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Fig. 2. Phase space topology can be either (a) open or (b) closed. Case
(a) is in geocr31 lObe avoided by avoiding the low order
rcson;mces.

lbllal

CmQojcgl Perturb;ujQo Thcqo:3,4j.6

ConvcntionaUy, theoretical studies of nonlineardynamics arc made
using peItUtbationlheorics. The idea is to first insistlh:lt lhe system
=ains integr.lbleunder the nolinear pertlilbation.andlook for the
invariant surfaces petturbatively. When a convergentsolution is found. an
invariant surface exists. Otherwise. an invan:ml. surfacedoes not exist and

Fig. 1. (a) PtIasc space lr.Ijeaories in I linear system when the lIlne b an
Imtional number. (b) Tuneshil'tmakes thephase:: space an
In1inilCly layered suuaurc ofcin:.lcs anddiscrete daIS. (c) Islands
and cNolic layerssurround the disaete dots, btuking some of
1hccircles and distorting othel3. (d) Whenthe amplitude b large
enough, all cin:lcs are broken, resulting in I d)1Wllicapenun:.

We have thus Identified~ effect'S in:ln accdc:l3IOr wilh
ooalincarperturbadons: dv(A). smear (A). islandsm.1 dtaotic la)'l:rs. and
lhc dynamicape~ Nonlinear dynamics is clearl.y quite compUc:lled. It
beeomcs even more so ifman: than 1·0 is bcinl considered. The most
ponounced dUfen:nce is that theexistence orKAM surfacemeans
boundedmotion (or 1·0 case (or 2·0 case with a time·inckpcndcnt H:unil­
tonian). Beyond 2-D, however. the invari:ml. surfaces do llOl forbid
particles leaJcing through intrtC:llC channelscollllCcting the inside phase
space10 the outside (Amqld diffusionI).

Introduction

If theac:celer:l1or optics is perfectly linear, \hell':ljeaDry of a panicle
!r.1CCS out a ci rele in the norm:lli7.Cl1 phasesp:1<:C (q,p). assoo- in
Fig. I(a). The tune v (phase :adv;mee per tum 12rr.) is independent of the
initia.lcoordil1:llC$ of the ~cle. We assume v is an irr:Ilional number.

'The piaun: becomes complicated when a nanlincarpenutbadon is
:ldded to the system. The li~ compIlation is the inuoducticn of tune
shin. For p:uticles neu the phase: sp:lcc origin. the tuM n:mains v, but IS

\he pmicle amplitude A increases. the tune shifts.~ the tune changes, it
ean nolonger st:lY imlion:ll. The phasespace crajeclOries lhcn tooklike
Fig. l(b). Circles are U2jeaories of panicles lhlU haveIrraclonal tunes.

Discrete daISbelong 10 !hose wi!h ratlon.alnsnes. M the tune v:lries
betweenlmtional and r.ltional Vllues,the phase space Iooks like an
infinitely layen:d s:mdwitdL

But the nonlinearperblrbadon bas anadlcr much nastler effect.
Aroundeachdiscme dcxconaponding to a raIional tune. an isiancl or
(mite areaiJ ereated.ancIlmmediatelyoUlSidc !he islands is I thincbaotic
layer In which !he tum·by·tum lrajectDrydocs not roOew I smOOth paaem.
The~ or chaolic: layers is \hesi~ tbIllhe system Isno!

integm1c. As \he islands acquin:finite sizes. !heylmaIctheDeilbboMg
dn:les.

The islands and chaotic layersemergespcxtUneaISly in the tllIUe
phasespace, even close to theori&fn. However. by III natun:, the
nonlinearity h:Isonly a ~aIC eerect at smaIl amplltudes. Thismeans
blands neat theorigin areexuemely lhin. and mO${ invariant surfOll:a aM

able to mainttin !heir eJtislencc(!he KAM surfacesl) and suffersonly (rom

a small dbtortion from a circle. The dislOn.ed aides constilllteinvariant
surf= The s1gnifie:mcc o( invarimt surf:u:eis lhat once it edes. all
pmicles inside o( it will nollC:llc out, thus usurinllheir stability.

