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I. Introduction

In composite, multifilament conventional superconductors, normal zone propagation is a

strictly thermal phenomenon. It occurs close to the transition front, where a fraction of the

power dissipated in the normal zone is transmitted by conduction to the superconducting zone,

which, in tum, heats up and goes into transition. In the simple model featuring a straight

composite conductor with infinite length and axis (Oz) that is thermally insulated from the

surrounding medium, with specific heat C and thermal conductivity k independent from

temperature, it was determined long ago1,2 that, if the current-sharing zone can be ignored,

the temperature profile undergoes a constant-velocity asymptotic shift.

The propagation velocity v is given by

_ (Dth Pi)l/2
v - AH

where

Dth = k/C is the equivalent thermal diffusivity (m2 s·l),

Ali is the enthalpy per unit volume of the superconducting zone (J m-3) ,

(1)

Pj is the average density (per unit volume) of the power dissipated in the normal zone

(W m-3) .

(All the above are averaged over the conductor cross-section.)

It has also been shown that a time delay given by

(2)

is characteristic of the variations in the temperature profile when shifting.

In superstabilized conductors, like that developed for the ALEPH solenoid.J where a

conventional composite is enclosed in a large section of aluminum, an electromagnetic

diffusion phenomenon is added. Indeed, close to the transition front, the current previously

carried by the filaments is expelled toward the copper, then toward the aluminum. But,

given the large cross section of the aluminum, the current needs a certain amount of time and
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space to diffuse itself into the aluminum. The transition front carries with it a wake of

electromagnetic diffusion, along which the Joule power density per unit volume progressively

decreases. In a previous paper' we examined the straight infinite conductor model and

introduced variations in the power density per unit volume. If we postulate the existence of

a constant-velocity asymptotic shift of the temperature profile T and of the magnetic

induction B, supposing that such a shift was established beginning with t = -00 as z increases,

the velocity v is given by

v.1H

where

o +co

:: fdu Pj(u) + f
o

(- uv)
du exp Dth Pj(u) (3)

u = vt - z is the length of the conductor, so that the superconducting zone fills the half­

space u ~ 0 and the normal zone the half-space u ~ 0,
o
fdu P/u) is the integral of the density (per unit volume) of the power dissipated along

-<'0

the superconducting zone (which is not nil, as we anticipate diffusion close lo the

transition front), and
+co

j du exp(-uv/Dth) is the Laplace transformation of the density (per unit volume) of the

Power dissipated in the normal zone, expressed in v/Dth.

(The above are all averaged over the conductor cross section.)

In addition, we have showns that a characteristic time for the decrease of the power

density per unit volume is given by

(4)

where L2 and Dm are respectively the width and the electromagnetic diffusivity of the

superstabilizer.

Equation (3) provides coupling of the thermal propagation and electromagnetic diffusion

phenomena. The last quantity to be determined is thus Pj(u),
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In an actual solenoid, the electromagnetic behavior of a conductor cannot be dissociated

from that of its neighbors. In this paper we consider the layer of straight, infinite

conductors in Fig. la, which is representative of the ALEPH solenoid. From the thermal

standpoint, only the axial propagation (along Oz) is relevant; we therefore disregard

transverse propagation (perpendicular to Oz), assuming that the normal zone progresses

simultaneously and identically along all the conductors. It follows that Eq. (3), although

derived from a single conductor, remains valid. In view of the highly complex geometrical

configuration of Fig. la (where the composite material does not fill the full width of the

conductor, and conductors are separated by insulating material), calculations of

electromagnetic phenomena are based on the set of infinite plates shown in Fig. lb.

Although these two configurations are different, and cannot be directly related, it is shown

in the Appendix how the results for the infinite-plate model can be generalized to a

rectangular geometry.

NOTE: In configuration Ib, average values are computed based on plate
thickness (2L,).

Until now, electromagnetic diffusion has only been investigated in the copper part of

the composite, and from the standpoint of cryogenic stability.6,7 Some measurements of the

velocity have been made, but for a superstabilized conductor immersed in liquid helium.f A

quench development analysis in a 1-m bore test coil is presented in Reference 9, but in such a

configuration, the transverse propagation from tum to turn predominates. This work is part

of the study we have made of the longitudinal propagation of the normal zone through

indirectly cooled superconducting solenoids.l'' A general review of our results is given in

Reference 11.
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II. The Infinite-Plate Model

1. Geometrical considerations

In the geometrical configuration of Fig. lb, the field lines are straight lines parallel to

the Oz axis; we thus have Ix(Y,u) = 0 for all y and all u. The Maxwell-Ampere equation

for the quasi-stationary states then shows that the only relevant components are the (Ox)

component of magnetic flux density and the (Oy) and (Oz) components of current density. Let

subscripts 1 and 2 respectively, refer to the composite and the superstabilizer. These three

components are identified as Bj(Y,u), Iyly,u), and J.~lY,u), with i =1 or 2.

