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ABSTRACT

We consider a simple model to study the effects of the beam-beam
force on the dynamics of colliding beams. We focus on the quadrupole
modes of the coherent oscillation. The ingredients are: (1) linearized
beam-beam kicks, (2) damping and noise due to synchrotron radia
tion, and (3) linear transport between beam-beam kicks. The dynam
ical variables are the 2nd-order moments of the canonical variables
q, p, which include the rms bunch size. Our model is self-consistent
in the sense that no higher order moments are generated by the lin
earized beam-beam kicks, and that the only source of violation of
sympleeticity is the radiation. We discuss the cases of round and
flat beams. Depending on the values of the tune and beam-beam
kick strength, we observe states in which otherwise identical bunches
have sizes that are equal, or unequal, or periodic, or behave chaoti
cally from turn to turn. Possible implications of luminosity saturation
with increasing beam intensity are discussed.
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1. Introduction

The beam-beam interaction is widely recognized as an important factor in the
performance of colliding beam storage rings. Among its possible effects a~e tune
shifts, beam focusing at low current, beam blow-up at high current, saturation of
the beam-beam parameter and luminosity, the "flip-flop" effect and its associated

hysteresis. [1] Many studies have been done in the "weak-weak" and "strong
weak" limits, which involve a linear approximation and/or the neglect of coupling
between the two colliding beams. Multiparticle tracking simulations also have
been used, but these involve few particles, or require the fitting of a distribution
function which necessarily violates the symplectic condition of the dynamics.

Ideally one would want to solve the dynamics of the beams self-consistently,
that is, in such a way that: (a) the phase-space distribution function for both
beams satisfies Vlasov's equation at all times, and (b) the force seen by any
given particle is precisely the electromagnetic force given by Maxwell's equations
for such a distribution. Although many consequences of the beam-beam inter
action are understood in the various approximations, and some features of the

coupled-beam problem are known to various degrees in various studies, [2] no fully
satisfactory solution has yet emerged to this formidable problem.

Recently Hirata[3] has carried out several studies of the problem in another
simplified model which includes some of the coupled-beam features and which
incorporates the ingredient of radiation damping and noise. Thus it appears to
be relevant only to e+e- machines. However, it invokes a particle distribution
that is assumed to remain Gaussian at all times. Maxwell's equations imply a
nonlinear force, and therefore an inconsistency with Vlasov's equation is auto
matically introduced because a Gaussian distribution cannot remain Gaussian
under the action of a nonlinear force. This inconsistency is reflected in a viola
tion of symplecticity even in the absence of radiation. Despite this shortcoming,
Hirata's model has the interesting features of yielding spontaneous breaking of
the symmetry between the two beams, thus apparently explaining, although only
qualitatively and for unrealistic values of the parameters, the flip-flop effect and
the saturation of the luminosity and beam-beam parameter at high current. How
ever, its built-in inconsistency clouds the validity of its conclusions, and calls for
further studies.

In this note we present an even simpler model, along similar lines, that has the
virtue of being fully self-consistent (i. e., symplectic in the absence of radiation,
with Gaussian beams remaining Gaussian), since it involves the essential ingre-

dient of a linearized beam-beam force (a previous note by one of us[4] was part
of this effort). The consistency with Vlasov's equation is achieved at the price
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-- of ignoring Maxwell's equations altogether, since the model assumes the force to
be linear at all distances while the bunch remains finite in size. Although this
is generally a good approximation for particles near the center of the bunch, it
is clearly a bad one at large distance for any reasonable distribution, and the
information contained in the nonlinear forces in the beam tail is lost. However,
since we are interested in studying only the quadrupole modes of the coherent
oscillation, the linear part of the force has the most important effect, and in
this sense it is reasonable to use this approximation. Because of the consistency
of our model with Vlasov's equation, our results are not tainted by violation of
symplecticity, and therein lies the value of our investigation.

We need not be concerned with the detailed form of the particle distribution.
All is necessary are the six (three for each bunch) 2nd order moments (q2) , (pq)
and (p2) of the canonical variables q, p. These are the six dynamical variables
that fully describe our studies. We consider in parallel the two extreme cases
of "flat beam" and "round beam" shapes, and our conclusions are qualitatively
similar for both.