The percelltilgedistortion from circles is C:IIlcd the "smeu.· M the
amplitude increases, !he islandsgrow in size, brealdng mare inv:lriant
surface.$.2 However, not an circles an: =:Iled equal Some ohhcm
eerrespord to tur\C$ that an: man: itl':ltianallhan olhers. andthey tend ro
break later than o!hers. These tunesare Ihose cont:linmg a..[3 in lhe fonn
(D+m.J'S)Ik. where n, m, and k are integers. So. as!he islands grow in
size. !hese invariant surfaces persist for :I while, bUlthey arc now more
distorted from circles. i.e••!he smear Iw incn:ased.. Figun: l(c) is a
sketch ofislands and chaetic layers.

As amplilllde Incrc:lSl:S fuMer. even lhe persistent invarianlsurla=
arebroken by neighboring island chains which arc now l:lrle enough lO
"overlap," Beyond WI point-the phase space looks like Fig. I(d). The
islands still er.ist. but they now become disjoint, and !hey aM embedded in
a chaotic oce:ln. Partlcle motion is no lonser bounded and instlbilty
occurs. 'The last lnvariaru surface is c:illed the "dynamlc aperture."

Instead of Fig. led). a situation illustrated in Fig. 2(a) could
happen. An invari;ll1l surla~ e:dslS. but before lhe islands overlap. the
tune shift with ;lffiplitudeTUnS out of SlC:un lO close the islands from above
and the dynamic ~pcrtun: is reached prem:lwrcly. In practi~ this is !he
siw:llion to be avoided by properly choosing the nominal tune (ex~pt for
resonance be:un eXUOlction in synchrotrons). To avoid lhe siwationshown
in Fig. 2(a) is 10 avoid reson:lnccs by choosing the tune so thaI 2(a) looks
more like 2(b).

A few c:onuncnlS on the subject ofsingle ~c:1e~ dyn:unics
in SUll:lge rings :u'C presenled..



one is in a chaotic region. Roughly speaking, there are two situations
when the system is integrable: either when one is "away from all
resonances," or there is only one "single, isolated resonance" nearby. It is
therefore in these regimes where a perturbative theory usually applies. One
moment's reflection shows these can at best be qualitative description since
there is always an infinite number of resonances inlinitelyclose by.

The classical treatment is the canonical perturbation theory. It starts
with a Hamiltonian

(I)

In the2-D case. ncar the resonance mxvx+myv = integer. the
Hamilton's equation J'=-aH/~gives Jx'/m~=ly'/m ~hich in tum yields
an additional invariant condition r

(7),

Since I',r > O.this leads to the well known8 conclusion that sum
resonances are unbounded while difference resonances are bounded.

Ifone of the two dimensions is the synchrotron dimension. ncar the
resonance mxvx+msvs = integer. the invariant condition becomes

where vm(J. 6) is the m-th Fourier component ofV. The transformed

Hamiltonian is

(8)

where ±means above and below transition, respectively. The change of
sign above transition is a consequence of the negative longitudinal mass.
Above transition. motion is therefore bounded near sum resonances and
unbounded near difference rescoances.?

In the 3-D case near a resonance mxvx+myvy+msv. = integer,
Hamilton's equation gives Ix'/m x=l y'/my = ±ls'/ms' It follows that
unbounded motion occurs when

• all m~. my and m. are of thesame sign ifbclow transition
• mx and my are of the same sign, m. has opposite sign if above

transition. (9)

All other sign combinations give bounded motion. It should be
pointed out. however. that bounded motion does not necessarily mean
stability in practice. This is because the a small decrease in onc dimension
may allow the other dimension to grow by a large amount, thus exceeding
theaperture. This is especially the case when longitudinal dimension is
involved.

