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ABSTRACT

Mapping techniques may be thought to be attractive for the long term pre­

diction of particle motion in accelerators, especially because a simple map can

approximately represent an arbitrarily complicated lattice. The intention of this

paper is to develop prejudices as to the validity of such methods by applying

them to a simple, exactly solveable, example. It is shown that a numerical in­

terpolation map, such as can be generated in the accelerator tracking program

TEAPOT, predicts the evolution more accurately than an analytically derived

differential map of the same order. Even so, in the presence of "appreciable" non­

linearity, it is shown to be impractical to achieve "accurate" prediction beyond

some hundreds of cycles of oscillation. This suggests that the value of nonlinear

maps is restricted to the the parameterization of only the "leading" deviation

from linearity.
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1. Introduction.

Linear maps have been basic to accelerator theory almost from the beginning

of the subject. Accelerator lattice descriptions are, by their very nature, compli­

cated and special, and a linear map (i.e. transfer matrix) represents an elegant

distillation of the essence of this complexity. It has been natural to generalize

this description to include nonlinear effects which become important at large par­

ticle amplitudes. There are at least three attitudes which can accompany such a

generalization to nonlinear maps:

(i) Just as the Twiss parameters, 0:', 13, and I constitute a compact represen­

tation of the lattice, "canonical" parameterizations of nonlinear maps can

compactly codify the "leading" or "near-linear" behaviour.

(ii) The nonlinear map into which a complicated lattice has been distilled can

be studied to find, qualitatively, the sort of large amplitude behaviour that

is possible. The best example of this is the Henon map [lJ , the study of

which has given much useful insight. This approach can be numerical,

looking phenomenologically for common features, or mathematical, finding

rigorous features of maps. Such results apply reliably only to the map, not

to the complicated system it is supposed to represent. In this attitude,

maps serve as analogies to the actual system of interest, and confidence

that the particular system will exhibit the same behaviour as the map

amounts to being conjecture when (as it usually is) the map is used to

obtain nonrigorous results.

(iii) Another attitude is to regard mapping as a mathematical technique (for

"solving" the equations of motion) which is to be held to the same stan­

dard as any other mathematical method; that standard being that any pre­

diction about the evolution of the system represented by the map (within

estimateable errors) be absolutely reliable.

The present paper is relevant only to the third of these attitudes. If it is my

conclusion (and it is) that high order differential mapping is not a good method
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for long term prediction, that is not intended to convey any lack of respect for

the use of nonlinear mappings with either of the other attitudes.

Mapping techniques are very seductive in the context of predicting the motion

of particles in accelerators. Even a crude representation of a realistic lattice has

thousands of independent parameters; (their lack of correlation may, for example,

be due to errors and imperfections.) Using statistical methods and language,

simple and meaningful statements can be made about such a system but that is

not of present interest. We are interested in the time evolution in one particular

system, out of the ensemble of possible systems, with this plethora of independent

parameters somehow suppressed.

The proponent of mapping techniques must be willing to apply methods of

any required degree of complexity to describe by a single map the motion of a

particle for one complete turn around the accelerator. From then on, since the

particle passes through the same sequence of elements on every turn, that map

can be iterated to predict the subsequent motion. For motion restricted to small

amplitudes in a single transverse plane a 2x2 map suffices, and that is certainly

a simplification compared to the thousands of initial parameters. The two other

coordinates can be incorporated by using 4x4 or 6x6 linear maps. It is natural

to extend such mappings into the nonlinear region and our purpose is to see how

well that works and to compare different methods.

These issues are of interest (to the author anyway) only in the context of

accelerator physics, but this paper is almost entirely devoted to one simple, and

only feebly related problem of mechanics. Before attempting to explain and

justify the long-winded title I will pose that problem:

Predict for all time the angular position of a lossless gravity pen­

dulum whose initial state of motion is known.

The exact solution to this problem, well-known and not difficult, will be given

shortly but that is only incidental to my purpose. For most problems of nonlinear

mechanics it is necessary to revert to approximate solution techniques and the
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present purpose is to investigate the class of approximate solution going by the

name "mapping". The exact solution will serve as a standard in terms of which

the precision of these other solutions can be judged.