We also assume that, throughout the duration of the phenomenon, the solenoid remains

energized with constant current 1. The average value of /ziy,u) over plate thickness 2L3 is

called la, and we write Bo= -1JO 10 L3. Conservation of current density shows that /0 and Bo

are constants.

Last, in view of the fact that the plate model is extrapolated from a large solenoid, a

distinction is made between the y > L3 half-space outside the solenoid, where flux density is

nil, and the inside half-space y < -L3, where flux density is 2Bo. Symmetry with respect to

Y is achieved by superimposing a uniform, constant flux density equal to Bo (in this case,

symmetry is odd with respect to B, and even with respect to I); the current distribution, the

only quantity of interest, remains unchanged. In the following, investigations consider the

y ~ 0 half-space.

2. Laws governing composite behavior

We assume that the composite behaves as a homogeneous, isotropic medium in which

-...J "-'"
(1) Magnetic flux density Bt(y,u) at any point is linked to the magnetic field HI (y,u) by the

~ -.-
relationship Bt(y,u) = tlo H1(y,u); for 0 s y ~ Lt and for all u. This assumption is equivalent

to regarding the superconducting filaments as strongly penetrated. (2) The electric field

---,)

Et(y,u) is nil at all points in the superconducting zone. (3) Current density is uniform

throughout all cross-sections of the normal zone, while resistivity Pt of the composite in the
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normal state is equal to the equivalent axial resistivity. This is equivalent to assuming

that diffusion through the copper in the composite is instantaneous when measured on the

same scale as diffusion through the superstabilizer, In a previous publication.f we have

introduced the dimensionless parameter m = P2LI/ PI L2 where P2 is the resistivity of the

superstabilizer, and we have shown the above assumption to be justified as long as

holds. Equation (5) defines a superstabilization criterion, and m is called the first

superstabiliza tion parameter.

3. Diffusion equations and boundary conditions

No heat is dissipated when the composite is in the super-eonducting state; it is

therefore not necessary to determine the magnetic induction profile.

(5)

When the composite is in the normal state, !zl(U) is assumed to be uniform through each

section, and Bj(y,u) to vary linearly with respect to y. Because of the odd symmetry and the

conservation of the magnetic flux density normal component at y =LI, we have

In the superstabilizer, B2(y,U) is the solution of the magnetic diffusion equation

{
a2Bt;{'U) ()2B2(¥,U) _ .!..- aB2(Y,U)

+ au - Dm au
for LI :5: Y :5: L3, all U

(6)

where Dm =P2/ J1.o is the superstabilizer diffusivity.

Boundary conditions are

for all u (7)
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and

Once (Pn) and (Ps) have been solved, a solution to problem (P) can be derived by fitting

analytically !(y,u) and g(y,u) at u =0, i.e., by determinating a set of coefficients

f(y,u = 0) = g(y,u = 0)

O/(y,u = 0) _ dg(y,U = 0)
ay - ay

Let us replace! and g by their expression and consider IE N*, The above equations can

be mutiplied by sin[PI (L3-y)/L2)} and integrated between y = Ll and y = L3, eliminating bj. A

similar procedure can be followed by multiplying the two equations by sin [a/ (L3-y)/Lz)]

and eliminating ai. This yields

for 1E N"

for lEN"

(12)

(13)

Conditions (12) and (13) indicate a summation over the entire kEN" range; they should be

written for the entire lEN" range. Let us now consider N e N", and write conditions (14) and

(15) derived from (12) and (13), retaining only those subscripts with values not exceeding N:
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Conditions (14) and (15) reduce to linear systems with constant coefficients including N

equations with N unknowns, which can be solved by numerical methods. Designating system

solutions by (af)k£N and (b~)k£N, we write

[ N]L3-Y N
fN(Y,u) = Bo 1 - 0 + m)L + L ak !k(y,u)

2 k=l

and

At this stage, it can be verified both numerically and by changing the parameters in

the problem equations that fN<Y,u) and gN(y,u) converge toward a limit for large values of

N, and that the limit encompasses the very solution derived for (P) through the DELPHINE

program. It can therefore be stated that

{

lim tN(y,u) = B2(Y,U)
N~+oo

lim gN(y,u) = B2(y,U)
N~+oo

for (y,u) E Q n

for (y,u) E Q n

An approximate solution for (P) can thus be derived by solving Eqs, (14) and (15) for large

values of N.

