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I. INTRODUCTION

In order to minimize transverse resistive wall instability, the SSC beam tube has
been designed with a 2-mil layer of inside copper coating. This is because the con-
ductivity of copper at helium temperature can be 300 to 3000 times larger than that
of stainless steel or Nitronic 40. Since this instability is a long-wavelength effect, a
thicker copper layer would be more beneficial. However, a thick copper layer is bad
with respect to the possible inelastic deformation of the beam tube during a quench
of the superconducting magnet. The eddy current induced in the beam tube resides
mostly in the copper layer and is directly proportional to the layer thickness ¢;. Being
immersed in a vertical dipole magnetic flux density B, the copper layer will exert a
horizontal outward Lorentz pressure on the beam tube, deforming it into an approx-
imate ellipse. The bigger the Lorentz deformation, the easier it is for the partially
vaporized helium to further deform the beam tube.

The Lorentz pressure

Py(p) = Pnsing , (1.1)

varies sinusoidally with the polar angle ¢ as illustrated in Fig. la, and P, is the
pressure at the equator (¢ = n/2) given by

P, =0:|BB|t:R . (1.2)

For completeness, Egs. (1.1) and (1.2) are derived in Appendix A. Obviously, the
conductivity of copper o1, the dipole magnetic flux density B, and its time rate of
change B are all time dependent during the quench, but the maximum is implied in
Eq. (1.2). For a copper layer of 2 mils, P, can be as big as ~ 100 psi. Equation {1.2)
is in mks units. If B is in tesla, B in tesla/sec, R and £, in m, and oy in (&-m)~1,
then the pressure P,, will be in newton/m? To convert to psi or atmospheres, the
factors 1 newton/m? = 1.45 x 10~4 psi and 1 atm = 14.68 psi should be used.

The purpose of this article is to compute the helium pressure required to distort
the beam tube beyond its elastic limit when a maximum equatorial Lorentz pressure
P, is applied. There are two reasons that we talk about the elastic limit here instead
of the crushing of the beam tube. First, the computation is much simpler because
Hooke’s law can be applied approximately. Second, slightly beyond the elastic limit
of most materials comes the yield point, beyond which the material becomes plastic
and would be permanently deformed. Thus it is convenient and conservative to stay
below the elastic limit. Since the yield points of materials are more easily obtained
from tables than the elastic limits, we will take the yield point as the approximate
elastic limit in our discussions below.

This article is written for physicists and is designed to be self-contained. All
the basic theories used will be described, and all the formulas used will be derived.



Therefore, the reader is not required to have any prerequisite knowledge of strength
of materials. Most of the materials are taken from the text by Timoshenko.!

In Section II, we derive the basic equation describing the elastic deformation of
a body under stress and the conditions under which that body will be deformed
permanently. In Section III, we review the theory of buckling which gives another
limitation to the applied stress. In Section IV, the deformation of the beam tube
under the Lorentz pressure of Eq. (1.1) is computed. In Section V, a uniform helium
pressure is introduced outside the beam tube. A further deformation of the tube is
computed, and the helium pressure required to deform the tube beyond the elastic
limit is derived. Finally in Section VI, the failure limitations of the keys on the outside
of the bore tube due to a nonuniform copper layer are discussed.

1I. THE BASIC DEFORMATION EQUATION

Consider a uniform massive beam supported at both ends as shown in Fig. 2a.
Due to its own weight, the beam will be bent. Consider the section AB in Fig. 2b
and study the forces acting in the cross section B. There are a tensile force T parallel
to the beam and a shearing force S perpendicular to the beam as a result of the
imbalance of the weight of the section AB and the reaction at A. We observe that
the moment of these forces are in general not balanced also. Therefore, there must
be a couple at the cross section B, which is known as the bending moment at B.
Physically, this bending moment arises from the compression at the upper surface
and elongation at the lower surface of the beam that has been bent. It is the pressing
in at the top and pushing out at the bottom that generates this moment.