Our results are similar to Hirata's in some respects and different in others. As
in Hirata's case, we observe the saturation of the beam-beam parameter and the
luminosity as the beam intensity is increased, and the existence of stable, period
1, asymmetric solutions in which the beams are of constant but unequal size, in
addition to the "normal" period-l solutions with beams of equal size. These
nontrivial solutions exist only for unrealistic values of the beam intensity. Unlike
his results, however, we find, in addition, a rich structure of other solutions: there
are higher-order fixed points, in which the beams are of equal size but change
from turn to turn in a periodic way; and there are chaotic solutions in which
the beams are of different and changing size from turn to turn with no apparent
regularity, but in such a way that one beam remains preferentially bigger than the
other one. In fact, a crucial difference with Hirata's case is that, in our model,
it is the chaotic and higher-order fixed point solutions rather than the stable
asymmetric solutions that are responsible for the saturation of the beam-beam
parameter and luminosity. Furthermore, in our case, this saturation does occur
at a realistic value of the beam intensity.

Our conclusions are based on a limited study; thus we present results for
only one set of values of the tune and radiation parameter. A few sample cal
culations for other values of these parameters reveal the existence of other types
of solutions, such as period-2 fixed points with unequal-size beams. Most of
our results are obtained from the iteration of the six-dimensional nonlinear map
for the moments of the distribution. This map has three "control parameters,"
namely the tune of the machine, beam intensity, and radiation parameter. It

3



seems a formidable problem to fully characterize this map. From the results
presented here, it is reasonable to conjecture that the detailed solution is vastly
more complicated.

Our results suggest a possible interpretation of observed phenomena, al
though the details are model-dependent. Thus, although the essence of the model
may be valid, it appears that a quantitative and satisfactory explanation of the
flip-flop effect and saturation of luminosity and beam-beam parameter remains
an open problem.

In Section 2 we describe our model and construct the one-turn map. Section
3 describes the period-l fixed point solutions. The simplicity of the model allows
the analytic calculation of the location of the fixed point, but the stability analysis
is done mostly numerically. Section 4 describes the iteration of the map and its
effect on "observable" quantities. Section 5 contains the details of the results
for the period-l fixed point and iteration of the map. Section 6 contains some
remarks about details and some alternatives of our model. Section 7 summarizes
our conclusions.

2. Model

We consider a collider ring with only one interaction point and one bunch per
beam which we may think of as the e+ and e" bunches, although our discussion
allows for like-charged beams just as well. * We assume that the bunches collide
head-on. We consider only the vertical dynamics described by the position and
slope of each particle y, y', and define the normalized coordinates q, p for each
beam as

=

y±
q± =.,flJ;'

2.1 INGREDIENTS.

(2.1)

The key ingredient m our model is the beam-beam interaction which we
represent by a linear kick. Under this kick the coordinates change according to

(2.2)

* Clearly our discussion applies equally well to a ring with K interaction regions provided the
appropriate K-fold symmetry is obeyed.
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where k± is the dimensionless strength of the linearized kick,

(2.3)

This is the only source of coupling between the two beams in our problem, since
the strength of the kick on a particle inthe e+ beam depends on the size of the
e- beam and viceversa. In the above rn is the classical radius of the particle, N
is the number of particles per bunch, 1 is the usual relativistic factor, and f ± is
the kick's focal length. We assume Nand, to be the same for both bunches.

The - sign in front of k± in Eq. (2.2) implies the convention that k± > 0
for attractive kicks (opposite-charged beams) and k± < 0 for repulsive kicks
(like-charged beams).

For the fiat-beam case we assume that O"x+ == U x - ~ O'y and that only u y is
a dynamical variable. Thus we write

G"x+ = U x - =~, uy± = Vf3y (q~)

Ux± = uy± = v/f3(qi)

(fiat beam)

(round beam)
(2.4)

In the above equations €xO and fyO are nominal emittances and (...} represents
an average over the bunch distribution (we assume f3x = f3y =(3 and €xO = €yO =
fO for the round-beam case).

