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Absimal

A few comments on the subject of single particle nonlinear dynamics
in storage rings are presented.

Introduction

If the accelerator optics is perfectly linear, the trajectory of a particle
traces out a circle in the normalized phase space (g.p), as shown in
Fig. 1(a). The tune v {phase advance per tum /2x) is independent of the
initial coordinates of the parniicle. We assume v is an irrational number.

“The picture becomes complicated when a nonlinear pernrbation is
added 1o the system. The first complication is the introduction of tune
shifl. For particles near the phase space origin, the tune remains v, but as
the particle amplitude A increases, the tune shifts. As the tune changes, it
can no longer stay irmational, The phase space trajectories then look like
Fig. 1(b). Circles are trajectories of panticles that have irratonal tunes.
Discrete dots belong to those with rational tunes. As the tune varies
between Irrational and rationat values, the phase space looks like an
infinitely layered sandwitch,

But the nonlinear perturbation has another much nastier effect.
Around each discrete dot corresponding 1o a rational tune, an isiand of
finite area is created, and immediately outside the islands ix a thin chactic
layer in which the tum-by-tum trajectory does not follow a smooth panem.
The existence of chaotc layers is the signamre that the system is not
intcgrable. As the istands acquire finite sizes, they break the neighboring
circles.

The islands and chaotic layers emerge spontaneously in the entire
phase space, even close to the origin. However, by its nature, the
nanlinearity has only a weak effect at small ampiltudes. This means
islands near the origin are exremely thin, and most invariant surfaces are
able to maintain their existence (the KAM surfaces!) and suffers only from
a small distordon from a circle, The distorted circles constinsts invariant
surfaces. The significance of invariant surface is that once it exits, afl
particles inside of it wiil not leak out, thus assuring their stability.

The percentage distortion from circles is called the “smear.™ As the
amplitude increases, the islands grow in size, breaking mare invariant
surfaces.2 However, not all ciccles are created equal. Some of them
comespond to tunes that are more irrational than others, and they tend o
break later than others. These tunes are those containing a¥'5 in the form
(n+my5)/k, where n, m, and k are integers. So, as the islands grow in
size, these invariant surfaces persist for a while, but they are now more
distorted from circles, i.e.. the smear has increased. Figurs 1(c)isa
skeich of islands and chaotic layers.

As amplitude increases funther, even the persistent invariant surfaces
are brokent by neighboring island chains which are now large enough to
“overiap.” Beyond thal point. the phase space looks like Fig. 1(d). The
islands sull exist. but they now become disjoint, and they are embedded in
a chaolic ocean. Particle motion is no longer bounded and instabilty
oceurs, The last invariant surface is called the “dynamic aperture.”

Instead of Fig. 1(d), a situation illustrated in Fig. 2(a) could
happen. An invardant sucface exists. but before the islands overlap, the
tune shift with amplitude runs out of steam to close the islands from above
and the dynamic aperture is reached prematurely. In practice. this is the
situation Lo be avoided by properly choosing the nominal nne (except for
resonance beam extraction in synchrouons). To avoid the situation shown
in Fig, 2(2) is to avoid resonances by choosing the tune so that 2(a) looks
mare like 2(b).

Last rrvanant
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Fig. 1. (a) Phase space trajectories in a linear system when the tunc is an
irrational number. (b) Tune shilt makes the phase space an
infinitely layered structure of circtes and discrete dots. (¢) Islands
and chaotic layers surmound the discrete dots, beeaking some of
the circles and distorting others. {d) When the amplitude is large
enough, all circles are broken, resulting in a dynamic aperture,

‘We have thus identified several effects in an accelerator with

~ noulinear perturbations: AV(A), smear (A), islands and chaotic layers, and

the dynamic aperture. Noalinear dynamics is clearly quite complicaed. It
becomes cvent more so if more than 1-D is being considered. The most
pronounced difference is that the existence of KAM surface means
bounded motion for 1-D case (or 2-D case with a time-independent Hamil-
toaian). Beyond 2-D, however, the invariant surfaces do not forbid
particles leaking through intricate channels connecting the inside phase
space 10 the outside (Amgld difmsionl).

