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Abstract

The influence on the propagation velocity of the
normal zone of four phenomena was investigated:
1) The temperature dependence of the specific heat and
the thermal conductivity, 2) The current-sharing zone,
3) The electromagnetic diffusion of current through a
possible super-stabilizer, and 4) The thermal diffusion
through a possible insulator. At the beginning, these
influences were studied independently of each other. In
all cases, after creating a model of the particular
phenomenon, the equations of thermal and electromag
netic behavior were solved analytically and the expres
sions for the propagation velocity obtained. These
expressions were then put into nondimensional forms,
which have allowed us to define four correction factors
taking into account the studied influences, depending
only on one or two nondimensional parameters.
Subsequent studies were made to investigate how to
combine these correction factors in order to obtain general
formulas for the velocity, taking into account a part or all
of these influences. A review is presented here of these
formulas, which are of interest for the superconducting
windings, where the heat transfer to helium can be
neglected on the time scale of the quench process.

Introduction
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Hypothesis of adiabaticity

The study of the propagation of the normal zone
along the superconducting windings has already been the
object of many publications.1-33 However, all these
publications have one point in common: they are all
concerned with conductors immersed in helium baths,
and their authors direct their efforts primarily toward
modelization, calculation, and measurement of thermal
exchanges between the conductors and the helium.

In this study we are more specifically interested in
indirectly-cooled magnets, such as the layer of conductors
representative of the ALEPH solenoid34 presented in
Figure 1.

In this configuration, the annular ring and
especially the layer of insulation (between the annular
ring and the layer of conductors) introduce important
thermal resistance. In more precise terms, a characteristic
time T4 of thermal diffusion across the width L4 of the
layer insulation is given by:

L42
T4 = D4 (5) 0)

"This work is part of the Ph.D. thesis completed at the
Commissariat a l'Energie Atomique, CEN/SacIay,
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Figure 1. Cut away view of the ALEPH solenoid.

where D4 is the thermal diffusivity of the layer insulation
(11125-]). Typically:

D4 =10-6 m2s-1 L4 = 10-3m

Hence: T4 = 15

In addition, a characteristic time Tp of the propagation
phenomenon is given by:

~=~ W m
where DI is the equivalent longitudinal thermal diffu
sivity of the elementary winding pattern <m2s-1) and V is
the longitudinal propagation velocity (ms-1). Typically:

VI =0.1 m2s-1 v =10 ms-1

Hence: Tp = 10-35

It appears that Tp is small in comparison to T4.
During Tp the thermal diffusion will be limited to a small
width of the layer insulation. What follows in particular
is that at the scale of propagation, the heat flux transferred
to the annular ring and to the helium is negligible.



Consequently, we see that the layer of insulated
conductors-or, as the case may be, the elementary
winding pattern-is thermally decoupled from the
exterior and thus shows an ideally adiabatic behavior.

Adiabatic propagation velocity, with but one
exception,35 has only been regarded, in terms of theory, as
a limiting case of the propagation velocity when
immersed in a helium bath, with the coefficient of
exchange with helium tending towards zero),2, 28

propagation velocity. This implicit equation was then put
into dimensionless form, which has allowed the
reduction of the numerous related parameters to one or
two, as the case may be. It is this dimensionless form that
we present here. In Section VI, we finally show how to
combine these parameters to estimate the propagation
velocity along the layer of conductors in Figure 1. The
details of all these studies can be found in Reference 36.

Influence of the current-sharing zone

where:

Let us consider the current-sharing phenomenon.
First, we introduce an average power density per unit
volume Pj, variable in relation to temperature T, and
defined37 by:

"r: 0 'r:IT, T5;, Tei

.dHt is the variation between TO and Tt .. (Tc +Tci)!2
of the enthalpy per unit volume of the elementary
winding pattern (fnr3 ) .

Dt is the equivalent longitudinal thermal
diffusivity of the elementary winding pattern, at Tt
(m 2s-1).

(3)

(5)

'r:IT, Tc5;, T

'r:IT, Tci~T<Tc

(ms-1)

where:

{

Tc is the critical temperature at the given field and
zero current (K).

Tei is the critical temperature at the given field and
the given current (K).

Pjt is the average power density per unit volume
dissipated by the elementary winding pattern in the
normal resistive state (Wm-3).

Let us call the dimensionless parameter mi the
current-sharing parameter, defined by:

sn;
mt = 4 .dHi (dimensionless) (4)

where:

.dHs is the variation between To and Tei of the
enthalpy per unit volume of the elementary
winding pattern (Jnr 3).
dHi is the variation between Tct and Tc of the
enthalpy per unit volume of the elementary
winding pattern (fm- 3) .