Hamjllon-Jacobi EQuation lO

(2)

9+2lt

J dO' v"Pl' e') eimCl\I+V(O-O'-lt»)

(3)

2 sin xmv

with

where J and ljl are the action-angle variables. V is the nonlinear perturba­
tion which is periodic in the time variable O. The unperturbed Hamiltonian
Ho includes the rune shirt effect with v(J)=dHcldJ. A review of alter­
native perturbation approaches can be found in Ref. S.

The trick is to try to make a canonical transformation from (J.~) to
(JI' .1) by a generating function. The transformation is chosen in such a
way that the0 and • dependencies are removed so that we end up with a
Hamiltonian which is a function of J I alone. This can be done perturba­
tively, To first order in E, this is done by choosing the generating function

Resonances

The problem with the perturbation method is that theprocess may
not converge. The problem is that of small denominators. An indication
has occurred in the expression of the generating function. Eq. (3), which
diverges when

= function of 11 alone, i.e., new Hamiltonian HI (J1) (10)

It was pointed out that the canonical perturbation theory is just a
penurt>ative way to solve theHamilton-Jacobi equation. so why not try to
solve it directly numerically rather than perturbatively, This leads to the
Hamilton-Iacobi equation forG(+, II. 9).

The job is to solve for G using the above nonlinear partial differen­
tial equation. The condition is that themoth Fourier component of the left
hand side ofEq. (10) vanish for all nonzero m. In practice. theFourier
expansion is of course terminated by a truncation, Note that the task is not
as formidable as it might seem due 10 the fact that J 1 is an invariant and acts
as an input parameter. The 'direct solution of the H-I equation seems to
offer a promising approach to realistic nonlinear accelerator problems.

Figure 3 is the result of applying this technique to a simple example
of an integrable Hamiltonian that describe a single isolated 4-th order
resonance. Separatrices can not be calculated due to small denominators.
But by approching the separatrix, one obtains Fig. 3(a). which can be
compared with the Hamiltonian contours. Fig. 3(b). obtained from the
exact analytical expression.

(5)

(4)

m v = integer.

The perturbation is now second order in E. If this is ignored. we have
J 1= constant of the motion, and the problem is solved. In particular. the
phase space contours are just the 11 contours. Note thatsince J = J 1+ E

aGfc)ljll' the term EOG/~l gives the first order expression of thesmear.
There are two approaches to proceed to higher orders. One is to

expand G in power series of E and deal with the canonical transformation
order by order, After n steps, the Hamiltonian has a perturbation of order
En+ I, The other approach. called "superconvergent,',7is to iterate first
order perturbations but to start fresh after each iteration. After n iterations,
the perturbation is of the order £2··n. Again, once the invariant surface is

obtained. the problem is in principle solved.

or equivalently. when v = rational number. Canonical perturbation theory
therefore breaks down near resonances. An implicit assumption when
writing down Eq. (3) is therefore that one is "away from all resonances".
The fact that there are resonances arbitrarily close by is presumably
compensated by the fact that these arbitrarily high order resonances are
also infinitely weak. In practice, they are therefore simply ignored.

One does weD also in the other extreme. i.e.• when thedynamics are
dominated by a single isolated resonance. say m.v = integer. In that case,
we could try at least to remove the 9 dependence to first order in E. yielding

(6)

4

-4

The bold quantities v, m, and J represent vectors in multi-dimensional
case. One constant of the motion is H itself. In I-D case, this assures
integrability. Whether themotion is bounded or not depends on the
topology of the H contours, as shown in Fig. 2.