There are certain universal features of nonlinear oscillations (such as har­

monic generation) but no proof of universality will be attempted here. The most

that will be attempted is a kind of argument by analogy in which the reader is

encouraged to infer the effectiveness of maps for complicated systems from their

demonstrated effectiveness, or lack thereof, on a simple pendulum. The anal­

ogy is far from perfect. There is not even an unambiguous scale comparison by

which one can say that the "degree of nonlinearity" of a particular transverse

particle amplitude is the same as for a particular pendulum amplitude. We now

manufacture such a scale comparison. Though this procedure is not particularly

persuasive, it will turn out that the qualitative conclusions are not very sensitive

to it. In any case numerical values will be given and can be interpreted as the

reader wishes.

Particles circulating in a storage ring with amplitudes greater than the so­

called "dynamic aperture" are quickly lost. Let us call that "unit amplitude."

Successful functioning of the storage ring depends on the long term stability of

particles with amplitudes small, but not tiny, compared to this. Let us say that

the amplitudes of interest are in the range 1/20 to 1/2. For the pendulum a

"characteristic" amplitude is the amplitude at which the qualitative character of

the motion changes from libration (i.e. back-and-forth) to rotation and we call

that "unit amplitude". This choice of scale seems to be in reasonable analogy with

the above accelerator choice at least as regards longitudinal motion, which is not

unlike pendulum motion. For transverse motion the analogy is more feeble but I

make it nonetheless and declare, for the pendulum, that half-swing values in the

range from 10° to 90° are analogous to the above described particle amplitudes

of interest.

The maps to be studied are differential maps, difference maps, and interpo-
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lated maps. These will be defined only casually at this point as they will be

illustrated by example below. Differential maps are Taylor series expansions of

the exact map; the coefficients are assumed to be obtainable exactly by analytic

formulas. Difference maps are the same, but the coefficients are obtained by

numerical differentiation. Interpolated maps are obtained by interpolating exact

maps.

Sophisticated methods have been applied to the problem of finding differential

maps for complicated lattices and elegant results have been obtained. Examples

are MARYLIE, (2) due to Dragt and others, and more powerful methods due

to Forest. [3J Also the differential algebra methods of Berz (4) have been used to

obtain high order maps which have been shown to be correct by comparison with

exact solutions evaluated to the same order. [5]

With the accelerator tracking program TEAPOT [6] (which uses exact ana­

lytical propagation formulas, and does not regularly use transfer matrices or any

other kind of map for particle tracking) difference maps can be obtained numer­

ically for complicated lattices. Computer word length limitations would eventu­

ally lead to reduced accuracy as the order of differentiation .is increased but for

low orders difference and differential maps are essentially equivalent. There are

many possibilities for interpolation but we will restrict attention to the simplest

possibility; by a simple change of parameter a difference map can be converted

into an interpolated map.

In what follows the performance of these three types of maps for long term

prediction of pendulum motion will be compared. My approach is purely ele­

mentary and numerical. It is possible, even probable, that the same conclusions

could be obtained more briefly and more persuasively by purely analytical math­

ematical methods.
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2. Mathematical Formulation and Exact Solution.

The system to be analysed is shown in the diagram. The maximum swing

angle is a and the instantaneous angle is B. The gravity constant 9 and the

pendulum length .f. and mass are set to 1 for the time being.

<,
" £=1<,

m - 1

mg = 1

XBL 886-8471

The kinetic energy is given by

and the potential energy is given by

v = -cosB+ 1 = 2sin2 8/ 2

(2.1)

(2.2)

To make contact as quickly as possible with standard notation, the total energy

E is expressed in terms of a parameter k so that

E =2k2 = T + V = 2 sin2 0/2

and the equation of motion is
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By the change of variable

sinB/2 = k sin <jJ

the equation of motion is transformed to

The "reduction to quadratures" solution of this equation is

(2.5)

(2.6)

(2.7)

where the symbol u is being used for time, again to conform to standard notation

of elliptic functions. [7] The functions which will appear are sn u, en u, and dn u.

The solution of (2.7) is

snu = sin<jJ

or, in terms of the original variable

() = 2 sin-1 ( k sn u)

(2.8)

(2.9)

aside: the pendulum length and gravity constant can be restored by the relation

(2.10)

In other words u is time measured in units such that the small arnplit.ude period

is 21r.