Cananical Perturbation Theory? 45

Conventionally, theoretical studies of nonlinear dynamics are made
using perturbation theories. The idea is to first insist that the system
remains integrable under the nolinear permurbation, and look for the
invariant surfaces perturbatively. When a convergent solution is found, an
invariant surface exists. Otherwise, an invariant surface does not exist and
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Fig. 2. Phase space topelogy can be either (a) open or (b) closed. Case
(a) is in general 0 be avoided by avoiding the low order
fesonances.



oite is in a chaotic region. Roughly speaking, there are two situations
when Lhe system is integrable: cither when one is “away from all
resonances,” ot there is only one “single, isolated resonance” nearby. Itis
therefore in these regimes where a perturbative theory usually applies. One
moment's reflection shows these can at best be qualitative description since
there is always an infinitc number of resonances infinitely close by.

The classical treatment is the canonical perturbation theory. It starts
with 2 Hamiltonian

H = H0)+ £ V($,1.9) m

where J and ¢ are the action-angle variables, V is the nonlinear perturba-
tion which is periodic in the time variable 8. The unperturbed Hamiltonian
H, includes the tune shift effect with v(D)=dH/d). A review of alter-
native perturbation approaches can be found in Ref. 5.

The trick is to try 10 make a canonical transformation from (J, ) to
Gy ¢l) by a generating function. The transformation is chosen in such a
way that the 8 and ¢ dependencies are removed so that we end up witha
Hamiltonian which is a function of J, alone. This ¢an be done perturba-
tively. To first order in e, this is done by choosing the generaling function

F(9,};,8) = ¢1,+£G($.1,.® @
with
. 6+2x
= — 1 ' " eim[§+v(0-8'-x
G(p. J;. 0) = % R J 4o’ v, (3, 8) eV )
@

where v_(J, 8) is the m-1 Fourier companent of V. The transformed
Hamiltonian is

H,0.9,.8) = H) + OE) @

The perturbation is now second order in €. If this is ignored, we have
J,= constant of the motion, and the problem is solved. In parmicular, the
phase space contours are just the Jy contours. Note that since J=J; + &
3G/2¢ |, the term € 9G/09, glves the first order expression of the smear,

There are two approaches to proceed to higher orders. One is 1o
expand G in power serics of € and deal with the canenical transformation
order by order. ARer n steps, the Hamiltonian has a perturbation of order
g™ The other approach, called “supcrconvergem."’is to iterate first
onder perturbations but to start fresh after each iteration. Afler n iterations,
the perturbation is of the order e2™n, Again, once the invariant surface is
obtained, the problem is in principle solved.

nan

The problem with the perturbation method is that the process may
not converge. The problem is that of small denominators. An indication
has occurred in the expression of the generating function, Eq. (3), which
diverges when

myv = integer, )

or equivalently, when v = rational number. Canonical perturbation theory
thercfore breaks down near resonances. An implicit assumption when
writing down Eq. (3) is thercfore that one is “away [rom all resonances”.
The fact that there are resonances arbilrarily close by is presumably
compensated by the fact that these arbitrarily high order resonances are
also infinitely weak. In practice, they are therefore simply ignoted.

One does well alse in the other extreme, i.e., when the dynamics are
dominated by a single isolated resonance, say m.v = integer. In that case,
we could try at least to remove the 0 dependence to first order in g, yielding

H = HyJ) + & V(J) cos (m) + O() (©)

The bold quantitics v, m, and J represent vectors in multi-dimensional
case. Onc constant of the motion is H itsclf. In 1-D case, this assures
integrability. Whether the motion is bounded or not depends on the
topology of the H contours, as shown in Fig. 2.

In the 2-D cuse, near the resonance m, v, +m, v, = integer, the
Hamilton's equation J'=-dH/d¢ gives J,/m =] y/m, which in tum yields
an additional invariant condition

m,J, -m,,;.l:'r = jnvariant. m

Since J, , >0, this leads to the well known® conclusion that sum
resonances are unbounded while diffcrence resonances are bounded.

If one of the two dimensions is the synchrotron dimension, near the
resonance m, v, Hnsvs = integer, the invariant condition becomes

mgJ, +m,J; = invariant )

where 1 means above and below transition, respectively. The change of
sign above transition is a consequence of the negative longitudinal mass.
Above transition, motion is thercfore bounded near sum resonances and
unbounded near difference resonances.”

In the 3-D case nicar a resonance m, v, +m v +mgyv, = inlcger,
Hamilton's equalion gives J,/m,=I y'lm y= 1I/mg. It follows that
unbounded motion occurs when

« allm,, m, and m_ are of the same sign if below transition
+ m and m,, are of the same sign, m_has opposite sign if above
transition. )

All other sign combinations give bounded motion. It should be
pointed out, however, that bounded motion does not necessarily mean
stability in practice. This is because the a small decrease in one dimension
may allow the other dimension to grow by a large amount, thus exceeding
the aperture, This is especially the case when longitudinal dimension is
involved.

