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HAMILTONIAN THEORY OF WE En8 NONUNEAR DYNAMICS EXPERIMENT

S.G. Peggs

SSC Central Design Group, 1 Cyclotron Road, Berkeley, CA 94120, USA

ABSlRACT

Short, medium, and long time scale Hamiltonians describing the E778 experiment are

presented, corresponding to smear, capture fraction, and tune modulation types of

measurements. A one-tum "discrete" Hamiltonian representing motion in the presence

of thin multi poles is derived from nonlinear projection maps, leading to expressions

for distortion functions, Fourier spectra, normalized covariances, and smear. An N

turn Hamiltonian is derived representing motion at a tune near a rational fraction lIN,

leading to expressions for detuning, resonance island width, resonance island tune,

and persistent capture fraction. Generating functions appropriate to slow and fast tune

modulation are presented, leading to four conditions which partition the tune

modulation plane into four distinct "phases" of dynamical behavior.

1. INTRODUCTION

E778 is an accelerator physics experiment that has been performed in the Tevatron proton-antiproton collider,

at Fermilab. The original motivation for the experiment was to check that tracking programs and reality agree on the

variation of smear and tune shift with amplitude, and to ensure that a real storage ring performs well enough even

when these quantities reach the maximum tolerances specified for the "linear aperture" in the Conceptual Design

Report of the SSC[I]. Results from the analysis of data taken in May 1987, and preliminary results from the

February 1988 data, are presented elsewhere in these proceedings[2]. and in other publications[3]. The experiment

investigated the behavior of the Tevatron in the presence of strong nonlinearities introduced by 16 special

sextupoles. Most of these investigations focussed on the information provided by two neighboring beam position

monitors (BPMs), after horizontal betatron oscillations with amplitudes of 2 to 6 millimeters were excited by a one

tum kicker. Turn-by-tum information was read out, digitized, and written to magnetic tape, on each of (typically)

64k successive turns - about 1.4 seconds. Data analysis falls naturally into three different time scales - about 50

turns, about 500 turns, and about 50,000 turns. Fifty turns of data are usually sufficient to adequately measure the

smear (defined below), and the tune at the amplitude of the kick. These measurements have been successfully

completed.

The focus of E778 analysis has now turned to the phenomenon of resonance trapping, in which a persistent

signal is seen on the BPM data, due to some fraction of the kicked beam being trapped on resonance, islands. These

signals often lasted from kick time until the Tevatron ended its two minute cycle. Untrapped beam decoheres in a

time corresponding to the inverse of the tune spread - approximately 100 turns, as shown in Figure 1. Five

hundred turns of data are sufficient to accurately measure the "capture fraction" - the ratio of persistent amplitude to

initial amplitude - and to measure the size and locations of the resonance islands. The analysis of long time scale (1

second) behavior will examine how the persistent response depends on tune modulation of the form

Q = Qo + q sin(21t QM t)
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where t is the turn number. Tune modulation was externally introduced into the Tevatron by exciting fast response

quadrupoles which are normally used to feedback on the tune during slow extraction. Different kinds of behavior

are expected in different regions of the (q,QM) plane.

500

(b)

100 200 300 400

Turns after kick

OLL..L..J---L...L..J.::""-JL....L.L..L--L.JL....L.L..L--L.JL....L..L-l--L.JL..J......J

a

5

-.
El
S 4
'-'

Q)
't1
::I

3+-'..........
c,

S
ttl

..... 2
ttl

+-'
l:1
0
N 1.....
'"'0::r:

4000

(a)

300020001000
- 6 L-L----'-...L......l'-'--'--~_L....L_L....L----'-...L......lL.......L._'_..L......I___'

o
Turn number

.....
ttl

+-'
l:1o
N
'C -2
o
.r:l

~ -4
~.....
Ii.