The quality of the fit at u =0 provides some idea of the accuracy of the solution for

(P). We write

As regards the numerical data of Tables I and II, we have verified that for values of y

that are not close to LI, the ratio rN(y) rapidly becomes negligible: N is of the order of 100

(Fig. 2a). However, as might be expected, convergence is much slower for values of y dose to

LI (Fig. Zb): it is precisely at point (y =LI' U = 0) that the condition changes form. This is
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not a matter for concern, since the computation of P, involves averaging over Y and the

divergence will be partly cancelled out.

5. Heating power profile

Except in the composite when in the superconducting state (where the electric field is

~ ....-+0
nil), the electric field E is related to current density J through Ohm's law. The average

power density per unit volume is then given by

r.,
P,(u) = ~{ y(u) Jdy Pl [Ry(Y,u) + Rz(Y,u)]

o

where Y(u) is the Heaviside step function.

L:2

+ Jdy P2 [ Hy(Y,u) + Hz(Y,u)]}
L1

The components of current density are given by the Maxwell-Ampere equation for the

quasi-stationary states. They are obtained by differentiating, term-by-term, the series used

for computing Hi (y,u).

An approximate expression for Plu) is thus given by the following:

In the normal zone:

In the superconducting zone:

N

PJ(u) = PJO TL (b~)2 [Pi + (,ukL2)2] exp (2PkU )

k=l

in which we use

10
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(PjO is the average density of the dissipated power, computed with the assumption that the

current remains confined to the composite).

6. Implicit equation for propagation velocity

The approximate expression of Pf,u) derived above can be introduced in Eq. (3). The

final outcome of the calculation is

(18)

N

+ ~ L
k=l

Equation (18) can be solved numerically, thus providing an approximate value of the

propagation velocity.

In Fig. 3, we have verified convergence by plotting v against N for the numerical data

of Tables I and II. As mentioned earlier, the averaging introduced by Eq. (3) partly

eliminates the irregularity at the point (y =Lt, u =0).

The handling of Eq. (18) and linear systems (14) and (15) is rather cumbersome; while

the results are satisfactory, little is learned about the physics of the phenomenon. To

progress in that direction, and to derive an approximate form of Eq. (18), we will now

investigate the two limiting cases v-+ 0 and v -+ co (this variation of parameter v is

physically achieved by changing the value of the current I).

III. Investigation of the Low-Velocity Domain

When v tends toward zero, the characteristic time t"p of the thermal propagation

phenomenon defined by Eq. (2) tends toward infinity, whereas the characteristic time t"m of
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the electromagnetic diffusion phenomenon, derived in Eq. (4), remains constant. At low

velocities, it thus appears that

(19)

Relationship (19) can be interpreted as a scale discrepancy between the two phenomena.

Thus, to an observer looking at the electromagnetic diffusion wake, the temperature profile

appears to be strongly expanded. Conversely, an observer looking at the temperature profile

would see the motion of the electromagnetic diffusion wake as fast and sudden. It could even

be said that the second observer regards diffusion in the superstabilizer as instantaneous and

views the average power density profile as a step function

where

m
Pjss = 1 +m P jO

(PIss is the limit of Eq. (16) when u tends toward +00. It is therefore the calculated power

density, based on the assumption that the current is distributed between the composite and

the superstabilizer, current densities being uniforrn.)

In short, the low-velocity domain exhibits an expansion of the temperature profile that

conceals the electromagnetic wake.

The boundary of the low-velocity domain can be derived from Relationship (19). We

have

(20)

(De has the dimensions of diffusivity)

Using the data in tables I and II, we find

v « 40.3 crn/s
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In that domain, propagation velocity is given by expression (1). We obtain

(21 )

At the bottom of Fig. 4, in the area delineated by Eq. (20), v versus 1 is plotted for the

numerical data of Tables I and II; one curve represents the exact solution from Eq, (18) and

the other the approximation given by Eq. (21). The two curves are in good agreement, except

for values close to the boundary.