Standard mapping techniques require a phase space description and that

suggests following a Hamiltonian approach. Before doing that we make the fol­

lowing ad hoc choice of phase space variables with a view to making the mapping
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as simple as possible.

x =VV/E = k-1 sin 8/2

p=VT/E

Combining the energy conservation equation

v + T = E or x 2 + p2 = 1

with the identity

(2.11)

(2.12)

(2.13)

it follows that the system point (x, p) in phase space is restricted to the unit

circle. Taking the initial configuration to be vertical the cartesian coordinates

are

x =snu
(2.14)

p =cnu

To obtain the relation of these coordinates to canonical coordinates the La­

grangean can be written in terms of x and X,

2k2 ' 2
L = x _ 2k2 2

1- k 2x 2 x

The momentum conjugate to x is

ot. 4k2±
Px = ax = 1 - k2x 2

and the Hamiltonian is

Finally then, the relation of our variable p to the canonical variable Px is
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3. The Exact Transfer Map.

When the time evolves from u to u + v, substitution into (2.14) shows that

the phase space point moves as

(x) ( snu) =::} (xv) = ( sn (u + v) )
p en u Pv en (u + v)

(3.1)

Using "addition formulas" (8] valid for elliptic functions this evolution can be

expressed by the exact nonlinear mapping

(3.2)

To predict the long term motion of the pendulum this map could be iterated

but of course it is simpler just to use (2.14). If we ambitiously attempt to track

accurately over, say, 1010 cycles we seem to be faced with the task of evaluating

expresssions such as sn 1010• Actually it is easier than that since whole cycles

(or for that matter whole half-cycles) can be subtracted off assuming that the

period is known with sufficient accuracy. Fortunately that is easy. [9] As a result

the exact motion can be predicted with an accuracy millions of times better than

can be obtained with any of the approximate maps that will be discussed.

4. The Differential Map.

The linear transfer map can be obtained directly from (3.2) by setting x = O.

Furthermore the x-dependent factors appearing there can be expanded easily.

For example, setting a = k2x2 and b = k2x2sn2v we have

(1 - a)1/2(1 - b)-l = 1 + (b - a/2) + (b2
- ba/2 - a2/ 8) + ... (4.1)

The last term exhibited is quartic in x but the formula is easily extended. For

lattice calculations it is impractical [10] to go much beyond term of order x 8 and

that is how far calculations in this paper are carried.
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Even apart from the fact that we have a system simple compared to an

accelerator lattice, this map exhibits especially simple features. For one thing it

is independent of p. Note though that this is not basic. By (2.13) it would be

possible to express x in terms of p. We will return to this below when discussing

sympleeticity. Another simple feature is that only even powers of x appear. To

be analogous in this regard an accelerator lattice would contain no sextupoles

or other even multipoles. We make the observation, which we then proceed to

ignore, that this feature makes the pendulum not quite analogous to the most

common nonlinear betatron motion. The leading qualitative manifestation of

this lack of analogy is probably that the pendulum frequency is perturbed in the

lowest nonvanishing order of perturbation; the tune of a lattice containing only

sextupoles is unperturbed in lowest order.

Though less easy than has been true for our simple example, corresponding

differential maps of quite high order (say 8 or 10) may soon be obtainable ana­

lytically for accelerators using methods mentioned above. Up to at least order 5

it has already been done[6] . These can be iterated to predict the evolution of the

motion. To repeat what was said in the introduction my purpose is to develop

a prejudice as to the accuracy of this procedure, especially as compared to the

other maps to be discussed.

To make contact with standard transfer map terminology I will temporarily,

just for this paragraph, generalize the notation. A general matrix element has

the form f( xl, x 2 , ... ) where x = xl, P = x 2 and if there were more degrees of

freedom they would be x 3 , x 4 etc. This matrix element has the form (summation

convention implied)

(4.2)

Note that f itself should have one "input" and one "output" index; they have

been suppressed. The notation R for linear order and T for quadratic order,

introduced in the program TRANSPORT, [11] is well established.

10



In practice differential maps are necessarily truncated and written in this

form. If only terms up to and including Uij are kept the map will be in error to

terms in V'ijk. This error is quickly made manifest by non-symplectic behavior.

For the pendulum description this corresponds to the wandering of the phase

point off the unit circle. An oft-employed practice is to force symplecticity arti­

ficially; we could do it by normalizing the phase space point to unity after each

iteration. Such procedures are not unique and they don't make the description

right, they only make it not manifestly wrong. It seems to me that enforcing

sympleeticity artificially is unsound. Usually, in numerical work, the existence

of a rigorous relation such as this is greatly valued as a check on the numerical

accuracy of the results. Since we have the exact solution available, we do not

need to avail ourselves of this possibility, but I choose not to distinguish between

radial and azimuthal phase space deviations, and do not enforce symplecticity.