:i 2
p..,
tn

Figure 1. Raw BPM output, (a) for 4000 turns, and (b) for 500 turns after the kick, showing decoherence

and a persistent signal. The smooth curve is a Gaussian fit, as expected theoretically

2. SHORT TIME SCALE - NONLINEAR DISTORTIONS

2.1 ProjectiQn maps. and the discrete one tum HamiltQnian HI

Consider the general problem of transverse motion around an accelerator with many thin multipole

nonlinearities, Although it is convenient (and appropriate for E778) to concentrate on normal sextupoles in what

fQIIQws, it is straightforward to extend the results to include any and all multipoles, normal or skew. The angular

impulse on a particle passing through a thin sextupole is

6 X' = g (X2 - Z2), 6 Z' = -2 gXZ (2)

where X and Z are horizontal and vertical displacements, a prime denotes differentiation with respect to the

azimuthal coordinate, and g is the sextupole strength. In normalized coordinates. x and z, the perturbation is

where (3)

Linear motion from a fixed reference point at the origin of accelerator phases, 'l'x

sextupole, is given in this coordinate system by a rotation matrix,
'l'z O. to a given
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Cx Sx 0 0

-sx Cx 0 0
R('I'x ,'I'z) = (4)

0 0 Cz Sz

0 0 -Sz Cz

where

Cx = cos('I'x), Sx = sin('I'x), et cetera.

The "projection" map P is defined as linear motion R from the reference point to a given sextupole, followed by

the nonlinear kick, finally followed by inverse linear motion R-l back to the reference point.

The net effect of a projection map P is found by combining equations (3) and (4), to give

6x -sll;[gu(c"x+s"x')2 - gxx(cxx+sxx')2]

6x' cx[gu(cxx+Sxx')2 - gXll(CllX+sllx')2]
= (5)

6z -Sz gllZ(CXX+s"x')(czz+szz')

6z' Cz gxz(CxX+sxx')(czz+Szz')

which has the remarkable property of leading directly to a "discrete projection Hamiltonian",

(6)

that exactly reproduces the map (5) under partial differentiation

6x ~~P
6x' _ d~p

-
d(J~r

(7)

6z

6z' - a~zp

It is important to note that these are DIFFERENCE, and NOT DIFFERENTIAL, equations - explaining what is

meant by a "discrete" Hamiltonian. If it is assumed that the difference vector is small, and if action-angle variables

J and ep are introduced through

x (21x) 1/2 sine epx)

x' (2J x) 1/2 cos(epx)
- (8)

z (21z) 1/2 sin(epz)

z' (21z) 1/2 cos(epz)
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then the projection Hamiltonian becomes

where

ax = 'l'x + 4>x, az = 'lfz + $z (10)

and powers of trigonometric functions have been expanded into multiple angle fonn.One-tum motion around the

Tevatron is given by following map PI with P2, et cetera, up to Pl6, and finally by applying R(21tQxo,21tQzo),

where Qxo and Qzo are the small amplitude linear tunes. The nonlinear part of the motion is described to first

order in sextupole strengths - and not at all to higher order - by summing Hp for each sextupole, so that the

discrete one-turn Hamiltonian is

HI = 21tQxo Jx + 21tQzOJz + I. Hp
sextupoles

HI is shorthand for a set of difference equations, NOT differential equations, which are

(11)

J x 1x
aHl
d$x

$x $x
dHl
~= + (12)

Jz Jz ClHl
d$z

$z $z ClHl
t+l t dh t

The linear contribution on the right hand side - 6$x =21t Qxo, 6$z = 21t Qzo - is constant and (usually) large.

Consequently, the value of HI is not a constant of the motion, and the motion cannot be graphically understood,

(in one dimension) by plotting its contours. Projection maps appear to have been first used in nonlinear accelerator

applications by Kobayashi in 1970[4], although they were also independently developed for application to linear

coupling problems[5]. It remains to be shown that this formal structure is more than just academically interesting.