IV. Investigation of the Hlgh-Velocity Domain

1. Existence of a limit for the induction profile

Given 11 = v/Dm, and all other condition being the same, let us consider the effect of a

gradual increase in parameter 11 on the moving induction profile. We find that for a given

value of y, if we plot (B/Bo) against the time-dependent variable 5 =u I u, the induction

profile becomes distorted until it assumes a limit shape (Fig. 5).

For the data of Tables I and II, the limit profile is reached in plane y = Ll + (L2/2) as

soon as 11 > 5000.

2. Determination of the limit profile

Let us assume that 11 tends towards infinity in system (14). We have

1
for IE N*

It can be shown that, for complex values of z, the meromorphic function defined by

sin z
H(z) = z2 (sin z + mz cos z) for z E C

has poles at zero and at values given by the series (ak)ke N; it can be expandedl-' into the

form

13
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Writing z =/31 in Eq. (22), only the coefficients remain to be identified, hence

a 2m
a/c = 1 + m + (mak)2

The expression for the limit induction profile in the normal zone is thus

where

(1'2 has the dimension of time)

We have thus reverted to the expression derived in a previous papers for the flux

density profile, assuming that the conductor layer, initially in the superconducting state,

switches uniformly to the normal resistive state at time s =O.

It can be readily shown that

B~ (y, 5=0) = Bo

It follows that B~ (y, 5) is uniform and equal to BO in the superconducting zone.

When the flux density profile reaches the limit, the current remains confined in the

composite until 5 = 0, at which time it starts diffusing into the superstabilizer as if the

entire layer had switched uniformly.

3. Physical interpretation of the limit profile

In the low-velocity domain, the physical interpretation of the limiting case originated

from a comparison of the thermal propagation and electromagnetic diffusion phenomena and,

more precisely, of the respective ranges of the temperature and magnetic flux density

gradients. When demonstrating the existence of a limit profile for flux density, the thermal

phenomenon is no longer detected through the temperature profile, but only through the

propagation velocity. The physical origin of this new limiting case is thus solely an

electromagnetic phenomenon.
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Although the flux density profile is dependent on space variables y and z, the

dependence relationships are of widely different natures. The electromagnetic diffusion

wake develops along (Oy), whereas the shift resulting from thermal propagation occurs

along (Oz), Let us assume that the shifting motion is relatively fast compared with the

spreading of the electromagnetic wake. At a given time, the transition front can conceivably

be located far ahead of the wake itself, i.e., there could be a large distance between the

plane z = vt where switching is initiated and the plane where current density has undergone

a significant diffusion in the superstabilizer, In the same way, an observer who concentrates

on the shifting motion and follows the transition front would hardly notice the

electromagnetic diffusion, whereas a second observer monitoring electromagnetic diffusion in

plane z = zo, would soon lose sight of the propagation front. Eventually, after switching has

been initiated in its plane (at time to = zo/v), the second observer can no longer tell whether

the propagation spread was finite or not: he can no longer distinguish it from the change

that would have occurred if the entire conductor layer had switched uniformly at time to.

Our second observer thus ends up equating the flux density profile he sees with the limit

profile.

To summarize, the shifting motion of the flux density profile and the spreading of the

electromagnetic diffusion wake become decoupled in the high-velocity domain. The

electromagnetic phenomenon appears to "forget" the thermal propagation phenomenon from

which it originates.

4. Limits of the decoupling range

Our goal now is to determine the values of v for which the flux density profile may be

considered as having reached its limit. An ideal way of finding the answer would be to use

directly the general expression of 82(t,5). However, the series (ak) and (bk) are not

explicitly known, and a purely mathematical criterion could not be found. To resolve this

difficulty, we have used the common-sense approach explained below. The validity of that
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approach has been verified numerically, so we can therefore be confident that the criterion

that we will presently establish is a sufficient condition for the profile to reach its limit.

