though we have made many simplifying
assumptions, our results show the effect of the
long-range coherent bea.-bea. interaction on the
stability of the bea.. Generally the stop-band
width is increased significantly for small crossing
angle, and therefore has a potential effect on the
choice of tune.

Conclusions

We have also done another "experiment" on our
simulatton program: we have replaced the drifts
within the IR's by appropriate phase advance matrices
corresponding to the motion between collisions. In
this case there is no clear distinction between arcs
and IR's, so the stability pattern should reflect
the configuration of a beam with many more IR's.
This is indeed what we observed: the sawtooth shape
of the curve remains, but the periodicity is
increased. for the configuration "1r82, m-2,
m'-o, the pattern takes on a periodicity of 2 units
in tune, While for the configuration Nir=6, ~'·3
the periodicity becomes 36 units of tune.

too large in most cases of interest. However,
~ have used this method to verify the simulation
results for the particular beam configuration Nir=2,
m-3, m'-o. In this case, the results of both methods
agree within the precision of the computer (these
results are not shown here).

'-
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Admittedly, the para~ters used here are not
realistic for the sse. for instance, the sse 1s
expected to operate at a value of ( -0.005, and
therefore our simulation, if taken at face value,
does not restrict th. choice of tune significantly
except near integ.rs. we have taken tnto account
only the dipole motion of the bunches. Howev.r,
each htgher multtpole approximation to the motion is
expected to introduce its own stop-band. The non­
linear character of the beaM-beam force is not
expected to change significantly the stabiltty of
the dipole motion, but it will excite higher order
multi pol. motion. If the effect we have obs.rved
and described her. persists to higher order multi­
poles, it may seriously restrict th. working point
of the SSC. We are presently extending our simula­
tion to include these effects, and the results will
be presented elsewhere in the near future.

Referenus

~.

I

~II

.~ ._::::"J,~ -=-I£.!'-__'---:
o

-

-

{l] sse Reference Design Studies (19B4).

{2] ~. Piwinski, Proc. VIII Int. Conf. High Energy
Accel. CERN, p. 357 (1971).

[3] A. Chao and E. Ke1', CERN/ISR-TH/79-3l (1979)
unpublished.

[4) E. Ken, Proc. JlI Int. Conf. High Energy
Accel., CERN (1980) page 759. Also, lEP Notes
226 (1980) and 268 (1980), unpublished.

[5] J. D. 8Jorken, Workshop on pp Options for the
Super Collider, U. of Chicago, feb 12-17:
(1984) Fermilab Conf.-B4/29-THY (Feb.B4).

{6] Va. S. Derbenev, Proc, III All Union Part.
Accel. Conf., Hoscow, p. 382 (1973)

[1] N. N. tbau and O. potaux, Orsay Tech. Report
5-74 (1974) and 2-15 (1975), unpublished.

[B] R. E. Heller and R. H. Siemann, IEEE Trans.
Nucl. Sc1., NS-28 , 2431 (19B1).

Figure 2

.'

Figure 3