2.2 Distortion functions

It is conceptually natural and practically straightforward to rewrite the one-turn Hamiltonian (11) as

Hi = 21tQxo Jx + 21t Qzo Jz + I. Vijkl Jxi/2 JJ/2 sin(k4>x+I$z+$ijkl)
(ijkl}

where the sum is over (13)

(ijkl) = (3030,3010, 1210,1212, 121-2)

The first two indices of the constants Vijkl and $ijkl refer to the powers of Jx1/2 and Jz1/2, while the last two

identify a particular harmonic. It is trivial to solve for the phase space "distortion functions", 1x($lt, 4>z) and

Jz<4>x, $z), after substituting (13) into the equations
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Jx(tl>x+2n:Qxo. lj>z+2n:Qzo) - Jx(tx, 4lz)
dHt

==
dtl>x

and (14)

Jz(tl>x+2nQxO, tl>z+2nQzo) - Jz<tx,~)
dRt

==
d4lz

This gives, to lowest order in sextupole strength,

L k Y"kl '/2'/
Jx(4)x, $z) = 1,..0 - {iJ'kJ} II. JxOI Jzol 2 sin(k$x + 14lz + 4>ijkl- n:Oxl)

2 sin[n:Qkll

and

L I Y,okl if '/
= Jzo - [iJ"kl} II Jxo 2 Jzol 2 sin(ktl>x + I~ + tl>ijk.l- n:QkI)2 sin[n:Qkil

where it is convenient to define the harmonic tune

Qkl == kQxO + IQzO

(15)

(16)

Note that the vertical sum in (15) only includes the three terms with I non-zero, (ijkl) = {121O, 1212, 121-2},

while the horizontal sum continues to include all five terms. Note also the presence of Oxl in the resonance

denominators. Although expressions for distortion functions have already been found by many other authorslti],

their derivation in the formalism of discrete Hamiltonians is especially economical and conceptually clear, The

extension of this description to include other multipoles is straightforward, and is left as an exercise for the reader.

2,3 Fourier spectra. normalized covariances. and smear

The lowest order solution for Jx(t) and Jz(t) on turn t is given by substituting

into equation (15), giving

ll>x = txo + 2n: Qxo t, ~ = 4lzo + 2n Ozo t (17)

L k Yjjkl ./ /Jx(t) = JxO - . J)I,OI 2 Jzoi 2 sin(2n:Qkl t + 4>oijkl)
{ijkl} 2 sin[7tQkll

and

with

Jz(t) L I Yiikl / /= JzO - . hOi 2 Jzoj 2 sin(2n:Qkl t + tl>oijkl)
{ijkl} 2 sin[n:Qkll

tl>oijkl == ktl>xo + Itl>zo + tl>ijkl - n:Oxl

(18)

Rewriting (18) in terms of amplitudes, rather than actions, gives
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ax(t) = axO -

(~
k Vjjkl

axoi- 1 azai sin(2n:Qklt + !Poijkl)
2(i+j+2)/2sin[1tQldJ

and (19)

az(t) azo - L 1 Vijkl
axo i azoi- 1 sin(21tQkl t + !Poijkl)

2(i+j+2)/2 sin[1tQklJ
{ijkl}

Each term in the horizontal or vertical sum in (19) corresponds to one line in a discrete Fourier analysis of the

amplitudes (not the displacements). While the lines are ideally narrow, in practice their width is proportional to the

tune spread of the beam. It is nonetheless possible to reconstruct the single particle motion by properly summing

the power and the phase of the bins under the broadened peaks - assuming that the peaks can be resolved. This

summarizes the situation in terms of a small set {ijkl} of physically important and theoretically predictable

parameters, Vijkl and «Iloijkl.