Hamilton-Jacobi Equation'®

It was pointed out that the canonical perturbation theory is just a
perturbative way to solve the Hamilton-Jacobi equation, so why not try 10
solve it directly numerically rather than perturbatively. This leads to the
Hamilton-Jacobi equation for G(¢, J1, 0),

H,(),+30/00) + V($, };+3G/3¢, 8) + 3G/30

= function of J; alone, i.e., new Hamiltonian H,(J;) (10}
The job is to solve for G using the above nonlinear partial dilferen-
tial equation. The condition is that the m-th Fourier component of the teft
hand side of Eq. (10) vanish for ail nonzero m. In practice, the Fourier
expansion is of course terminated by a truncation. Note that the task is not
as formidable as it might seem due to the fact that J) is an invariant and acts

" as an input parameter. The direct solution of the H-J equation seems to

offer a promising approach to realistic nonlincar accelerator problems.
Figure 3 is the result of applying this technigue to a simplc example
of an integrable Hamiltonian that describe a single isolated 4-th order
resonance. Separatrices can not be calculated due to smail denominators.
But by approching the separatrix, one obtains Fig. 3(a), which can be
compared with the Hamiltonian contours, Fig. 3(b), obtained from the

exact analytical expression.

-
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Fig. 3. (a) Contour obtained by directly solving of the Hamilton-Jacobi
equation. (b) Contours using exact analytic expression,



Tmcking Simylations

An indispensable tool for studying nonlinear dynamics in acceler-
ators is to simulate particle motion by tracking. Typically, one first medels
the accelerator lattice, chooses the initial conditions of the particles, and
then tracks the trajectory of these particles by a computer code.

The difficult job of preparing a tracking code is not so much of
developing the code itself. Rather it is to decide on the tradeolT between
computing speed and the degree of simplification of the lattice model. The
dccision of course depends on the envisioncd purpose of the tracking code.
For storage ring applications, practically all tracking codes assume
drastically simplified models of one type or another: ignering fringe fields,
kick approximation for nonlinear clements, simplified Hamiltonian,
concatenated maps 1o represent the dynamics for one revolution, ete.

Other than some detailed features, these simplifications are mostly accept-
able, and in any case necessary for applications to large storage rings
and/or to study long term effects.

The {ull expression of the Hamiltonian isl!

X x2 X 2 2 2 CAS 2’
H=;+Ep—2—(l+‘—;)‘!(l+5) —XC-y<+ F;E—B—: (1)

with canonical variables (x, x', ¥, ¥', z, ') and 8 rclated to 2" by (l+8)2 =
1-2 2/f,+ z2,

Even in the abscnce of nonlinear elements (e.g., sextupoles),
Eqg. (11) shows that there are nonlinear terms due to kinematics. How-
ever, for large storage rings, they are often ignored by expanding the
square root in power series and keep up to sccond order in " and . All
nonlincarities then come from A, This gives a simplified Hamiltonian

2 02 v
Xx'C 4 z .
H HT(H-_%)_ ~5+1- E—- drift
]
- 3xfp + x2npt sector bends
+eA P c other elements (12)

In particular, thick bends is treated as a linear element using Eq. (12).
Equation (12) is adopted by most tracking codes. An altemative
approach, adopted for example by TEAPOT, 12 is to model all beam line
elcments (including bends) as thin lenses. This allows keeping the exact
Hamilionian [Eq. (11)] because it is needed only in drift spaces.

Explicit Canonical Integration' 1

Thin lens approximation 0 a given clement, linear or nonlinear, is
the lowest order {in element length) approximation. To improve the accu-
racy for a thick lens magnet of length L and integrated strength LS, one
way is to split the element into a number of evenly spaced slices. But
faster convergence can be obtained with canonical integration techniques.
Forexample,

model error
(L) (SL) oLy
(%) (%) ... tepeated n times OLm)
@) or?)
(%‘E) (%’) (%) ... repeated n limes o&;—J
(L) (8L (Ly) (SaLy Ly} (S LY ML) oL

where (L) means a drift of length L, (SL) means a thin lens element whose
integrated strength is SL, Ly=L/2(2-b), Ly=L(1-b)/2(2-b), 5,=83/(2-b),

$,= Sb/(2-b), b=2!/3. Note that the more picces the clement is broken into,
the higher the precision is. Also note that symmetry always gives one order

higher than otherwise. Ammed with the canonical integration technique (of
which thin lens approximation is one cxample), & thick nordincar clement
(with the exceptions of fringe ficlds and undulators) can be modeled.