For our problem the expansion (4.2) can be replaced by a simpler formula.

f(x) = R + Ux 2 + Wx4 + Yx6 + ...

As mentioned previously, the T-rnatrix elements vanish.

5. Interpolated Maps.

(4.3)

Anyone of the four matrix elements of (3.2) can be written as a function

f( x). In preparation for calculating what will be called an interpolated map this

function can be evaluated at points on a regular grid. Since the functions do not

depend on p we need only use points on the x-axis, and for simplicity we use

equally-spaced values, 0, ±Xtyp, ±2xtyp, ... Here I am using the somewhat clumsy

notation of TEAPOT. [7] The value Xtyp is a free parameter to be specified later.

If there were p-dependence there would be another parameter, Ptyp'

For writing difference formulas we introduce the notation fn = f(nxtyp). We

express x in units of Xtyp by introducing the variable r = x/Xtyp. The function
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f(x(r» can be expressed approximately in terms of the tabulated values fn by

a Lagrange interpolation formula. Since our functions are all even in r 1 only

values I« with positive n are required. The following sequence of formulas, valid

to successively higher powers of r 2 , are almost simple enough to be checked

mentally.

(5.1)

By calculating each of the matrix elements of (3.2) using these formulas, inter­

polated maps of successively higher order can be obtained.

6. Difference Maps.

By comparison with (4.3) approximate difference formulas can be written for

the Taylor expansion coefficients of the differential map. For example, from f(4)

we obtain

R ~ R(4)(Xtyp) =fo

U ......., U(4)( ) _ -15fo + 16!I - 12
~ Xtyp - 2

12xt yp

W ......., W(4)( ) _ 3fo - 4!I + 12
....., Xtyp - 4

12xtyp

(6.1)

To obtain a rigorous connection between these newly introduced, xtyp-dependent

expressions with the corresponding coefficients of the differential map it is clearly

necessary to take the limit Xtyp --+ O. That cannot be done numerically, but,

depending on the computer word length of the computer being used, a value of
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Xtyp can be used that is sufficiently small that the leading coefficients can be

accurately evaluated. Used in (4.3) they express what I have called a difference

map. It can be seen, as the terms have been defined, that an interpolated map

and a difference map differ only in the value of Xtyp used.

7. Numerical Results.

The various maps have been iterated for various swing amplitudes; the results

are plotted in the following figures. In every case the deviation, approximate

minus exact, V(xap - xex)2 + (Pap - Pex)2, is calculated. Since the exact phase

point remains on the unit circle, this is both the absolute value and the fractional

absolute value of the vector phase space displacement of the approximate solution

from the exact solution; we take it as the latter, evaluating it as a percent error.

Rather than plotting this error as a function of iteration number one can note

the iteration number at which the error first exceeds some value, such as 10%.

Data of that sort is plotted in Fig. 1. For this data, and all other plots in

this paper, the map period v in (3.1), has been taken to be 1.6 X 7r; that corre­

sponds to an evolution time interval equal to eight tenths of the small amplitude

period. As a result, the number of iterations and the number of periods have

comparable magnitudes. Defining "accurate" iterations to be those for which the

error is less than 10%, Fig. 1 is a plot of number of accurate iterations versus the

approximation order for various pendulum swing amplitudes. Clearly long term

accuracy degrades as the amplitude increases. For one amplitude, 30 degrees, the

1% error data is shown; it shows no striking qualitative difference from the 10%

data. What is striking is that the number of accurate iterations varies linearly

with the approximation order, at least over the range studied. The data of Fig. 1

can be described semi-quantitatively by the following crude and simple formula:

.. approximation order
number of accurate iterations ~ 10 2 (7.1)

amplitude

where "amplitude" is the maximum pendulum angle in radians and "order" is
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one for linear transfer matrices and increases by one for each power of x or p,

The remaining figures are intended to compare the abilities of different maps

to predict the motion over long times. The figures all have the same format;

the solid curves in the upper and lower plots are what is being compared; for

convenience the upper data is replotted in the lower graph, joined by broken

curves. In every case the solid curves in the lower graph come from a differential

map. Fig. 2 compares seventh and ninth order differential maps. An example

comparison is indicated. For 30 degree amplitude, if 2% accuracy is required, then

the number of accurate iterations with a seventh order map is logll2.29 = 195

turns. Going to ninth order yields logii 2.45 = 282 accurate iterations.