The neutral axis in the beam is the line inside the beam where there is no com-
pression or elongation. We denote this the z-direction and consider an infinitesimal
section of length dz as in Fig. 2c. The y-axis is perpendicular to the z-axis and is
pointing downward. The z-axis is the other lateral direction. At a distance y from
the neutral axis, the axial extension is A corresponding to an axial strain e,(y) in the

z-direction equal to
Ay
6I(y) = Iﬂ- p— p ,
zy

where pg, is the local radius of curvature of the z-axis in the y direction. We will

(2.1)

be using this subscript convention for the radius of curvature p,, and the bending
moment M., below, where the first subscript denotes the axis to be bent and the
second subscript denotes the direction of bending. The axial stress at y due to the

bending is therefore
Ey
o:(y) = Eec(y) = P (2.2)

ry



where F is the Young’s modulus of elasticity for the beam material, and Hooke’s law
is assumed. This bending couple or moment does not contribute any net force along
the beam direction because we have grouped all possible net forces at cross section B
into the tensile force T and the shearing force S. The integral of Eq. (2.2) across the
beam from top to bottom should therefore vanish. This indicates that the neutral
axis is at the center of the beam. The bending moment M,, that causes bending of
the z-axis in the y direction can now be computed by multiplying ¢.(y) by y and
integrating over the cross section of the beam,

EI,
M., = , (2.3)
Py
where the moment of inertie
L= [yda (2.4)

is defined as the integral of the second moment over the cross section normal to the
z-direction. Equation (2.3) holds for every cross section along the beam and is the
basic equation describing the beam deformation. There should be a sign convention
for M;, and p,, which we have not specified here. We just infer to the sign through
physical intuition.

For a rectangular beam of height » and width £, the moment of inertia can be
easily found to be
h3¢
1

As the beam is compressed at the top and stretched at the bottom, the lateral
width in the z-direction will naturally be stretched at the top and compressed at the
bottom so that the cross section has a shape as depicted in Fig. 2d. Therefore, there
is stress o, and bending moment M, also. The beam is bent in the lateral direction
and a radius of curvature p,, can be introduced. Now the strains in both the z and
the z directions are given by equations like Eq. (2.1)

I = (2.5)

Y
€Ep — —
Py
(2.6)
Y
€y == — .
Pzy

However, there is no bending of the y-axis and therefore no bending moment M,, or
M,.. In other words, there is no tensile stress o, in the y-direction.
To describe the picture, the convenient Poisson’s ratio

unit lateral contraction
p= (2.7)

unit axial elongation




is defined, when the body is subjected to axial stress only. If a body is compressed in
one direction, it is unlikely that the volume of the body expands. This supposition
implies that the Poisson’s ratio should be less than 1/2. Poisson determined this ratio
analytically by using molecular theory of the structure of material. For materials
which have the same elastic properties in all directions, he found g = 1/4. For an
infinitesimal cube of the beam, taking these lateral contractions into account, the
linear Hooke’s law is modified generally to

Oz
€z I —p —p (f\

o
& | =] - 1 —p Ey . (2.8)
€, —-—p —p 1 \iz_

E

Our problem simplifies because there is no stress in the y-direction (g, = 0); but
there is strain in the y-direction,

o 2P

€ = —,uE — “E . (2.9)

From Egs. (2.6) and (2.8), we obtain

Ey ( 1 y)
Oy = Sl - ,
1 —p? \pay Py

(2.10)
E 1
o= (b ).
1—p Pzy  Paxy
The respective bending moments are
El, 1
Ma;-y = 2 (_ - a ) ’
1— 42 \poy Py
' (2.11)
El, 1
sz = 2 (_ + L) y
1—p Pzy  Pay

where I, is the moment of inertia defined similar to Eq. (2.4) but with the integration
over an area normal to the z-direction. These are the two equations governing the
deformations in both the axial and lateral directions.

However, in the case of a plate where the z-dimension £ is very big (or the case of
a long tube where the length corresponds to the z-direction), the lateral deformation

4



in the y-z cross section (Fig. 2d) will not be possible, or 1/p,, = 0. Then we get

EI,
Mgy = ————r, 2.12
Y Pay(1 — p?) ( )
which is exactly the same as Eq. (2.3) if we make the substitution
E—-FE = = . (2.13)
1— p?

This is expected because the restriction in a change of the lateral direction will de-
finitely increases the stress in the axial direction. Since we are not interested in
the lateral direction, we shall drop all the subscripts in the following unless there is
ambiguity.