The motion is further summarized by calculating three statistics. the "normalized covariances",

<Jxx =
<axax> 1

6~;
k2 VjikP axo2i -4 azo2j

<ax><ax> 2(i+j+3) sin 2[1tQklJ

<Jzz
<azaz> = L }2 Vijkl2

ax0 2i azo2j-4 (20)- <az><az> 2(i+j+3) sin2[1tQkl]
(ijkl )

axz
<axaz> - L kl Vijkl2 axo2i.2 azo2j-2- <ax><az> 2(i+j+3) sin2[1tQkll

[ijkl}

where angle brackets < > imply a time average. (These equations are incorrect if two members of [ijkl ] have

identical kl values.) The covariances are "normalized" in the sense that they are dimensionless, and are zero for

linear motion. Two of them, axx and azz, arepositive-definite, but the cross term axz can be negative, with

(21)

If one of the harmonics in the sum dominates - if Vijkl is very large or Qk1 is very close to an integer for some

ijkl - then there is a simple invariant of the motion.

I ax - k az = constant (22)

and the equality holds in (21). In the most common E778 experimental conditions, motion was induced in the

horizontal plane, with the tune Qxo in the range from 19.37 to 19.42. The horizontal rms "smear" is then just

(
3 V3 3 2

s == <Jxx1fl =0 0 +
26 sin2(31tQxO)

(23)

and is linear in the initial amplitude. Notice that sin(31tQxo) =0.729 at the upper end of the tune range, and the
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resonance denominator in the first term in (23) is not small, showing that the E778 smear was not (necessarily)

dominated by the 3QxO harmonic.

3.0 MEDIUM TIME SCALE - PERSISTENT SIGNALS

3.1 The N-tum Hamiltonian HN

If the base tune of an accelerator is near a rational fraction, Qo .. I/N, then the net phase space motion after

N turns is comparatively small. For example, the E778 fractional tune was between 2/5 - 0.03 and 2/5 + 0.02,

so the magnitude of the net phase advance was typically less than one tenth of, 21t. It could also be argued that the

E778 tune was close to 1/3, although it remains to beseen how close is close enough. Consider, then, the general

N-tum case, where the motion is described to lowest order by the N-turn Hamiltonian

lIN-I
= 21t (Qo - N) J + N L I. Vik Ji/2 sin [k(cl> + n21tQO) + cl>ik]

n=O (lk)
(24)

All subscripts x are dropped from here on, and the set of indices [ijkl] is contracted to [ik], since only

horizontal motion is treated. The N-turn difference equations of motion are now

CJ
HN

=

t

(

- aHN J
+ N Ocl>

dHN
dJ

t

(25)

The crucial difference between HN and HI - see equation (13) - is that now the difference step is small. To a

reasonable approximation, HN is a constant of the motion, and the difference equations can be replaced by the

more common Hamiltonian differential equations,

(26)

Strictly speaking, the motion obtained by "integrating" (26) is only correct for values of t which are exact multiples

of N . The outer sum in (24) is easily removed by using the trigonometric identity

N-l
I sin(A + nB)

n=O

sin(NB/2) N-l
sin(B/2) sin(A +TB) (27)

so that

where

21t (Qo - N
I

) J + 2, VNik Ji/2 sin(kcl> + $Nik)
{ik}

(28)

VNik _
sin(NkQo1t)

Vik,
N sin(kQ01t)

7
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A remarkable and important property of VNik is that

VNik ... Vik

VNik « Vik

if mod(k,N) = 0

if mod(k,N) * 0

provided that
I

100 - N1 «
1

k1t

(30)

This defines when the tune is "close enough" - when most of the VNik terms are negligible. For example, if the

maximum value of k is 3, then it reasonable to drop most of the (ik} terms in (28) if the base tune is within,

say, 0.03 of lIN. This shows that E778 conditions were "close" to the 2/5 resonance, but not to the 1/3 .