To is the operating temperature (K)

We thus establish, for all values of mt, the existence
of a constant-velocity asymptotic shift of the temperature
profile, for which the velocity vis given by:

Different aspects of the problem

A complete study of the propagation of the normal
zone along the layer of conductors of Figure 1 must take
into account the following four influences:

• Influence of the current-sharing zone

• Influence of the temperature dependence of the specific
heat and of the thermal conductivity of materials.

• Influenceof electromagnetic diffusion in the super
stabilizer. In effect, the conductor used by the ALEPH
solenoid consists of a conventional multi-filament
composite enclosed in a large section of aluminum.
When such a conductor switches to the normal
resistive state, the current, initially confined to the
composite, needs a certain amount of time to be
diffused in the super-stabilizer. The propagation
front thus carries with it a wake of electromagnetic
diffusion along which the dissipated power density
per unit volume varies. Thus the question is posed
of the role played by this power in calculating
propagation velocity.

• Influence of thermal diffusion in the layer insulation.
During a transition of the layer of conductors in
Figure 1, most of the dissipated power serves to
heat the conductor and to make it switch to the
normal resistive state and the residue is transferred
to the layer of insulation. As we have described in
Section 1.1, given the weak thermal conductivity of
the insulator, the heat, like the current, needs a
certain amount of time to be diffused in the
insulation. The propagation front carries with it a
wake of thermal diffusion. Thus the question is
likewise posed of the role played by the insulation
layer in calculating propagation velocity.

The above review of influences on propagation
velocity shows that the latter is a blend of thermal and
electromagnetic phenomena, mainly non-linear, and that
these phenomena occur on different scales. The
difference between scales renders all numerical
approaches to the problem difficult. We have thus
adopted an entirely different method of which we present
here the principal results. This method consists, first, of a
study of each of the aspects of the problem independently
from each other, and, second, of an attempt to reconstitute
the mechanics of the entirety. Sections II-V present the
conclusions of the studies of each of the previously
described influences. In each case, we have analytically
solved the equations of thermal and electromagnetic
behavior and we have established an implicit equation for

Method
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VI is -the' current-sharing corrective factor,
determined versus mt by the system of equations:

[ ]

2

sin _~In(~) =~~~
"v: lmIvl 'J v~

(10)

(9)(ms-I )

11 (1- mII)312 2J
K 1/13 m11 VII

1 (l-mII)3/2 2

K 2/ 3 mIJ VII

where VlI is the temperature-dependence corrective factor
determined versus mu by the implicit equation:

(6)

2
2Vl

1 - --".
mr+~

The curve VI = {(mI) is presented in Figure 2.

Curlcnl-!lJDrlnl ~ar.mt.er "" (dhn-ensJan.e:u)

1.4r----,..---,-----.,.---,----,-.-----,

K~ being the modified Bessel function of the second kind

and of order L

The curve VII = {(mIl) is presented in Figure 3.

Figure 2. Curve VI =f(mI)
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Influence of electromagnetic diffusion in the super
stabilizer

The model we have developed in order to examine
this influence is presented in Reference 39; here we are
satisfied with a reexamination of the principal results,
generalized to any conductor geometry.

Let us call the dimensionless parameter m111 the
first super-stabilization parameter, defined by:

P2A 1
mIll =-- (dimensionless) (11)

PI A2
where:

PI (P2 respectively) is the equivalent longitudinal
resistivity of the composite in the normal resistive
state (of the super-stabilizer, respectively)(!2m).

At (A2 respectively) is the composite section (the
super-s tabillzer, respectively)(m2).

Influence of the temperature dependence of physical
characteristics

Let us consider the temperature dependence of the
characteristics of the elementary winding pattern. First,
we introduce a specific heat Ci and a thermal conductivity
kl, variables in relation to T and defined38 by:

Ct = J3tT3 + 1tT

(7)

where J3t,11, and I(, are real, positive constants,
determined so as to obtain the best approximation of the
real curves Ct ={{n and kt = f(D alongside Tt·

Let us call the dimensionless parameter mn the
temperature dependence parameter, defined by:

4l3tT t2 .t!H t
mIl = Ct(Tt)2 (dimensionless) (8)

where Cj(Tt} is the specific heat per unit volume of the
elementary winding pattern at Tt (jm-3K-l ).