The essential dynamics arises from the fact that the rms beam sizes 0"x and
(Ty are dynamical variables. They provide the only source of nonlinearity in the
problem. Using (2.4) we express the kick strength in each case in terms of the
more conventional nominal beam-beam parameter €o,

~o = roN [ii; (flat beam)
271:,V€'1;,f)€yO V»:

Co -_ TON (d b )'" roun earn
47f,EO

(2.5)

This makes it clear that even though the beam-beam kick, Eq. (2.2), is linear
(and therefore the dynamics symplectic), the problem of the time evolution of
the moments (qi), (p~), and (q±p±l, is nonlinear and nontrivial.

The particle also loses energy by radiation, which is restored to it by the RF
cavities. We make the approximation, following Hirata, that this effect is also
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represented by a localized kick, described by the stochastic transformation

R (~ ~) (2.6)

where the r± are independent random numbers distributed over the particles so
that their bunch-averages over all radiation events in one turn are (r±) = 0 and
(71) = 1. The first term in the above equation describes the momentum loss by
radiation, and the second term describes the radiation noise. It is straightforward
to see that the above transformation is constructed so that, in the absence of the
beam-beam kick, the distribution would decay exponentially to a steady state
with (q2) = (p2) = EyO and (pq) = 0 (some alternatives* to (2.6) are briefly
discussed in Section 6.)

The parameter>. is related to the "damping decrement" b by >. = exp( -2b),
and b = To lTd where To is the revolution period and Td is the damping time,
i.e., the time it takes for (pq) to reach lie of its initial value due to radiation. In
practice, for existent e+e- machines, ti is a very small number, of order 10-3 

10-\ so >. ~ 1. For our applications, however, we will let >. be any number in the
range (0, l). Likewise, the beam-beam parameter ~o has typical values of order
10-2 - 10-4 but, for our purposes, we will allow it to have any value.

The third and final ingredient for our model is a linear transport through a
phase advance 27rv. In this case the transformation is

2.2 ONE-TURN MAP.

(
cos(27rv)

T _ sin(27rv)
sin(27fv) )

cos(27fv)
(2.7)

We complete our model by combining the above ingredients into a map. We
assume that the bunches collide, then are transported through the entire length of
the ring, then radiate, then collide again, etc. (see Section 6 below for comments
regarding another order). Schematically, they experience the transformations
B ---+ T ---+ R ---+ B ---+ ••• Therefore, if we construct a surface of section just before

* We are grateful to Bob Siemann for remarks concerning this point.
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the beam-beam kick, the map that relates turn n + 1 to turn n is represented by

where the map matrix M is given by

(2.9)

in which C = cos(27l"v), S = sin(27l"v), and v is the tune of the machine (for a
K -fold symmetric ring v is the phase advance/Zsr and>. the radiation parameter
of one symmetry sector, respectively).

A six-dimensional deterministic map is obtained from the above by taking
the averages of the bilinear combinations of q and p over their corresponding
particle distribution, and averaging these over the radiation events for one turn.
Thus

(q~)

(p+q+)

(p~)

<q~)

(p-q-)

(p~) n+l

M(k_,n)

o

o
(q~) 0

(p+q+) 0

(p~) +€yo(l- >.2)
1

(q:) 0
(2.10)

{p-q-} 0

(p~) n 1

where the 3 X 3 matrix M is obtained from M by

2Mll M l Z

MllM22 + M 12 M 21

2M21Mz2

(2.11)

It is easy to verify that M and M have unit determinant if and only if )" = 1
(i.e., no radiation), as it should be the case.

Note that the six-dimensional map (2.10) is nonlinear because M (k±) depends
on (qi)n via k±,n. When written in terms of k± the map has the same form for
both fiat and round beams; the difference comes only in the definition of k±, Eq.
(2.5).
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The map can be studied in the conventional way by starting with a specified
set of values for all six moments and iterating. We will provide the results in a
later section. However, because of the relative simplicity of the map, it is possible
and worthwhile to look for the simplest possible solutions, namely period-l fixed
points, which can be done analytically, and study their stability by analyzing the
stability matrix.

3. Period-One Fixed Points

3.1 LOCATION OF THE FIXED POINTS.

The defining condition for a period-l fixed point is (-. '}n+l = (.. '}n for all
six moments. Thus we obtain

(qi)
(p+q+)

(p~)

(q:)
(p-q-)

(P=-)

o

o

This represents a set of six coupled nonlinear equations for six unknowns.
However, because the matrix is block-diagonal, we need to invert only a 3 x 3
matrix. Furthermore, since M does not depend on (pq) nor (p2), the set consists
of two equations for two unknowns, namely (qi) and (q:'). These correspond to
rows 1 and 4 of the above matrix equation.