The factor 1/p is the curvature of the bent beam for the case when the beam is
originally straight. For a beam that is curved to start with, 1/p should be interpreted
as the change in curvature.

Suppose the beam originally has a radius of curvature pp at a point, we can write
1_de (2.14)
po  ds

where ds is the length of the beam AB covered by an infinitesimal angle dyp as shown
in Fig. 3. The beam is now bent so that AB becomes A’B’. The new curvature is
now given by

vo(,-2])
1 _ ds B ds o (2.15)
o' ds + Ads ’ ’
where u is the radial displacement at A’ or B’ and
Ads = —ds (2.16)
Po

is the increase in arc length from AB to A’B’. So far we have been keeping only first
order terms in the beam deformation u. The change in curvature is
1 1 d*u u

P po ds? po’

(2.17)

which when substituted for 1/p in Eq. (2.3) leads to a linearized basic equation for
bent beam,

d*u 2



We want to remark that Eq. (2.18) has been linearized. Also in both Egs. (2.3)
and (2.18), the deformations due to tensile forces and shearing forces have not been
included. For a tube of thickness h and radius R, these deformations are about (h/R)?
times smaller than the deformations due to bending moments.

The deformed beam will return to its original shape once the stress is relieved
if we are in the strain-stress proportional region where Hooke’s law holds (or more
generally in the elastic region). However, when the stress passes the yield point
Oyp, this is no longer true. The beam will not return to its original shape and is
permanently deformed. Sometimes the material goes plastic and even collapses. In
this article, we confine our study to within the elastic limit where Hooke’s law holds
approximately. Also the yield point will be taken as an approximation for the elastic
limit. With a bending moment M, the stress is a maximum at the upper or lower
edge of the beam where the compression or stretching is greatest. Therefore,

E'R
2|pl

Eliminating p with Eq. (2.12) and using the explicit expression (2.5) for the moment
of inertia, we obtain the maximum stress due to a bending moment M,

(2.19)

CTmax =

_ hlM| _ 6]M]

The total stress in the direction of the beam must also include the tensile stress T/A
where A is the beam cross-sectional area. Thus, to prevent permanent deformation,
we must require

Tl ol _

A TR S
In the direction perpendicular to the beam, there 1s a shear-stress yield point 7, also.
Thus in addition to criterion (2.21), we also require

(2.21)

S
% < Ty - (2.22)
A shear elastic modulus G can be defined as the ratio of the shearing stress to the
shearing strain. The shearing of a rectangle into a parallelogram can be described by
the elongation of one diagonal and the contraction of the other. Therefore the shear

modulus is related to the tensile elastic modulus E, and it is easy to show that!

E

= 514 (2.23)



Experimental observations indicate that

1
Typ N 5 Oup - (2.24)

It appears that Eq. (2.24) follows from Eq. (2.23), but in fact they are not related
because the mechanism of shear failure can be quite different from the mechanism of
stress failure.

Some remarks are in order. Consider a rod of cross sectional area A is stretched

by a tensile force T'. Because of lateral contractions, the tensile stress is, according

to Eq. (2.7),
T

A(l —uo/E)?

Denoting by ¢’ = T'/A the approximate stress with the lateral contractions neglected,
Eq. (2.25) can be solved by perturbation to give

o =

(2.25)

?

o= (1+2pg~—)+~-- . (2.26)
E

If the tensile force is a compression, the sign before p should be changed. Since

o'/ E is roughly the strain, which is small, it is usually neglected so that we need

not distinguish between ¢ and o'. Also the elongation yield point should in principle

be different from the compression yield point. But experimental measurements show

that they are roughly the same. These approximations have been made in developing
Eqs. (2.21) and (2.22).