We thus establish, for all values of mtt (0 s mn ~ 1),
the existence of a constant-velocity asymptotic shift of the
temperature profile, for which the velocity Vu is given by:

0."

D. 0.1

Temperature deJ)t'ndtnClt p.r.anll~:fu Mit (dlmfol'1s:tonless)

Figure 3. Curve VII ={(mlI)
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Pa is the composite perimeter in contact with the
super-stabilizer (m).

De is the equivalent diffusivity defined by:

De ::::: ..J2DmDt (m2s-1) (15)

A criterion of super-stabilization is given by:

mut « 1 (12)

Let us call the dimensionless parameter put the
second super-stabilization parameter, defined by:

VOL2e
ptu :::; ---rs;- (dimensionless) (13)

where:

L2e is the equivalent depth of the super-stabilizer
defined by:

A2
L2e :::; Pd (m) (14)

va is the propagation velocity calculated assuming
that the current remains confined to the composite:

Dm ::::: ~~ is the electromagnetic diffusivity of

the super-stabilizer (m2s-t).

PjO is the average power density per unit volume
dissipated by the elementary winding pattern
assuming that the current is confined to the
composite in the normal resistive state (Wm-3).

We thus establish, for all parameter values, the
existence of a constant-velocity asymptotic shift of the
temperature profile and of the magnetic induction profile,
for which the velocity uttt is given by:

Vtu :::; viu VQ (rns') (17)

where vut is the super-stabilization corrective factor, for
which the result changes depending of the geometry
studied.

For a layer of conductors such as that presented in
Figure 1, vut is determined versus mut and PIll by the
implicit equation:

V
mlllPllJ

1Il = -
tanh(pmVlll) + mmpuivtu

Curves of viu :::; !(mlIlPlll) are presented in Figure 4. (dimensionless) (20)

Case of a layer of insulated multi-filament
superconductive composites

Let us call the dimensionless parameter mlV the first
insulation parameter, defined by:

times previously defined. During 1'w the heat is thus
largely diffused in the insulation between conductors, but
only penetrates a small portion of the layer insulation.
For the calculation of velocity, we therefore suppose that
temperature is constant through each cross-section of the
system (conductor and insulation between conductors},
which we regard as a homogeneous, isotropic medium.

In the following, we designate by medium 3 the
system (conductor and insulation between conductors)
and by medium 4 the layer insulation. We have
conducted a separate study for the layers of insulated
super-stabilized conductors, in which both
electromagnetic and thermal diffusion phenomena
interfere.

(16)

(18)

(ms-t )Vo =

Influence of thermal diffusion in the layer insulation

General features

In a layer of conductors such as that in Figure 1, we
distinguish two types of insulation: the insulation
between conductors, of typical width ei== 100 um, and the
layer insulation, which surrounds the layer of conductors.
A characteristic time of thermal diffusion in the
insulation between conductors is given by:

ei2
1'; = D4 = 10 ms (19)

It seems therefore that 'Xi is of the same order as rp~ but is
smaller than 1'4, where 1'p and 1'4 are the characteristic

where:

C3 (C4 respectively) is the equivalent specific heat
per unit volume of medium 3 (medium 4
respectively) at Tt (Jm-3K-1).

k3 (k4 respectively) is the equivalent longitudinal
thermal diffusivity of medium 3 (medium 4
respectively) at Tl (Wm-1K-l).

D3 .. k3/C3 (L3 respectively) is the equivalent
longitudinal thermal diffusivity (half-width,
respectively) of medium 3.

Vo is the propagation velocity calculated assuming
that the layer of conductors is bare (without layer
insulation):

4



(26)

(27)

(ms-t )

De =-../2 o.; D3 (m2s· l ) (25)

and in taking for va the velocity calculated assuming that
the layer of superstabilized conductors is bare (without
layer insulation) and the current is confined to the
composite:

~D3PiO
vO_ tiH3

Case of a layer of insulated super-stabilized conductors

We designate by medium 1 the multi-filament
superconductive composite, by medium 2 the super
stabilizer, by medium 3 the system {composite + super
stabilizer :.- insulation between conductors}, and by
medium 4 the layer insulation.

Let us reintroduce the parameters mtu, tun. mlV,
and pjv:

= 2 mmPlll 1 (28)
mlvplv vv [tanh(pmvv) + mnmuvv)

in defining the equivalent diffusivity De by:

where PjO is the average power density per unit volume
dissipated by the elementary winding pattern without the
layer insulation and assuming that the current is confined
to the composite in the normal resistive state.