-4 0 4 -4 0 4

v'JCOS o/J v'J cos '"

Fig. 3. (a) Contour obtained by directly solving of the Hamilton-Jacobi
equation. (b) Contours using exact analytic expression.
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Trncldng Simulations

In particular, thick bends is treated as a linear element using Eq. (12).
Equation (12) is adopted by most tracking codes. An alternative

approach. adopted for example by 'mAPOT,12 is to model all beam line
elements(including bends) as thin lenses. 11Iisallows keeping theexact
Hamiltonian [Eq. (Il)J because it is needed only in drift spaces.

with canonical variables (It, It', y, y', 1:,1:') and I) related to z' by (1+1)2 =

1-2 z'f13o+ t 2•
Even in the absence of nonlinear elements (e.g., scxmpoles),

Eq. (11) shows that there are nonlinear termsdue to kinematics. How­
ever, for large storage rings, theyare often ignored by expanding the
square root in power series and keep up to second order in x' and y'. AU
nonlinearities then come from As. This gives a simplified Hamiltonian

Taylor maps;
0=1 0=2 _3 n=4 n=5

m=2 4 10 18 28 40
4 16 56 136 276 500
6 36 162 498 1254 2766

Lie maps:
0=1 0=2 n=3 0=4 n=5

m=2 3 7 12 18 25
4 10 30 65 121 205
6 21 77 203 455 917

higher than otherwise. Armed with the canonical lmcgrationtechnique (of
which thin lens approximation is one example), a thick nonlinear clement
(with theexceptions of fringe fields and undulators) can be modeled.

TaylQrand Lie Maps14.15.16

TIle beam dynamics between two positions in an accelerator can be
represented by the map between these two positions (Twiss analysis is an
examplein the linear case). One special case of such maps is that repre­
senting one complete tum of the accelerator, Several beam dynamics
quantities can be extracted from this one-turn map: t uneshifts with
betatron amplitudes and momentum, smear as a function of amplitudes,
distortion functions, strengths of nonlinear resonances. etc. Thus the one­
tum map is ideal for various analytical studies Qf!he nonlineardynam ics of
the accelerator. In addition, it also offers the possibility \0 perform fast
particle tracking because theentire accelerator is now modelled as a single
map. This later possibility, however, has to be taken with care.

There are IWOcommon approaches to obtain a one-tum map. One is
to use the generating function obtaincd in the canonical perturbation theory
or the direct solution of the Hamilton-Jacobi equation, as discussed before
(but with slightly different boundary conditions). The other way, which is
discussed next, is to represent the map by power series. For example, the
final coordinate of a particle can be written as a Taylor series in terms of the
initial coordinates. This will be refcrred to as a Taylor map. Another
example is to represent the map as a Lie operator exp{:F:), where F is
written as a power series. Example programs using Taylor maps are
TRANSPORTI1 and COSy13. An example using Lie maps is MARYLlE. 19

The Taylor and Lie maps are in principleequivalent ,and they can be
transformed into each other whenever desirable. However, there are prac­
tical differences. The advantage of a Taylor map is !hat it is easy to obtain
in a code-just keep substituting the exit coordinates into the entrance
coordinates of the next beam line element and truncate the final expression
to the order of interest (This is especially true when Eq. (12) is used as
theHamiltonian and the elements are representedaskicks using canonical
integration techniques). Also, it is easy to apply in panicle tracking.

TIle U1lI\Sfonnation of a thick element with Hamiltonian H is simply
eltp(-;HL;) in the Lie represernation. But concatenauon of two elements is
not as straightforward as theTaylor method. An advantageof Lie repre­
sentation is that it is more concise. The number of coefficients needed to
represent an n-th order map in a m-dimensional phase space is less than the
corresponding number in aTaylor map:

(12)

(11)

sector bends

other elements

Explicit Canonical Integnlljoun.n

Thin lens approximation to a given element, linear or nonlinear, is
the lowest order (in element length) approximation. To improve theaccu­
racy for a thick lens magnet of length L and integrated strength LS. one
way is to split the element into a number of evenly spaced slices. But
faster convergence can be obtained with canonical integration techniques.
For example.

An indispensable tool for studying nonlinear dynamics in acceler­
ators is to simulate panicle motion by tracking. Typically, one first models
theaccelerator lattice. chooses the initial conditions of theparticles, and
then tracks the trajectory 0 f these panicles by a computer code.