III. THEORY OF ELASTIC BUCKLING

Consider a rod of length ¢ standing vertically on the floor. We apply a vertical
force F' on its top and increase F' until the rod buckles with a horizontal displacement
y = ¢ at its center (Fig. 4a). Taking the z-axis as vertical, the curvature of the
buckled rod at a point (z,y) on the rod is

1 d?y
PR 1
The bending moment there
M="Fy (3.2)

can be obtained easily by considering the section from the floor up to (x, y) and taking
moment about the point (2,y). Here, the shearing force which is of order §/¢ of F



and has been neglected. The basic equation (2.3) describing the beam deformation
becomes

- EI% = Fy , (8.3)
~ dzy 2
P +cfy=0, (3.4)
with
G=a (3.5)

The Poisson ratio dependency has been dropped for simplicity. The solution must
satisfy the following three sets of boundary conditions:

(1) y=0 atz=0and?,

(2) y=4§ atz=g, (3.6)

NS NIs

(3) Y =0 atz =

However, the deformation equation is of only second order; thus a solution is not
always possible. Imposing boundary conditions (2) and (3), the solution is

y:&cosc(g-ﬂr) : (3.7)

Then in order to satisfy boundary condition (1), we need to set

c_ﬂ_ﬂ' RE

2= 20 (38)

so that the force becomes

m*El 9n*EIl
FC = 32 ? ez Tt -

The solution says that to buckle the rod and maintain a finite horizontal displace-
ment § midway, a force of F, = n2EI/#? is needed. Below that a stable deformation
will not occur. The next solution is the buckling of the rod into a shape with two
nodes. This solution requires a force that is nine times bigger and is in general of no
physical interest because the rod will usually reach its yield point much earlier.

Our solution appears unphysical because the applied force is quantized, and we
cannot increase it even slightly bigger than F.. Also the amount of buckling & is
independent of the applied force.

(3.9)



These apparent unphysical effects occur because we have been assuming the height
of the rod to be £ although it is bent. The error is second order in §/£. If we want to
correct for this, we need to include the second order terms for the curvature. In fact,
if we use the full formula for the curvature

d%y
1 rey
= d: — (3.10)
4y
[1+ ( dm) ]

the exact solution of the deformation equation gives a buckling of ?

5=2fe,/%—1[1—%(£—1)] (3.11)

for F > F, and é§ = 0 for F' < F,. The solution is plotted in Fig. 4b. We see that the
increase in deformation per unit increase in the applied force is

1 S(E 1

u vil=s(E1)
dF = F A ’

7

which is very big when F is just bigger than F. (and is actually infinite at Fy).

Therefore, as soon as F passes F,, a slight increase in the applied force will cause an

enormous increase in the deformation. Thus the elastic limit will usually be reached

when F' exceeds F, slightly. For this reason we call F, the critical buckling force. To

safeguard the stability of the rod against collapse, we always require the applied force
to be less than F..

(3.12)

IV. DEFORMATION DUE TO LORENTZ PRESSURE

During a quench, the maximum horizontal outward Lorentz force acting at polar
angle ¢ for a length £ of the beam tube is (Fig. 1a)

dF(p) = P, Resinpdy | (4.1)

where the maximum equatorial Lorentz pressure P, is given in Eq. (1.2} and R is the
beam tube radius. The details are given in Appendix A. The total horizontal Lorentz
force on each half of the beam tube is therefore

F,=2P,RE. (4.2)

9



Take the segment VC. At the cross section V or ¢ = 0, there is a tensile force F;/2.
Taking moment about C, the bending moment at C is (Fig. 1b)

¢ 1 1
M, = M, — / > FsinfR(cos § — cos)df + 5 F,R(1 — cosyp) , (4.3)
0
where M, is the bending moment supporting the segment VC at V. We can rewrite

Eq. (4.3) as
1
M, = ~ZFRcos2p + My , (4.4)

where Mg = Mo + FR/8. The deviation from the circular cross section u(y) satisfies
the deformation equation (2.18),

gL = 1R R% cos? ' R?
Ep—z—l—u =3 tR’ cos2p — M{R* | (4.5)
where we use the Poisson modified modulus E' = E/(1 — u?) because we are studying
a long tube. We expect the deformed cross section to be symmetric with respect to
the vertical and horizontal axes. The only solution is

FR3
U=~y €08 2¢ , (4.6)
with Mg = 0. That is, the cross section has an elliptical shape
F.R?
r= R4 ugcos2p , u0:_24tE’I } (4.7)

In computing M,,, we have assumed a circular cross section instead of the actual
deformed ellipse-like cross section. The error is an order uo/R smaller. These extra
terms should be deleted because the deformation equation (2.18) has been linearized.