The inverse of the 3 X 3 matrix is very simple. We obtain

[ l _ M(k) ] - l [ ~ ] = ~ [ ': ]
1 D(k)., + 1 + 2k cot(27TV) _ k2(1 - )., )

where k is either k+ or k: ~ and

D( k) = det (1 - M (k ))

2 2 [2k v ]= (1- A )(A + l)S 1 + )., + 1 COt(27TV) - (>. + 1)2

(3.2)

(3.3)

Note that, although the determinant vanishes in the limit>. -----+ 1 (no-radiation
limit), the equations are regular on account of the (1 - >.2) factor in Eq. (3.1).
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Thus a perfectly regular solution for the period-l fixed point exists for>. = 1,
which is given explicitly in Section 6. However, the stability analysis shows in this
case that the equilibrium is either marginal or unstable because the eigenvalues
are such that either they all lie on the unit circle, or there is at least one greater
than unity in absolute value.

So far the discussion applies equally well to flat beams as it does to round
beams. In order to proceed we must now specialize the equations to either case
by expressing (q~) and (q:") in terms of k+ and k_. Eq. (3.3) suggests using the
scaled variables x and y defined by

k+ = (>' + l)x,

in terms of which Eq. (2.5) reads

k.: - (>.. + l)y (3.4)

(flat beam)

(round beam)
(3.5)

Thus the period-l fixed point equations for the flat-beam case are

x2 = p2(1 + 2XY _ y2)

y2 = p2(1 + 2xx _ x2)

and for the round-beam case,

x = p (1 + 2XY _ y2)

Y = P(1 + 2xx - x2
)

where we have defined

47r~O

p= ,\+1'

(fiat beam)

(round beam)

x = cot(21l"l/)

(3.6)

(3.7)

(3.8)

for both cases. Note, however, that the definition of ~o in terms of the machine
and beam parameters is different for both cases, as per Eq, (2.5).

Once x and y have been found, the location of the fixed point is completed
by finding (pq) and (p2). These are obtained from Eq. (3.2), which yields the
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following relations, valid only at the fixed point:

(p+q+) =)..y
(q~)

i~~ = 1 + 2XY - (1 - ,\')y'

(3.9)

with corresponding relations for the e- beam, found by exchanging x +-+ y.

Eqs. (3.6) and (3.7) represent the intersection of two ellipses and two parabo
las, respectively, in the x - y plane. They are mirror images of each other about
the main diagonal. Depending on the values of p and X there can be 4,2, or no
real solutions. Even if a solution is real it is not necessarily physical because the
sign is important: the solutions for x and y must have the same sign (opposite
sign solutions violate Newton's 2nd law). If we adopt the convention that eo
(and therefore p) is always positive, then the + solutions are physical for the
opposite-charge case, while the - solutions are physical for the like-charge case
(equivalently, one may choose eo to be > 0 for the opposite-charge case and < 0
for the like-charge case, and seek only positive solutions for x and y).

Eqs. (3.6-7) admit x = y and x =1= y solutions, corresponding to equal-size
beams and unequal-size beams (the stability of each is discussed later).

Equal-size beam solutions. The equal-size beam solutions are obtained by set
ting x = y in Eqs. (3.6~7), which yield

x± = 1:p2 [xp ± J(Xp)2 + 1 + p2] , (flat beam) (3.10)

and

(round beam) (3.11)

Note that they are always real, and that x+ > 0, x : < 0 for all values of
X and p. In the weak-beam limit, p -7 0, the opposite-charge solutions x+ for
either flat or round beam are

(q2) = €yO (1- 2Xp + ...)
(pq) = eyo (.\p + )
(p2) = eyo (1 + )

(3.12)

where· .. represents terms of order p2 or higher. Note the correct limit in the
absence of beam-beam kick.
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Unequal-size beam solutions. The unequal-size beams solutions are most easily
found by subtracting the two equations in (3.6) and (3.7) and dividing through
by x - y, which yields

2XP2

X+ Y = - 1 2'-p

2Xp+ 1
x+y= ,

p

(fiat beam)

(round beam)

(3.13)

and then solving for x and y. One then finds, for flat beam,

(3.14)

and, for round beam,

(3.15)

The solutions are real only for certain values of X and p. The reality conditions
are

(3 - p2)(Xp)2 < (1 _ p2)2

(2Xp - 1)2 > 4(1 _ p2)

(flat beam)

(round beam)
(3.16)

which are obviously satisfied for p > v'3 and p > 1, respectively, but are nontrivial
for smaller values of p.