Taylor and Lie Maps!413-16

The beam dynamics between two positions in an accelerator can be
represented by the map between these two positions (Twiss analysis is an
example in the linear case). One special case of such maps is that repre-
senting one complete tum of the accelerator. Several beam dynamics
quantities can be extracted from this one-lum map: t une shifts with
betatron amplitudes and mementum, smear as a function of amplitudes,
distortion functions, strengths of nonlinear resonances, eic. Thus the one-
tum map is idcal for various analytical studies of the nonlincar dynamics of
the accelerator. In addition, it also offers the possibility to perform [ast
particle tracking because the entire accelerator is now modelled as a single
map. This later possibility, however, has to be taken with carc.

There are two common approaches to obtain a onc-lum map, Onc is
to use the generating function obtained in the canonical perturbation theory
or the direct solution of the Hamilton-Jacobi equatior, as discussed before
(but with slightly differcnt boundary conditions). The other way, which is
discussed next, is to represent the mag by power series. For example, the
final coordinate of a particle can be written as a Taylor scries in terms of the
initial coordinates, This will be referred to as a Taylor map. Another
example is to represent the map as a Lie operator exp(:F:), where F is
wrilten as a power series. Example programs using Taylor maps are
TRANSPORT!? and COSY!8. An example using Lic maps is MARYLIE,'?

The Taylor and Lie maps are in principle equivalent ,and they can be
transformed into each other whenever desirable. However, there are prac-
tical differences. The advantage of a Taylor map is that it is easy to obtain
in a code——just keep substituting the exit coordinates into the entrance
coordinates of the next beam line element and truncate the final expression
to the order of interest. (This is especially truc when Eq. (12) is used as
the Hamiltonian and the elements are represented as kicks using canonical
integration techniques). Also, it is easy 1o apply in particle tracking.

The transformation of a thick element with Hamiltonian H is simply
exp(-:HL:) in the Lie representation. But concatenation of two elements is
not as straightforward as the Taylor method. An advantage of Lie repre-
sentation is that it is more concise. The number of coefficients needed to
represent an n-th order map in 2 m-dimensionat phase space is less than the
comresponding number in a Taylor map:

Taylor maps:
n=1 n=2 =3 n=4 n=5
m=2 4 10 18 28 40
4 16 56 136 276 500
6 36 162 498 1254 2766
Lie maps
n=1 n=2 n=3 n=4 n=
m=2 3 7 12 18 25
4 10 30 65 121 205
6 21 I 203 455 917

Formally, Lie representation is automatically symplectic. However,
in actual tracking applications, artificial symplectification has to be applied
even in a Lie environment. Another important advantage of the Lie repre-
sentation ts that the one-turn map is obtained in the Lie format is idcal for
analysis purposes.

Judging from the above comparison between the Taylor and the Lie
representations, it scems that a practical, efficient method would be a
hybrid combination of these techniques:

= adopt the canonical integration for beam line elements,

« use kick code to generate the Taylor map for one i,

« transform the Taylor map into a Lie map,

» analyze with the Lic map, (13)
« when judged appicable, track with the symplectificd Taylor map.

The larger storage space nceded for the Taylor map cocfficients is not
regarded as scrious in this approach. This hybrid approach is being
adopted for the SSC studies.



Differential Atgehral™16

The above scheme is greatly enhanced by the existence of an effi-
cient technique, based on difTerential algebra, that generztes the one-tum
Taylor map. To describe this technique, first consider a tracking (or ray
wracing) program hat stans with initial condition (x4, ®',) and follows the
particle through beam line elements (or integration steps) as follows

(xo.x;) - (xl.x'l) - (xz,x'z)... - (xy (49

element 1 element 2 element N

‘ The same steps are followed in the differential algebra approach.
The only difference is that the initial X, is now taken to be a set of
numbers arranged in a vector form (1, 0, 0, ... 0) and X_ is now (0, 1,
0, ..., 0). (A capitalized letter means vector here.) The number of entries
in the vector depends on the desired order of the map. To go through ele-
ment 1, these vectors are substituted into the same expressions as the
tracking program. Rules are defined for the various operations (addition,
multiplication, square root, sine, cosine, ¢ic.) on the vecior numbers,
After going throught element 1, one obtains X, and X;, whose entries are
now no longer 0's and 1's. The vectors X and X; are then substituted
into expressions for element 2, and the procedure continues until the end of
beam line, or end of ray tracing sieps.