The elongation at ¢ = 7/2 and flattening at ¢ = 0 as well as the bending moment
at v = 0 can also be obtained by variations of the energy of deformation without
actually solving the deformation equation. The details are given in the Appendix B
for the interested readers.

We next compute the maximum stress in the deformed tube. The maximum stress
due to bending moment is given by Eq. (2.20) or

2
Tmax |mornent = g (%) P, cos 280 ’ (4:8)
which attains the largest value at the point H (¢ = 7/2), where
3 /R\?
=—{=) Pn. 4.9
M=o (h) d (+:9)

10



At point V, there is the extra tensile stress F;/2h¢; or

R 3 (R\?
_Bp 3 (_) P . 4.10

wvERimT oG (4.10)
Thus, point V is subject to higher stress than point H. Equating ov to the tensile
yield-point stress o,,, we obtain the yield Lorentz pressure

o
(P )y = _R"_ng— . (4.11)
7 (1 35)

The beam tube is under a shearing force of
Sy, = PnREcospsing (4.12)

due to the non-cylindrically distributed Lorentz pressure. A yield will occur first at
the v = 7 /4 points when

2h
ETyp .
Considering the fact that 7y, & 0,,/2, we see that this yield Lorentz pressure in shear
is always bigger than the yield in tension given by Eq. (4.11) so it does not bother us
at all,

- The SSC has a beam tube radius R = 1.66 cm and wall thickness A = 0.10 cm.
Equating oy to the yield-point stress o,, of Nitronic 40 at various temperatures and
taking a Poisson ratio of 4 = 0.287, we can solve for the corresponding yield-point
equatorial Lorentz pressures. The results are listed in Table 1.

P, = (4.13)

Temperature | Yield-point Stress | Yield Pressure
K oyp (psi) P, (psi)
296.8 58,000 134.9
194.1 87,000 202.4
77.4 150,000 348.9
20.0 175,000 407.0
4.0 196,000 455.9

‘Table I: Yield equatorial Lorentz pressure for Nitronic 40 at different temperatures

11



V. ADDITIONAL STRESS DUE TO HELIUM PRESSURE

During a quench, the liquid helium outside the beam tube will be partially va-
porized due to the heat generated by the eddy current in the copper coating and
superconducting coils. As a result, there will be a significant increase in helium pres-
sure. Since the beam tube will be deformed by the horizontal Lorentz force, the
helium pressure required to buckle the tube will be reduced.

With only helium pressure acting on a circular beam tube, the forces are radially
symmetric, so that no bending moment is produced and there will be no deformation
below the critical buckling pressure. Therefore, we need to compute the bending
moment of the actually deformed beam tube. On the other hand, the first-order
contribution of the Lorentz force can be obtained from the undeformed beam tube
because the Lorentz force is not radially symmetric.

Figure 5a shows the deformed ellipse-like cross section together with the unde-
formed circular cross section. Because of symmetry, there are four points A, B, C,
and D where the deformation is zero and the radius of curvature is unchanged. Thus
the bending moments there are exactly zero. However, at each of those points there
is a tensile force and a shearing force due to the helium pressure p. Take the segment
AB. The horizontal forces acting at the ends A and B against the helium pressure
are pfR cos a, where 2R cos e is the distance between A and B and £ is the length of
tube considered. The angle « is 7 /2 if the deformed cross section is exactly elliptical.
Similarly, for the segment AD, there are vertical forces p/R sina acting at 4 and D.
Therefore, the net force acting at A on the segment AB is F' = pR{ and is tangen-
tial to the undeformed circle instead of the ellipse-like boundary. This implies that
shearing forces have been included in the computation. A similar force F' = pR{ acts
at B.

We now consider the segment AA’. Taking moment about A’, we obtain the
bending moment at A’ (Fig. 5b)

My = —pREAG + —;-J'pEAA’2 — -241-€R2Pm cos2¢p , (5.1)

where the first term on the right is due to the force I' at A, the second term is due to
the helium pressure acting on the arc AA’, and the third term represents the Lorentz
pressure given in Eq. (4.4). Using the cosine law

AA" = OA'+0A*-20G0OA
= 0A”"-0A +24G04A, (5.2)

and keeping only terms of first order in deformation, it is easy to show that

My = pRbu — %ERsz cos 2 , (5.3)

12



where v = OA’ — R is the radial deformation at A’. The deformation equation can
now be written as

104 - R2(Re ~ Lorep 2) (5.4)
ap? ul| = pRlu = mcos2p | . .