In addition to being real, the solutions for x and y must have the same sign
in order to make physical sense. The conditions on X and p are most easily found
by setting the product xy to be positive. Thus we find

(2Xp)2 > (1 _ p2)2

2Xp > p2_ 1

(flat beam)

(round beam)
(3.17)

By combining constraints (3.16) and (3.17) we find the regions in the X - P
(or v - p) plane in which these unequal-size solutions are physical. They are
shown as the shaded areas in Figs. 1 and 2.
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3.2 STABILITY OF THE PERIOD-l FIXED POINTS.

In order to study the stability of the fixed point we expand the map (2.10)
infinitesimally close to it, which is possible because the map is analytic there.
In this approximation the map is linear and homogeneous, and the standard
eigenvalue analysis can be used.

If we define the three-component, dimensionless vectors

then the map (2.10) reads

(3.18)

[X] = [M(Yn)

Y n+l ° ° ] [X] [e]_ + (1- -\2)
M(xn ) Y n e

(3.19)

where e = col(O,O, 1) (we have made explicit the fact that M(X) depends only
on the first component Xl, which we have traded off for x according to Eqs.
(3.4-5».

We denote the fixed point as X, Y and write X n = X + ~X, Xn+l =
X + ~X', and similarly for Y n- We expand the map to lowest order and obtain
the stability matrix 'E,

which has the form

[ ~X/ ] [~X]
~yl = ~(x,Y) ~Y (3.20)

and where

[
M(y)

E(x,y) =
N(y,x)

N(x, y)]
M(x)

(3.21)

N(x,y) = [V(X,y) ~ ~]

V( ) = BM(YI) X
z , Y BYl

12
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The expressions for X and 8M(y)/8y are, for either flat or round beam,

x= 1 [ ; ]1+2Xy- y2 Y
1 + 2XY - (1 - ,\2)y2

_ [28(('\ + l)Sy - C)
8~~Y) = (,\ + 1) ,\(2(>. + 1)SCy + S2 _ C 2)

2>..2C«'\ + 1)Cy + S)

(3.23)

(3.24)

So far the equations are the same for both flat-beam and round-beam cases. To
proceed, we note from Eq. (3.5) that

Xl = p2Jx2 , 11 == p2Jy2 (flat beam)

Xl = pix, Yi = p/y (round beam)

which are needed to relate 8/8y to {)/ BY!. Combining the above equations to
gether with the fixed-point conditions (3.6-7), we obtain

[

S(Sy - C) ]
V(x,y) = -(A + 1) J(x,y) >'(2SCy - C2 + 82)/2

)..2C(Cy+ 8)

where lex, y) is

(3.25)

J(x, y) = y31x2

J(x, y) = 2y2 Jx
(fiat beam)

(round beam)
(3.26)

This completes the definition of the stability matrix. The analysis proceeds
in the conventional way: for given values of X, P and>. we find x and y from Eqs.
(3.10-11) or (3.14-15), construct the stability matrix and find its eigenvalues. If
all six eigenvalues are less than unity in absolute value we call the solution stable;
otherwise it is unstable. One property of the stability matrix, which is useful to
check the numerical calculations, is that the determinant has the value

det ~(x, y) = >.6 (3.27)

for both the x = y and x =I y cases, regardless of whether the beam is fiat or
round. This implies that, if the motion is stable, the eigenvalues are of order )..
in absolute value.

Sample results for the size and stability of oppositely-charged beams are
shown in Figs. 3 and 4, for flat and round beams, respectively. They are discussed
in detail in Section 5.
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4. Iteration of the Map

By starting with a given set of values for X and Y we iterate the map
(3.19) and see whether it converges to fixed point, or behaves chaotically, or
diverges. We provide only a sample case in Figs. 5 and 6 for flat and round
beams respectively, for oppositely-charged beams. The details are discussed in
the following section.