3.2 The three tum motion. and octupolar detuning

Suppose that the tune is between 0.33 and 0.36 (not true for E778), and that {ik} is (33, 31,44,42,

40). including both sextupolar and octupolar terms. If the extra terms come from true octupoles, their Vik and

¢lik values are easily calculated. However, if, as in the E778 case, they come from cross terms between

sextupoles, they are not calculable without resorting to second order perturbation theory. Combining (28) and (30),

H3 = 21t (Qo - t) J + V33 J3/2 sin(3cll + cll33) + V40 J2

Since H3 is a constant of the motion in this approximation, the distortion function is just

J(¢l) = JO - 1 1 ( V33 J03/2 sin(3cll + cll33) + V40 J02)
21t (Qo - 3' )

(31)

(32)

in agreement with (15), if the constant term proportional to V40 is (legitimately) dropped. Equation (32) describes

the classic (normalized phase space) topology, of small amplitude circles becoming more and more distorted at

larger and larger amplitudes, out to a separatrix in the shape of an equilateral triangle. This description is accurately

confirmed by tracking. The perturbed tune at an average action of JO is given by

where, using (26),

Q(Jo) (33)

21t

T = Jdt = ! (am-I d ~ (34)

After equation (31) is differentiated and substituted into (34), the integrand depends explicitly on J and 41. Next,

the integrand is expanded in a Taylor series up to order Jl, and then (32) is used to make the integrand depend

solely on 41, allowing T to beevaluated. This gives

(35)
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which is correct to first order in Jo. The presence of the resonance denominator in the V332 term shows that it is

unnecessary to consider the cross terms between sextupoles, if the tune is close enough to 1/3.

3.3 The five tum motion, and experimental observables

Most of the persistent signals observed in E778 were due to the 2/5 resonance, and so the five turn motion is

very relevant. After expanding the (ikJ set even further, to be [33, 31, 44. 42, 40, 55, 53, 51), but keeping

only terms with k=O and 5 according to (30), then the 5-turn Hamiltonian is written down as

H5 = 2n (Qo - ~ J + V40 J2 + V55 J5/2 sin(5lj)+ lj)SS) (36)

The decapole terms with i=5 corning from cross terms between sextupoles can also. in principle. be calculated in

second order perturbation theory. However, as Taf says, "Beyond first-order results I know of no useful result

from perturbation theory in (celestial) mechanics... "[7]. What is more, tracking results show that (36) is not an

accurate description even at moderate amplitudes w V33 terms are still important in practice. Without minimizing

these difficulties, it is possible to proceed with a g~n~~ de$~ription by rewriting Hs as

where

HS = 271: (00 - ~ J + U(J) - YS(J) cos(51jl)

2 2 U'(J)
Q(J) >= 5" + (Qo -; 5") + 21t

(37)

(38)

and a prime now indicates differentiation with respect to ~. This Hamiltonian exhibits island structure, with five

stable and five unstable fixed points at local minima and maxima. They occur close to an action It which makes

the tune exactly 2/5, and which is found by solving (38),

It is illuminating to rewrite (37) ill a Taylor expansion in I, the action displacement from the fixed points,

where

1 .. 2
Hj(I,Ijl) = 2~ 1 I - VSl cos(5cj» (39)

I = J - 11. (40)

Thus the stable and unstable fixed point phases are, respectively, even and odd integer multiples of rr./5 (assuming

U") and V 51 have the same sign). The island half width is found br solving Hs(Iw, 0) = H5(O,1t/5),

(~)lfl
IW = 2 U"I

Small oscillations about the stable fixed point at the origin are described by

(41)

dcj> U"I I"dt= (42)

so that motion around the center of an island is characterized by the island tune

9



(43)

These are the theoretical variables: what can be measured in E77S?

The detuning function Q(a) already measured in E77S is in good agreement with tracking at small and

moderate amplitudes[2,3]. This leads to a measurement of U as a function of the action. The fraction of particles

captured on fifth order islands is expected to be roughly proportional to the island half width in amplitude, aw.

Accepting the parameterisation in (36) for a moment,

aw (44)

in which case the capture fraction rises slightly faster than linear with the resonance amplitude, ar . In any case,

observation of the capture fraction leads to measurement of ~ as a function of the action, after correction for

systematic effects by comparison with multi-particle simulatiJn. This measurement is being actively pursued.