In Section IV, we have already solved the deformation due to Lorentz pressure,

o d%u 1
E'I ( d(p; + u1) = ZER4Pm cos2¢p , (5.5)
where IR'P
m
U= — e cos2¢p . ~ (5.6)

If we define u; as the deformation due to the Lorentz pressure and u; = u — u; as the
deformation due to the helium pressure, u; satisfies

d2
E'T ( d:; + 'U.'z) = —pR*0(uy + uz) . (5.7)

With the help of Eq. (5.6), Eq. (5.7) can be solved easily to give

bur
pe—p’

(5.8)

Ug =

where

_3E'T Ehr?®
Pe™= R T 41— RO
is the critical buckling pressure of the beam tube of thickness k. Similar to the critical
buckling force in Section III, this critical pressure can be obtained by demanding a
smooth solution of Eq. (5.7) with »; = 0.
The total deformation is

(5.9)

R P,
U =Uy Uy = ——

4p.—p

cos 2y , (5.10)

which demonstrates that the deformed cross section is elliptic to first order.

We next compute the stress around the beam tube cross section. First let us
consider the stress in tension or compression. Substituting Eq. (5.10) into Eq. (5.3)
gives the bending moment

2
M, = —%——p—c——cosmp , (5.11)

4 p.—p

13



which, according to Eq. (2.20), contributes a maximum stress of

6] M, |
Jmaxlmoment = hgép * (5‘12)

To this we must add the tensile force P, R¢cos® ¢ due to the Lorentz pressure and
the compression force pR¢ from the helium pressure. Therefore, the maximum stress
at o is
3P, R? »p,
2 ﬁpc -
The negative sign in the first term reminds us of the pressing inward of the helium
pressure and pulling outward of the Lorentz pressure. We see that the contribution
of the bending moment attains a maximum at the vertical point V (¢ = 0) and the
horizontal point H (¢ = 7/2) and vanishes at the 7/4 points (Fig. 5a). We therefore
expect the stress to be higher at these two points. When p > P, /2,

R
0, = |p— Pn coszga|~’; + p|cos2cp[ . (5.13)

__'P_-_Ri_ 3PmR2 Pc

— oIm 14
el ) h 3 h2 Pe—p (5 1 )
is bigger than oy. However, when p < P, /2,
R 3P,R? p,
av -"(Pm—P)";+ 2 hp.—p (5.15)

is bigger than og. It is also easy to show that both points H and V are points of local
maxima. This is because if we deviate from either point by a small amount, both the
tensile force and the bending moment become smaller. Given an equatorial Lorentz
pressure Py, the yield helium pressure can now be solved directly from Eqs. (5.14)
and (5.15) by equating either oy or ov to the yield stress in tension or compression
Oyp- When the helium pressure is zero, from Eq. (5.15), we recover the yield Lorentz
pressure

(P )yp = R—(‘% (5.16)

»\ Tt

that will break the point V as given by Eq. (4.11). On the other hand, if the Lorentz
pressure is absent, P, = 0, the tube can yield at any point since the problem be-
comes cylindrically symmetric again. Taking Eq. (5.14), we find that the yield helium
pressure p,, satisfies the quadratic equation

P\’ ho P ho
(pip) —(R—;’i+1)—£+——£=0, (5.17)

14



giving the solution
hay,

Pw=pe OF —p- (5.18)
depending on which is smaller. The first solution is the critical buckling pressure while
the second solution is the pressure required to produce a tensile stress that exceeds
the yield stress. This second solution will arrive first when

4c0,, R?
E' h?

which is the situation of a small yield stress o,, or a thick tube wall.
In addition to the shearing force due to the Lorentz pressure, there is also a
shearing force due to helium pressure. This shearing force is largest at points A, B,

C, and D in Fig. 5a where the angles of deformation are largest. The tangent of these
angles is given by