The physical effects of the iteration of the map can be seen by looking at
"observable" quantities such as the luminosity, or the effective beam-beam pa
rameter. They are given by

t - roN If:y )
~ (flat beam

- 21r'YV€xEy fJx

t -_ roN (round b )I" roun earn
41r'YE

(4.1)

where f is the bunch collision frequency, N the number of particles per bunch,
and €x, Ey, E are the actual values ofthe emittances (for flat beam, Ex = €xo). The
"nominal" values Cn and ~o are the same as the above, except for the replacements
Ex, Ey -+ €xO, EyO. Now in our model Ey and € are given by

Ey = ((q~) + (q:») /2

E = ((q~) + (q:») /2

(flat beam)

(round beam)
(4.2)

Thus a quantity that measures the physical effects of our model is the "enhance
ment factor" E defined by E =£/.co = U~o,

E- ~_ ~_xy~
-y Ey -V~- PV~

E = €O = 2 2xy
€ Xl +YI p(x + y)

(flat beam)

(round beam)

(4.3)

In the weak-beam limit, p -+ 0, only the equal-size solutions are stable. For
the opposite-charge case E behaves linearly with p,

E = 1 + xp+ ...

E = 1 + 2Xp+'"

(flat beam)

(round beam)
(4.4)

and all quantities take on their nominal values at p = 0, which gives them a
precise meaning in our context. We plot E us. p in Figs. 7 and 8.
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5. Results

The results for the location of the period-l fixed point show that: (a) "nor
mal" solutions (i. e., beams of constant and equal size) exist for flat and round
beam shape for all values of v and p, and do not depend separately on Aj (b)
for the flat-beam case, constant solutions with beams of unequal size exist only
in certain regions of the v - p plane both for like-charged and opposite-charged
beams, as shown in Fig. 1; and (c) for the round-beam case, constant solutions
with beams of unequal size exist only in a certain region of the t/ - p plane
for opposite-charged beams, as shown in Fig. 2, and not at all for like-charged
beams.

All results presented below for the stability of the period-l fixed point and
for the iteration of the map are for oppositely-charged beams and for v = 0.15
and b = 0.07 (A = 0.8694), both for flat- and round-beam cases. Although this is
an unrealistically large value of b, which corresponds to a synchrotron radiation
energy loss of "" 13% per turn, we hasten to emphasize that all our results are
quantitatively similar for any A close enough to 1. This is because our model is
symplectic in the absence of radiation and therefore all our results have a smooth
..\ _ 1 limit. This is shown explicitly for the period-l fixed point solutions in
the section below. Of course the case ..\ = 1 is different from A infinitesimally
below 1 because, for example, the motion would not be considered stable if all
the eigenvalues of the stability matrix were unity in absolute value, whereas it
would be considered stable if the eigenvalues were infinitesimally less than 1 in
absolute value. The practical advantage of choosing a fairly large b, as we do
here, is that the convergence of the map iteration is relatively fast.

Results for the beam size and stability of the period-l fixed point are shown
in Figs. 3 and 4, for flat and round beams, respectively, in which we plot the
normalized rms beam sizes VXi. and vY:l vs. p. Equal-size beam solutions exist
for all values of p; unequal-size beam solutions exist only in a finite range of
values of p, represented by the two branches of the curve. The solid portions of
the lines indicate stability, the dotted portions instability.