Miraculously, after this process, the numbers in the final X and
vectors have the significance as shown below:

N
AN WSr NN L WA

X}, = @ Prpdnox. 3 B i P 2, ) (19)

X

where the derivatives are evaluated at the origin (or the closed orbit). The
algebra does not require numerical differentiation involving subtracting
numbers that are almost equal and thus all derivatives are accurate to
computer accuracy. Once the derivatives are obtained, the Taylor map
follows. By keeping more entries in the vector, maps of arbitrarily high
orders can be obtained. This is by far the most efficient way of generating
maps. An exaggerated example, the map for a 90° bend up to 50th order,

is given below:20
order xIx™) onder (xixh)
0 0.000000E+00 1 0.500000
4 -.625000E-01 6 -312500E-01
8 -954861E-02 10 -438368E02
12 ~.175964E-02 14 —494470E-03
16 -.120357E-03 18 —.303507E-04
20 —. 748015805 22 —.166065E-05
24 -.340812E-06 26 —-682165E-07
28 - 133936E-07 30 ~252307E-08
32 ~.454204E-09 34 - 792470E-10
36 -.135272E~10 38 -225391E-11
40 —-365251E-12 42 —-576846E-13
44 -.891832E-14 46 —.135248E-14
48 -201106E~15 50 -293181E-16

Note that the differcntial algebra tool has been developed for 6-D
phase space. (Dimensions >6 have been implemented 1o include depen-
dence of the map on external parameters such as the strength of a particular
nonlinear element.) Equation (15) is the special case for 2-D. Note also
this tool itself does not constitute a program,; it is to be attached 1o an
existing tracking or ray tracing program, precompiled, and it will then
generate the map corresponding 1o the case being simulated. Finally, the
elements do not have to be magnet multipoles. For example, a beam-beam
kick could be treated as one of the elements.

Errg

Experiments have been carried out in accelerators to study nonlinear
dynamics in the past, and more recently at SpS.n'22 SPEAR.23 and
Tevatron?? Here we wilt briefly mention a recent formal experiment at Lhe

Tevatron, the Experiment E778.23:26.27

In a typical E778 run, a beam is first injected at 150 GeV. A sctof
16 intentional sextupoles are tumed on, and at the flat top of the sextupole
strength, the beam is kicked horizontally. The subsequent motion of the
beam is then monitored by two beam position monitors approximatety 90°
out of phase. Polarities of the sextupoles are such that ideally no net
change of chromaticities occur. The (x1, x2) information tum afier twm
can be transformed into a normalized phase space. When sextupoles are
tumed off, the trajectory traces out a circle, as shown in Fig. 4(a). When
sextupeles are tumed on, the circle is distorted (in this case into a
triangular shape), as shown in Fig. 4(b). The percentage distortion gives
the smear at the amplitude corresponding to the strength of the kick,

Figure § is a compilation of the results of several such runs. It
shows the smear as a function of sexmpole strength for 3 kick amplitudes.
The smear increases with sextupole strength, as well as the kick amplitude,
as one would expect. The solid lines are obtained by tracking simulation.
The agreement with experimental data is quite reasonable.

The phase space actually has a richer structure than Fig. 4 might
suggest. For example, when tune is close to 2/5, a chain of five islands is
formed in the phase space. Figure 6 shows the detailed phase space
obtained by tracking. Both the triangular and the five-island structures are
present. When the beam is kicked to an amplitude so as to overlap one of
the islands, part of the beam will be locked onto the island and will exhibit
the island structure in its subsequent motion. Figure 7 is an observation in
E778 which dramatically demonstrates this behavior. This is a dramatic
direct observation of the existence of islands in a nonlinear dynamicai
system.

ax + &

ax + fix’
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a)

Fig. 4. Experimenal observation of beam trajectory in normalized phase
space at the Tevatron. (a) Experimenal sextupoles are tumed off.
(b) Trajectory is distorted when 8 sextupoles are umed on. The
une is near 1/3, The triangle is the calculated separatrix.

Smear vs Sextupole Current
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Fig. 5. Smear versus scxiupole strength in E778 for three kicker
strengths (in KV units). Solid lines are simulation results.
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Fig. 6. Detailed phase space structure obtained by tracking when
sextupoles are set (o 25 amperes.

Fig. 7. When the tune is near 2/5, the kicked beam exhibits a five-island

structure in the (x,, X;} space.
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