All other conditions remaining the same, the flux density profile Bi(Y,z - vt) undergoes

is continuously distorted as v varies. Let us imagine a succession of quasi-stationary states in

which the parameter v changes gradually from zero (associated with flux-density profile

designated by B~(y,z» to infinity (associated with profile B~(y,t». It can be seen that, for

o
small values of v, the shifting profile will differ little from Bj(y,z - tit); for intermediate

values, it will be between Bl(y,z - vt) and Bi(y,t - zfo); for large values of v, it wi11 tend

towards Bi<y,t - zfo), The attempt to define the decoupling range therefore reduces to

establishing a criterion for determining those values of v that make the profile closer to B~

o
than to B],

Let A. be a length, characteristic of variation of B?(y,z) along (Oz), and T a time,

characterizing the variation of Bf(y,t). If the induction profile is close to B?, the length

characterizing its variation will be close to A; on the other hand, if the profile is close to

Bt, that length will differ little from Vt. Comparing the two characteristic lengths leads to

the logical conclusion that the induction profile will approach Bf as

A.v » ­
T

Only A. and or now remain to be determined.

• Determination of A.: B~(y,t) is obtained by making v =0 in the general expression

derived above for B,(y,u). In the normal zone, for example, we have

where the series <a~)kE(1,NJ is found by solving the linear system

1
=--~

(1 +m){3,

16
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A similar expression can be derived in the case of superconducting zone.

Let us consider a location in the middle of the superstabilizer [in a plane defined by

y"" L} + (Lz/2)]' and plot the curve (l/BO)(dBVaz) against z (Fig. 6). We will call Mo the

peak of O/Bo)(clBVaz), and we will define il as the distance between the marks where

0/Bo)(aB~/az)equals Mo/2.

Thus defined, il is dependent on m and L2. Changing to the dimensionless variable

Z == Z/L2, we now consider (l/BO)(dBVaZ) as a function of Z. We can define a characteristic

value A, dependent only on m, so that il =AL2.

Figure 7a shows a plot of A against m. It can be seen that A :::: 1 for m « 1. However,

condition (5) for parameter m, which occurs again here, was previously taken as a criterion

for superstabilization. It can thus be stated that, in the case of superstabilized conductors il

• Determination of r. the reasoning is the same as for il, using distance v> L} + (L2/2)

and defining t as the interval between the times when O/Bo)(dB2'ldt) equals (Ma /2 ); Ma

is the peak value of (1 I Bo)(aBi/aO.

Thus defined, r depends on m and "2- As in the case of A, we can change to a

dimensionless variable, taking T = t/"2, and we can define a characteristic value T,

dependent only on m, so that 'f == T'f2.

Figure 7b shows a plot of T against m. It can be seen that T:::: 0.1 for m « 1 and it can

therefore be stated that, in superstabilized conductors, .. :::: "2/1D.

NOTE: The factor of ten is due to the fact that the characteristic decay time of
Bi(y,t) is not tz, but 1'2,1ai, where the value of a} is of the order of 1t.

To summarize, the decoupling range is delineated, for a given value of parameter m, by

A(m)L2
v » T(m)1'2

In the case of superstabilized conductors, Eq. (23) reduces to

v » 10 L2
't"2

17
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Using the data in Tables I and II, we find that

v » 3.8 cmls

5. An expression for the propagation velocity in the decoupling range

In the decoupling range, Eq. (3) takes the simplified form

where Pja* is the Laplace transformation of the power dissipated along the flux density

profile limit.

Since the behavior at the asymptotic limit can be regarded as an instant, uniform

transition of the conductor layer, the expression for Pja.'" is that computed in Reference 5.

NOTE: In Reference 5, the Laplace transformation was derived with respect to
the time variable 5; the variable conversion u =vs is therefore
required to arrive at the desired expression.

We thus have

where

--v DthPjO
va= ..1H

(24)

(Va is the velocity, computed with the assumption that the current remains confined to

the composite).

Equation (24) can be put into a dimensionless form by defining the reduced velocity:

v
v=-

VQ

and the second superstabilization parameter:

We therefore have:

v _ _ ~:-m~p _
- tanh(pv) + mpv

18
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(28)

which shows that v depends only on the two parameters m and p,

The top of Fig. 4, which relates to the domain defined by Eq. (23), shows the curves

v =[W, plotted using the data in Tables I and II; one of the curves represents the exact

solution from Eq. (18) and the other the approximation given by Eq. (24). The curves are in

perfect agreement.

V. Investigation of Domain Overlap

Figure 4 shows that the decoupling range and the low velocity domain overlap to a

certain extent. This is not altogether surprising, since the physical origins of the two

limiting cases differ: at low velocities, the temperature profile undergoes an expansion that

conceals the electromagnetic diffusion, whereas at high velocities the displacement of the

induction profile and the spreading of the electromagnetic diffusion wake become decoupled.