We thus establish, for all values mtu. PIlI, mtv. and
PlV, the existence of a propagation velocity for the normal
zone Vv given by:

Vv
VV"" Vo (ms·t )_11 tanh{plV VV).\I + mlV Vv

where Vv is the super-stabilization and insulation
corrective factor determined versus mtu, PIlI, mIV, and
PlV, by the implicit equation:

tanh (PlVVv) [2 ]tanh 2(PIV VV) + 3 + -m---1
prvVv tvptv

General method of calculating propagation velocity

After having presented the results of the studies nr
each of the four influences, it remains to explain how to
integrate these individual studies in order to arrive at a
general method of calculating propagation velocity. Let us
proceed in progressive steps.

(22)

(23)

(24)

(ms· l )

(dimensionless)

V/V

_ta_n_h.:J.(p..:.l ;:..V_V.:.;lV:.:,.)
1 + mlV

VlV

where vrvis the insulation corrective factor, determined
versus mlV and PlY by the implicit equation:

tanh(PlV V/V) [2 ]
tanh2{pI V VlV) + 3 + m vp - 1

ptv VIV t IV
2

.yD3 PiOVa • tiH3 (ms·l ) (21)

PjO is the average power density per unit volume
dissipated by the elementary winding pattern
without the layer insulation (Wm-3).

.1H3 is the variation between To and Tt of the
enthalpy per unit volume of medium 3 (Jm-3) .

Let us call the dimensionless parameter PlY the
second insulation parameter, defined by:

V04
PlV= ..,fD3D4

where D4 = lc4/C4 (L4 respectively) is the thermal
diffusivity (the width, respectively) of medium 4.

We thus establish, for all values of mrv and of pry,
the existence of a constant-velocity asymptotic shift of the
temperature profile, for which the velocity VIV is given
by:

= mlVPlVVI v2

Curves of vrv ""!(mlV, PlY) are presented in Figure 5.

1. 10.

First insulation parameter mrv (dlmenslonless)

Figure 5. Curve VIV =,'!{mIVPIV)
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Figure 6. Propagation velocity along a bare layer of
ALEPH conductors.

where Vo is the velocity calculated neglecting the current
sharing zone.

To consider the temperature-dependence of the
physical characteristics, it seems logical to replace Vo by the
velocity calculated taking into account this influence.
Thus we see that the velocity VI-II along a layer of
composites without layer insulation is given by:

~DtPjl
VI-II =v,(mII) V2(m2) AHt

zone;
We must remember that for the current-sharing

Case of a layer of super-stabilized conductors without layer
insulation

Now three influences must be taken into account
the current-sharing zone, the temperature-dependence of
the physical characteristics, and the electromagnetic
diffusion in the super-stabilizer.

We must remember that for the electromagnetic
diffusion:

uut = VIII (m1II,pm) Vo

where Vo is the velocity calculated assuming that the
current is confined to the composite.

To consider the influence of the current-sharing
zone and the temperature-dependence of the physical
characteristics, it seems logical to replace Vo with the
velocity calculated taking these influences into account.
Thus we see that the velocity Vl-IHII along the tayer of
calculations is given by

~DtPjOut-n-tu ::: vI(ml)VIl(mII)Vm(mlllPlll) sn, (30)

where mt, mll.and mmare the parameters defined by
Equations (4), (8), and (11), respectively, and PIlI is the
second super-stabilization parameter generalized in:

(31)

The other definitions remain the same.

To illustrate these results, we present, in Figure 6,
the curve V = f (l) calculated along a layer of bare ALEPH
conductors (without layer insulation), and in Figure 7, the
curves V = f(I) for each of the influences.

40
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Figure 7. Comparison of the different influences.

Case of a layer of insulated conductors

Through reasoning similar to the above, we see
that the propagation velocity along a layer of insulated
composites is given by formula (23), and along a layer of
insulated super-stabilized conductors by formula (27). by
replacing Vowith the velocity calculated taking into
account the current-sharing zone and the temperature
dependence of the physical characteristics (Vo is also to be
replaced in the definitions of put and PIV).

Conclusion

The previous equations allow us to consider all
cases of indirectly-cooled windings, where the heat
exchanges with helium are negligible at the scale of the
propagation phenomenon. However, our modelizalion
has a weakness. We see that all the interface resistances,
either electrical (between the composite or the super
stabilizer) or thermal (between the layer of conductors and
the layer of insulation) equals zero. It can occur that in
certain configurations these become dominant.
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