These two sets of observations are sufficient to measure the primary theoretical functions U (J) and V51(J) .

Knowledge of U and V51 leads to a prediction for the island tune which, if QI can be measured independently,

imposes a redundant test on the simple theory. When a single particle is captured close to the center of an island in

a tracking program, a Fourier transform of its phase reveals a peak at Q), the island tune. Although the real signal

caused by a beam of particles with finite size is weaker, it is hoped (with some justification) that QI can be

measured as a function of al in the E778 data.

4. LONG TIME SCALE - TUNE MODULATION

The long time scale behavior of the Tevatron was probed, in E778, by observing the response of persistent

signals under the tune modulation described in equation (1). Data were usually taken for 64k turns, but some were

taken over one megaturn, at the limit of the instrumentation[8]. This is only two orders of magnitude short of the

sse storage time, about 3*lOS turns in one day. The following description is broken into slow and fast regimes,

where the modulation tune QM is much less, or much greater, than QJ, the island tune.

4.1 Adiabatic tune modulation. and trapping

If the tune is changing slowly at a constant rate of Q, then (39) is modified to become

H5(1,$) = 21tQ t 1 + tU"I 12 - V51 cos(5$)

~.
This shows that the fixed point action Ipp, where --01 =0, moves according to

(45)

IFP
21t Q

-Vl t - - E: t (46)

The explicit time dependence in the Hamiltonian is reduced to second order in the small quantity 10, defined above,

10



by performing a canonical transformation from (I.,) to (i,$). using the generating function

W(I,$,t) = I $ + e t $

sothat

(47)

I - 1+ et, HS == Hs+~ = (48)

The new action variable I is the action displacement from the moving fixed point, while the angle variable is

unchanged. The new Hamiltonian is no longer periodic in the angle variable $,

HS = tU"II2 - VSlcos(5$) + £$ - iU"£2t2

and only has stable fixed points if there is a solution to ~5 = O. that is, ifa,

2x I{frl < 51 VSI I

(49)

(50)

This is analogous to the well known problem of radio frequenc~acceleration. in which the stable buckets shrink, to

become shaped like tear drops, or even to disappear, when ~=put is non zero. If the tune modulation is

sinusoidal, as in (1). then the maximum value of Q is 2xqQM, and, comparing equations (43) and (50), particles

are only adiabatically trapped on resonance islands if

(51)

.(after generalization to the case of an N'th order resonance). This condition is a factor of two more stringent than

the one originally proposed by Chao and Month, which was based on a more heuristic model[9].

4.2 Rapid modulation', and synchro~tatrQn sidebands

When the sinusoidal nature of the tune modulation is explicitly included in the time independent Hamiltonian

(39), the time dependent five-tum Hamiltonian is described, not by (45). but IlY

HS = 2x q sin(2xQM t) I + tU"1 12 - V51 cos(5¢')

This is canonically transformed by a generating function different from (47), namely

W(I,~,t) = ~ 1 + ~cos(21tQMt) 1

(52)

(53)

to give

I = I, ¢' = ~ + ~cos(2xQMt), Hs - 21t q sin(21tQM t) (54)

The new action is unchanged, while the new angle is sinusoidally modulated with respect 10 the old angle, and the
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tune modulation in the new five-tum Hamiltonian is shifted inside the cosine

- 1 ~ -2 - 19... ]Hs = 2'U I I - VSI cos[54l + QM cos (21t QMt)

This is rewritten, without overbars, as

(55)

HS = tU"112

using the identity

VSI:Llj(6;) cos(5, + i21tQMt)

i

(56)

00

cos(A + B cos(C) - L Jj(B) cos(A + iC)
-00

where the Ji are Bessel functions. Now, if the action of a particular test particle is close to

then its tune is close to

Ok = j + k~

(57)

(58)

(59)

and after five modulation periods, 5M turns, the net phase advance is small. All of the harmonic terms except one

disappear in going to the 5M-tum Hamiltonian,

(60)

due to the same averaging which made most terms disappear in going from the one tum (difference) map to the five

turn (differential) map, equations (24) to (30). Note that this averaging is only valid if not much happens in 5M

turns - if OM» QI. Just as the N-lum Hamiltonian motion was only correct every N turns, the motion found by

"integrating" HSMk is only strictly correct at integral multiples of 5M .