If the period-l solution is unstable it means that the motion may have higher
order stable fixed points, or chaotic behavior, or it may be truly unstable. Even
if the solutions are stable, they may coexist with other stable higher-order fixed
points. This is illustrated by iterating the map (3.19), which we show in Figs. 5
and 6 for fiat and round beams respectively. By starting with a given set of values
for X and Y we iterate the map and see whether it converges to a fixed point,
or behaves chaotically, or diverges. The nature of the solution depends not only
on the parameters X, p, ..\, but also on the starting point Xo, Yo. It is almost
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impossible to give a full description of the map in this six-dimensional space, so
we provide only sample "runs." The dots represent chaotic behavior, in which
the two beams change in size from turn to turn with no apparent regularity, but
in such a way that one of them remains preferentially larger. The symbol +
represents period-l fixed points in which the beams are of equal or unequal size,
depending on the value of p (they correspond to the beam sizes shown in Figs. 3
and 4). The symbols x , o and CJ represent period-2, -3, and -4 fixed points with
beams of equal size. These solutions start to appear at p ~ 0.41 for flat beams
and p ~ 0.27 for round beams. A bifurcation with the period doubling from
2 to 4 occurs near p = 1.7 for the round-beam case. There are apparently no
chaotic solutions with beams of equal size, nor fixed points of period higher than
1 with beams of unequal size. We have not found other types of solutions than
the ones described because of the limited accuracy of our search, but of course
they may well exist (a spot check for v = 0.176 did reveal a period-2 solution
with unequal-size beams},

Whenever there is more than one possible solution, the one to which the map
converges for given p, X depends on the initial conditions Xo, Yo. For p ~ 0.5 for
the flat-beam case, and p ~ 0.3 for the round-beam case, the chaotic solutions
are the most stable. Besides limited ranges of p around these values, generally
speaking, the period-1 fixed point is the most stable unless period-S or period-3
fixed points coexist with it. In this case the period-2 fixed point is the most stable
for the flat-beam case, while the period-3 fixed point is the most stable for the
round- bearn case. By "most stable" we mean that the size of the region of values
of Xo, Yo which converge to these solutions seems to be largest, so therefore this
is the most likely solution to be reached by the map. For this reason we use only
these to evaluate the enhancement factor E (we compute its average over the
period of the fixed point). Figs. 7 and 8 show E vs. p for flat and round beams
respectively. Note that E increases to a maximum and then decreases roughly
like 1/p, Since p <X N, this means that the luminosity increases only linearly
with beam current, and the beam-beam parameter saturates beyond this point.
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6. Remarks

6.1 ORDER OF THE KICKS IN THE MAP DEFINITION.

Refs. 3 and 4 use the order B --+ R -+ T in the definition of the map rather
than B --+ T -+ R as we do here. Since the two become identical for >. = 1
and since our ,\ --+ 1 limit is smooth, the difference is not significant for realistic
values of >.. For the period-l fixed point, it turns out, the only difference that
the other order implies is a different definition for p; which is p = 41reo>'/(>' + 1)
instead of (3.8).

6.2 >. = 1 LIMIT OF THE PERIOD-l FIXED POINT.

Since our model is symplectic in the absence of radiation, the limit ,\ --+ 1 is
perfectly smooth. The beam size of the period-l fixed point solutions does not
depend on >. explicitly, so it is still given by Eqs. (3.10-11) and (3.14-15). The
stability analysis, however, is simpler. In the case of unequal-size beam solutions,
x ¥- y, the characteristic polynomial P(J-l) = det [~(x,Y) - J-lIJ factorizes in the
form

(6.1)

and, in the case of equal-size solutions, x = y, it factorizes even more,

where

(6.2)

a = (Sx - C)(Sx - 2C) - 1,

for fiat beam, and

a = -2C(5x - C) - 1,

b = (3Sx - 2C)(5x - C) - 1

b = 2(Sx - C)(2Sx - C) - 1

(6.3)

(6.4)

for round beam. Therefore, in this case of x = y and ,\ = 1 the eigenvalues are

{

1, 1

flo'" = a ± iV1 - a 2

b±ivl- b2

(6.5)

which lie on the unit circle if -1 < a < 1 and -1 < b < 1, in which case the
stability is "marginal,' or are real otherwise, in which case there is instability.
Depending on the values of v and p, both possibilities can be realized.