The difficult job of preparing a tracking code is not so much of
developing the code itself. Rather it is to decide on the ll'adeoffbetween
computing speed nod thedegree of simplification of the lattice model. The
decision of course depends on theenvisioned purposeof the trackfngcode.
For storage ring applications, practically all tracking codes assume
drastically simplified models of one type or another; ignoring fringe fields,
kick approximation for nonlineareIements, simplilied Hamiltonian.
concatenated maps to represent the dynamics for one revolution, etc.
Other than some detailed features, these simplilications are mostly accept­
able, nod in any case necessary for applications to large storage rings
and/orto study long termeffects.

The full expression of theHamiltonian isl l

where (L) means a dri ft of length L. ($L) means a thin lens element whose
integrated strength is SL, L1=I.../2(2-b), ~",L(I-b)/2(2.b), S.",S/(2-b),
S2= Sbf(2-b), b=:21f3. Note that the more pieces the clement is broken into,
!he higher the precision is. Also note that symmetry always gives one order

mQdel

(L) (SL)

(~) (~) ... repeated n times

(~) (SL) (~)

(~) (~) (in) ... repeated n times

error Formally, Lie representation is automatically symplectic. However,
in actual tracking applications, artificialsymplectificationhas to be applied
even in a Lie environment, Another important advantageof the Lie rcpre­
semation is that theone-tum map is obtained in the Lie format is ideal for
analysis purposes.

Judging from the above comparison between the Taylor and the Lie
reprcscruauons, it seems that a practical. efficient method would be a
hybrid combination of these techniques:

• adopt the canonical iruegrationfor beam line elements,
• use kick code to generate the Taylor map for one tum,
• transform the Taylor map into a Lie map,
• analyze with the Lie map, (13)
• when judged appicable, track with the symplectificdTaylor map.

The larger storage space needed for the Taylor map coefficients is not
regarded as serious in this approach. This hybrid approach is being
adopted for the sse studies.
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Differential AI~hraI5.16

The above scheme is greatlyenhancedby the existenceof an effi­
cient technique. basedon differcntial algebra.that generatesthe one-tum
Taylor map. To describe this technique. first consider a tracking (or ray
tracing)program hat starts with initialcondition(xo' x'o) and followsthe
particle through beam line clements (or integration steps)as foUows

The same steps are foUowed in the differentialalgebraapproach.
The only difference is that the initial Xo is now taken to~ a set of
numbers arranged in a vector form (1, O.O..... 0) and Xo is now (0, I,
0, .... 0). (A capitalized letter means vector here.) The numbcrof entries
in the vector depends on the desiredorder of the map. To go throughele­
ment 1. these vectors are substitutedinto the same expressionsas the
tracking program. Rules are defined for the various operations (addition.
multiplication. square root. sine. cosine, etc.) on the vector numbers.
After going throught element I, one obtains XtlU\d Xl' whose entriesare
now no longer O's and l's. The vectors X1and Xl are thensubstituted
into expressions for element2, and !he procedurecontinues until !he end of
beam line, or end of ray tracing steps.

Miraculously. after this process. the numbers in the final XN and
X~ vectorshave the significanceas shown below;

(X
O'

x • ) -+ (x\. x')
o \

element 1

-+ (~. X~) ... -+ (xN' xN)
element2 elementN

(14)

Experimentshave been carried out in accelerators to study nonlinear
dynamics in the past, and more recently at SpS,21,22 SPEAR,23and
Tcvatl'On.24 Here we will brieflymentiona recent fonnal experimentat the

Tevatron, the Experiment E778.25,26,27

In a typical E778 run. a beam is first injected at 150GeV. A set of
16lntemional sextupoles are turnedon. and at the fiat top of the sextupolc
strength. the beam is kickedhorizontally. The subsequentmotion of the
beam is then monitoredby two beam positionmonitorsapproximately 900

oul of phase. Polarities of the sextupolesare such that ideallyno net
change of chromaticitiesoccur. 'I1Je (x\, xV informationtum after tum
can be transformed into a normalizedphase space. When sextupolesarc
turned off. the trajectory traces out a circle. as shown in Fig. 4(a). When
sextupolesare turnedon, the circle is distorted(in this case into a
triangular shape). as shown in Fig. 4(b). The percentage distortion gives
thesmear at the amplitudecorrespondingto thestrengthof thekick.