Equation (60) has stable fixed points and resonance island chains for every integer k, at a family of tunes

with a spacing of ~, where N is the general resonance order. These "synchrobetatron" sidebands are strongly

suppressed by small Bessel functions at large values of k, since

heAl = 0

if A> k > 0

(61)

if A <k

Physically, this means that the test particle is hardly perturbed if its tune modulation amplitude q is insufficient to

carry it the k~ distance to the tune ~ of the resonance. Only the fundamental k = 0 is present if

.q < ~

12
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The half width of a significant synchrobetatron island is given, in comparison with (41), by

1

~ 2(J_k(~)~) 2 ... 2

1 1

(.QM.:)4(~) 2
1tNq U I

(63)

where the value of a Bessel function is approximated by its rms size, The action separating neighboring sidebands

is given by (58), so the condition for synchrobetatron sideband overlap is just

lseparation
21t QM

= N U"r < 2IWk (64)

or, using (43),
3 I

QM4 (Nq) 4" < 1t~/4 Q (65)

Large scale chaos is expected when this condition is satisfied.

4.3 Dynamical "phases" in the tune modulntion plane. (QM,q)

Figure 2a shows how the (QM,q) tune modulation plane is broken into different regions by three solid

boundaries corresponding to the conditions (51), (62), and (65), drawn here with N:= 5 and QI = 0.0053 .

Assuming that the order of the resonance N is fixed, the only independent variables in these conditions are the

three tunes q, QM, and QI. These three occur only in combinations of two more basic quantities, QM/QI and

q/QJ, which are the externally controlled tunes in units of the island tune. This shows that QI is a fundamental

dimensionless measure of the resonance strength, 1'he dashed boundary, QM = QI, roughly separates the zones

where the slow and fast generating functions, (47) and (53), are valid.
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Figure 2 a) Tune modulation plane phases, and b) persistent signal decay rate versus modulation tune, QM
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In the bottom left corner of this "phase" diagram, particles are trapped in a single fundamental island chain

which "breathes" in and out, to larger and smaller amplitudes. Hence the strength of the persistent signal is

amplitude modulated, in step with the tune modulation. In the bottom right comer there is still only a fundamental

island chain, but trapped particles do not exhibit coherent amplitude modulations. Sideband island chains occur in

the top right hand corner, in addition to the fundamental. If the size of the kicked beam in this region is large

enough, then more than one sideband is populated at a time, and a Fourier transform of the persistent signal reveals

peaks separated in tune by QMIN, without amplitude modulation. The fourth region, the top left, is chaotic. If

"persistent" signals are observed there at all, they decay away very rapidly.

The dotted line in Fig. 2a shows the region which was physically accessible in the E778 experiment during

the February 1988 run. Only the "adiabatic trapping" and "chaos" regions were accessible at values of Q[ where

the persistent signals were significantly strong. The 64k turns of data typically taken per shot could not be analyzed

on line (for example, in searching for amplitude modulation) in time for the next shot. Consequently, the main real

time observable was the decay rate of the persistent signal. Figure 2b shows how, at a particular base tune Qo,
and hence at a particular island tune QI, the decay rate increased dramatically above a critical value of QM. The

four crosses drawn on Fig. 2a correspond to the four q values in Fig. 2b, showing behavior consistent with

crossing the boundary between adiabatic behavior and chaos. Detailed analysis of the hundreds of megabytes of

data taken in the tune modulation phase of the E778 experiment is only just beginning.
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