17



6.3 ALTERNATIVES TO THE RADIATION KICK.

It is possible to describe the radiation effects in a more realistic way than by a
single kick and so that the equilibrium distribution satisfies (q2) = (p2) = €yO and
(pq) = 0 in the absence of beam-beam kick. For example, one can imagine that
there are K radiation kicks around the ring, each one described by an equation
similar to (2.6) but with .x replaced by .x1/ K and with a different r±, and that
the ring is divided up into K arc segments, one between every two radiation
kicks, and each with a phase advance 27rv/K. By taking the limit K -7 00 one
then finds the transformation for the combined transport and radiation between
beam-beam kicks. We have done this calculation algebraically, and the resultant
map is fairly complicated. The equation for the beam size of the period~1 fixed
point cannot be solved analytically, although it would be a simple matter to use
this map in the tracking of the moments. A very simplified (but less realistic)
special case of the above is found when v is an integer and there are radiation
kicks like (2.6) every 1/4-integer. The resultant effective kick is like (2.6) except
that A -7 v0: and that both q and p are kicked. The resultant equation for
the period-l fixed point is quite complicated. An even simpler description is to
assume that the kick is in q rather than Pi in this case the equation for the beam
size of the period-l fixed point is a cubic for flat beams but it is still a quadratic
for round beams. A few spot checks for the period-J fixed point and the other
solutions showed that they are quantitatively different from those presented here,
although the general qualitative features of the results are similar.

It has been recently pointed out [5) that if one does represent the radiation
effects by one single kick, as we have done here, this kick must be located at a
symmetry point of the lattice (fJ' = 0) and it must be such that the strength
of the noise term is scaled so that it corresponds to the beam-beam-perturbed
fJ-funetion. Otherwise there is a mismatch with the phase ellipse which leads to
spurious emittance growth. This conclusion has been reached by multiparticle
tracking simulations in which the two beams are forced to remain equal in size.
In our problem the radiation kick is located immediately before the beam-beam
kick, and the strength of the noise term is scaled with the "bare" ,a-function;
however we do not see evidence of this emittance growth. Indeed, the equal-size
period-l solutions have a fairly constant size for a large range of p, This apparent
contradiction is under investigation.
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7. Conclusions

We have constructed a dynamical model ofthe beam-beam interaction that is
consistent with Vlasov's equation, whose key ingredient is a linearized beam-beam
force. The model has features such as saturation of the luminosity and beam
beam parameter as a function of current, and asymmetric solutions in which
otherwise identical bunches reach an equilibrium state with different sizes. The
model also has other solutions, in which the beam sizes change chaotically with
time, and also fixed point solutions with period higher than one. Because the
model is symplectic in the absence of radiation, all our results are quantitatively
similar for any value of ). sufficiently close to 1.

There exist period-1 solutions with beams of unequal size, which are neces
sary to explain the flip-flop phenomenon, that are real for all values of p; however,
these solutions are not always stable and, furthermore, are unnatural for small
p. By this we mean that they require a very delicate relationship between v and
p, as can be seen from Figs. 1 and 2. Therefore these solutions, although sug
gestive, are probably not realistic candidates for an explanation of the flip-flop
phenomenon.

For realistic values of the beam intensity, i.e., p ~ 0.5, only three types of
solutions exist, are stable and natural: "normal" solutions with beams of equal
and constant size, chaotic solutions in which the beams change randomly from
turn to turn with one of them remaining preferentially bigger than the other one,
and higher-order fixed point solutions with equal-size beams. The saturation
of the luminosity and beam-beam parameter occur at a nominal beam-beam
parameter ~o ~ p/21r ~ 0.065 for flat beam and ~ 0.043 for round beam. Thus in
our model this saturation mechanism is due to the appearence of a chaotic region
followed by a higher-order fixed point rather than a bifurcation. This seems to
be a key difference with Hirata's result. [3]

The stability analysis of the period-1 fixed point shows large regions of insta
bility, as seen in Figs. 3 and 4. For these regions the iteration of the map reveals
a rich structure of chaotic behavior and higher-order fixed points, shown in Figs.
5 and 6. Apparently this structure is due to the linear nature of the force, since

it is absent for the case in which the force vanishes at large distance. [3]

It may be possible to extend our model to describe realistic beam distribu
tions consistently with Maxwell's equations, in addition to Vlasov's equation,
by considering all higher-order moments of the distribution function. Such a
method would involve an infinite set of coupled nonlinear equations, but a sys
tematic approximation may be one in which it is truncated at higher and higher
orders.
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Our model shows a new possible mechanism for the explanation of the satu
ration of the luminosity and beam-beam parameter, namely the appearence of a
chaotic solution followed by a higher-order fixed point. This saturation occurs,
in our model, at realistic values of the beam intensity. However, the problem of a
quantitative and self-consistent explanation of the flip-flop phenomenon remains
open.
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