Figure 5 is a compilationof the resultsof several such runs. It
shows the smear as a function of sextupole strength for 3 kick amplitudes.
The smear increaseswith sextupolestrength, as well as the kick amplitude.
as one would expect. 1bc solid lines are obcained by tracking simulation.
The agreementwith experimentaldata is quite reasonable.

The phase space actuallyhas a richer structurethan Fig. 4 might
suggest. For example. when tune is close to 2/5. a chain of five islands is
formed in the phase space. Figure 6 shows the detailed phase space
obtained by tracking. Both the triangularand the five-islandstructures are
present. When the beam is kicked to an amplitudeso as to overlap one of
the islands,part of!he beam will be locked onto the islandand will exhibit
the island structure in its subsequent motion. Figure 7 is an observation in
E77S whichdramaticallydemonstratesthis behavior. This is a dramatic
direct observationof the existenceof islandsin a nonlineardynamical
system.

where the derivativesare evaluatedat !he origin (or !he closedorbit).1bc
algebradoes not requirenumericaldifferentiationinvolvingsubtracting
numbersthat are almost equal and thus all derivativesare accurateto
computeraccuracy. Oncethe derivativesare obtained. !he Taylor map
foUows. By keeping more entries in the vector, maps of arbitrarilyhigh
orders can be obtained. This is by far the most efficient way of generating
maps. An exaggeratedexample, the map for a 90" bend up to 50thorder,
is given below:20

a)

aK .. {h(
b)

aX + (h.'

•••

10

Sm..a~ v. Selllupole Cu~~.. n l

ow...........L..L...................J........................l...&...........w..............-.......J
o

Fig. 5. Smearversus sextupotestrength in E778 for three kicker
strengths (in kV units). Solid lines are simulation results.

..

.!! 16...
j

Fig. 4. Experimenalobservationof beam trajectoryin normalizedphase
space at theTevatron,(a) Experimenalsextupolesare turnedoff.
(b) Trajectory is distorted when 8 sextupoles are tumed on. The
tune is near 113. 11Jetriangle is thecalculatedseparatrix.

10

a.... r-l.L [ ....-3 .., .. }
q.. 1II.:sa

20

order (xlx,n) order (xlx,n)

0 O.OOOOOOE+OO 1 0.500000
4 -.625000&-01 6 -.312500&-01
8 -.954861 &-02 10 -.438368&-02

12 -.175964&-02 14 -.494470E-03
16 -.120357 &-03 18 -.303507E-04
20 -.748015&-05 22 -.166065&-05
24 -.340812&-06 26 -.682165E-07
28 -,I 33936E-07 30 -.252307E-{)8
32 -.454204&-09 34 -.792470E-1O
36 -.135272E-1O 38 -.225391E-l1
40 -.365251E-12 42 -.576846E-13
44 -.891832E-14 46 -.135248E-14
48 -.201106E--15 50 -.293181&-16

Note thaIthe differentialalgebra tool has been developed for 6-0
phasespace. (Dimensions >6 have been implementedto includedepen­
dence of the map on externalparameterssuch as thestrengthof a particular
nonlinearelernent.) Equation(15) is !he special case for 2-D. Note also
this tool itselfdoes not constitutea program;it is to be attachedto an
existing tracking or ray tracingprogram, precompiled.and it will then
generate the map corresponding to the case being simulated. Finally.the
elementsdo not have 10 be magnetmultlpoles. For example,a beam-beam
kick could be treated as one of the elements.
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-1'~12 -1.n -0.8 -0.8 -0.' -<>2 n.n n.a n.. n.' n
X

:t .'
. •11.

Fig. 6. Detailed phase space structure obtained by traeldng when
sextupoles are SCI1025 amperes.
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Fig. 7. When the tune is near 215. thekicked beam exhibits a five-island
structure in the (Ill' x2) space.
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