The purpose of Fig. 3 is to compare an interpolated and a differential map

of the same (ninth) order. For interpolated maps the parameter Xtyp must be

specified. In this paper it is always chosen so that, in the particular order, the

largest grid point is x = 1.0; that is, Xtyp = 2/(order - 1). Somewhat smaller

values in the range 0.9 to 1.0 gave greater precision, but they have not been

used, as the improvement was not great and the optimum depends on pendulum

amplitude. Depending on how the comparison is made the interpolated map

can be said to be either somewhat more accurate, or far more accurate, than

the differential map. Again working on the 30 degree case, and demanding 10%

accuracy, the differential map yields 335 accurate iterations. After this many

iterations the interpolated map is still yielding much better than 1% accuracy;

it could be said to be one hundred times "better". On the other hand, after 457

turns, the interpolated map inaccuracy exceeds 10%; this is not that great an

improvement over the 335 turns of accurate differential map tracking.

The remaining figures compare differential and difference maps. For the

difference maps Xtyp was chosen according to the formula Xtyp = 0.2/(order-l).

For seventh order maps the agreement is very good as shown in Fig. 4. The

overplotting in the lower graph of difference map results is just barely visible. The

absence of a 10 degree differrence curve is due to the occurrence of a computer
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overflow occurring during its evaluation. Going to ninth order yields Fig. 5, which

shows that the difference map has broken down and is inferior to the seventh order

map; that is presumeably due to roundoff error in the numerical differentiation

employed in evaluating the difference map. To confirm this, Fig. 6 was generated

using extended precision in the computer. The precision was "real*16", meaning

that a floating point number is represented by a 128 bit binary number in the

computer; such numbers are accurate to about 33 decimal digits. For the previous

calculation, 64 bit numbers, accurate to about 16 decimal digits, were used. With

the extended precision the difference and differential maps are indistinguishable

graphically. Numerically the greatest deviation in the logarithm of the number

of accurate iterations is 2.5276 instead of 2.5302.

8. Conclusions.

The main conclusions have been stated in the abstract. Quantitative results

have been given for the accuracy achievable in predicting the long term motion

of a pendulum by various procedures. For this particular simple system, it is

shown that, when the nonlinearity is "appreciable", iteration of approximate

maps yields accurate prediction for only some hundreds of periods of oscillation;

of course, this depends on approximation order and swing amplitude, as has been

spelled out. The number of accurate iterations increases roughly proportional to

the approximation order. This leads eventually to a diminishing return, since the

factor by which the number of map coefficients increases, as the order is increased

by one, is roughly equal to the number of degrees of freedom.

This suggests that map-iteration is not promising for long term prediction,

though that has been shown only for the pendulum system. If the pendulum

is fully typical of nonlinear motion, then the same can be said for all nonlinear

systems, and that is my subjective opinion. It is however possible, for another

system such as an accelerator containing nonlinear elements, that maps could

be useful for long term prediction. To be persuasive in that case, it would be
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desireable to show ways in which the pendulum system is atypical and gives

misleading results, and what characterizes that class of nonlinear system that

are conducive to map-prediction.

It has also been shown that greater accuracy can be achieved using interpo­

lated maps than using differential maps. This is not at all surprising since the

differential map amounts to extrapolation from the origin using Taylor series;

this should be expected to be less accurate than interpolation based on a grid

of exact values. By using interpolation formulas of sufficient sophistication, one

supposes that maps almost as accurate as the grid point maps can be obtained,

but that has not been investigated here.

Low order differential maps can also be used for a near-linear description

which generalizes the Twiss-parameter lattice representation. It has been shown

that such maps can be obtained numerically as difference maps which are essen­

tially identical to the corresponding differential maps.

Though long term prediction is impractical using maps, it is practical using

analytical formulas. This has been exhibited for the pendulum and it is also

possible in accelerator tracking; the program TEAPOT performs exact tracking

in an approximate lattice. (Here "exact" should more correctly be expressed

as "to machine precision".) This procedure corresponds to the long-established

scientific methodology in which idealized models based on plausible physical ar­

guments are subjected to rigorous mathematical analysis. As always in physics, if

the model is wrong or too simple its predictions will not agree with observations

on the system the model is supposed to represent.

I am pleased to thank my collaborators Lindsay Schachinger and Vern Paxson

and, especially, Tjet Sun, for his assistance in performing the calculations and

generating the graphs.
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