In general, such an overlap occurs when the boundary of the decoupling range, given by

(23), is lower than that of the low velocity range, given by Eq. (20), i.e., in cases where

2.!. [A<m>] < Dth
2 T(m) ti;

in which the geometrical characteristics of the conductor are only represented by m, the

first superstabilization parameter.

For superstabilized conductors, we have determined that the values of (AfT) were of

the order of 10; Eq. (28) can thus be written 50 < Dth/Dm . Considering the respective values

of Dth and Dm, this relationship always holds for superstabilized conductor applications,

and the overlap range is relatively wide.

Let us now consider the status of Eq, (24) at low velocities. In this case, we have

Hence

(
V L2) v L2

tanh D. --D
~ e
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and

which is actually Eq. (21).

Equation (24), which only holds in the decoupling range, is thus an adequate

representation of the boundary in the low velocity domain. Since we have shown that the

two domains overlap widely, it follows that Eq. (24) applies everywhere.

The above can be summarized by stating that, in superstabilized conductors defined by

Eq, (5), the implicit Eq. (18) for propagation velocity can always be reduced to the

simplified form of Eq. (24).

VI. Conclusion

A mathematical model has been found for the thermal and electromagnetic behavior of

the conductor layer (Fig. Ib) during normal zone propagation; we have thus shown that the

temperature and magnetic induction profiles undergo a constant velocity shift, which

features an asymptotic limit. In the most general case, propagation velocity is given by

Eq. (18) in which the coefficients are determined by linear systems of Eqs. (14) and (15)

(N being of the order of 100). For superstabilized conductors defined by Eq. (5), an

approximate expression for the propagation velocity is given by Eq. (24), which applies at

all points.
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Appendix: Evaluation of the Normal Zone Propagation Velocity

Along Rectangular Concuctors

This paper considers the plate model of Fig. lb. A similar study can be conducted for

the axi-syrnrnetrlcal model of Fig. 8. It also yields to a simplified implicit equation for

propagation velocity, which in superstabilized conductors applies at all points. This

implicit equation can be put into a dimensionless form by defining the two superstabilization

parameters,

and

where L2e is the equivalent depth of the superstabilizer

(in m)

This equation then becomes

v =
mp

[ L3 L] JF] pv Lze
pv-

L2e

[ L L] J
+ mpv

G pv Lie pv-
L2e

(29)

where v is the reduced velocity defined by Eq. (25), and Fl and G are the functions defined

for complex values of Zl and z2 by

and where In and Kn are the modified Bessel functions of first and second kind and of order n.
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Comparing the definitions of the two superstabilization parameters for the infinite

plate and the axi-symetrical models suggest they can be generalized to any geometry under

the form

and

where

L2e =AdPd is the equivalent depth of the superstabilization (in rn):

Al and A2 are the composite and the superstabilizer surfaces (in m-):

Pd is the composite perimeter in contact with the superstabilizer (in m),

Then a choice has to be made for the propagation velocity equation between Eq, (27)

and Eq. (29). Equation (29) would require an equivalent width of conductor L3e to be defined,

which would be arbitrary and would have little physical meaning in a rectangular

geometry. So, using Eq. (27), the propagation velocity along the conductors of Fig. Ia is

given by

v =V(m,p)VO

where Vo is the velocity calculated assuming the current remains confined to the composite,

and v is the reduced velocity determined versus m and p,

Figure (9) shows a plot of v =[(1) for the numerical data of Table (Ill) from the Aleph

solenoid.
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Tables

TABLE I ("ALEPH" CONDUCTOR)

Dimensions:

Conductor:

Composite: (Cu/NbTi = 1.35)

Insulation (impregnated glass cloth):

Thermal and electrical characteristics (at 7.75 K and 1.5 T):

35 x3.6mm2

4x2 mm­

250.um

C =5317 Jm-3 K-1

PCu = 2.75 10-10 Om

L1 =1.1 mm

k = 1955 W m-1 K-l

PNbTi = 5.5 10-7 Om

TABLE II (INFINITE PLATE MODEL)

L2= 16.4mm

TABLE III (RECTANGULAR MODEL)

A2 = 118mm2
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L1H =10 730 Jm-3

PAl = 7.48 10-11 Om

Lt =20.2 mm
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