<1, (5.19)

du PATIN
Rip - R’ (5-20)
where
R P,
Uy, = — 5.21
4 Pc—P ( )

is the maximum deformation obtained from solution (5.10). Since un,/R < 1, the
maximum helium shear stress is therefore

pRL2u,,  2upp
~ = .22

which is of opposite sign with respect to the Lorentz shear stress Sy, given by Eq. (4.12).
In order to avoid elastic shear failure, we must have

P.R_PuR_p
2h 2h p.—p

< Typ » (5.23)

We are going to show that this shear failure limit is always less stringent than the
tensile failure limit. For convenience, let us write everything in terms of the critical
buckling pressure p,:
P, P Typ Typ .
P, — , - =, Typ — — Oyp — — (5.24)
e p P vp e yp Pe
and also m — R/h. Then from Eq. (5.23), the elastic shear yield-point Lorentz
pressure for any helium pressure p is

1—p 27,
P — —JE 52
( m|5h)y?’ ’1 zpl ( 5)

15



The vanishing of the denominator |1 — 2p| occurs when the Lorentz shear just balances
the helium shear. Since |1 — 2p| < 1, Eq. (5.25) implies

(Palip > (1= p) 22 . (5.26)

On the other hand, the elastic tensile yield-point Lorentz pressure is

20y _ 3].1) (5.27)

3m?2 3m

(Prlinlr < (1 =)

where use has been made of Egs. (5.14) and (5.15). Comparing Eqgs. (5.26) and (5.27),
it is clear that

(Pm|sh)yp > (Pm|ten)yp

for any helium pressure p provided that

Tvp in

op 3m 3R’ (5.28)

which is always true.

The SSC beam tube will be made of Nitronic 40 that has a yield stress in tension
of o, = 175 £ 35 kpsi at 20 K, or of stainless steel with a corresponding yield stress
of oy, = 1154 25 kpsi. The limiting helium and Lorentz pressures are computed from
Eq. (5.14) for p > P,./2 and Eq. (5.15) for p < P,,/2 by setting the maximum stress
og or oy equal to o,,. The results are plotted in Figs. 6 and 7 with the range of
uncertainty indicated by dotted curves. In each figure, the line p = P,,/2 is shown as
dashed line, above which the yield will be at point H and below which the yield will
be at point V. As a safety factor, the working yield stress is usually taken as about
one half of the actual one. The limiting pressures corresponding to the working yield
stress for each metal have also been included in the figures.

These limiting curves are very sensitive to the ratio m of the tube radius R to
the tube thickness k. The critical buckling pressure p, varies as = while the yield
Lorentz pressure is roughly proportional to m™2 as depicted in Eqgs. (5.9) and (5.16)
respectively. If, for example, the tube radius is increased by a factor of two or the
tube thickness is decreased by a factor of two so that m is doubled, the oy, = 175 kpsi
limiting curve in Fig. 6 becomes very much more restrictive. It starts off from helium
pressure p = p, ~ 15 atm, a factor of 8 smaller and ends at Lorentz pressure P, ~
50 psi, a factor of 4 smaller.

In order to obtain yield pressures greater than those shown in Figs. 6 and 7, we
increase the tube thickness from 1 mm to 1.5 mm. The new results for the two types
of metal are shown in Figs. 8 and 9. In Fig. 9, we see that when the yield stress
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in tension is oy, = 57.5 kpsi or o, = 45.0 kpsi, the stability curves do not fall off
from the critical buckling pressure p. = 408.5 atm, but rather they fall off from their
respective o,,h/ R values because the condition (5.19) has been met.

The time after a quench when the Lorentz pressure is maximum has been cal-
culated by Meuser.® For a copper layer of thickness in the range from 2 to 6 mils,
the maximum occurs roughly when the dipole flux density B is about 5 T, the rate
of change of flux density B is about —23 T/sec, and the beam tube temperature is
about 20 K. Taking a conservative copper conductivity of oy = 6.5 x 10° (Q-m)™, a
copper layer of ¢; = 2 mil, and a beam tube radius of 1.66 cm leads to an equatorial
Lorentz pressure P,, of about 91 psi. According to Fig. 6 for a tube thickness of
1 mm, the helium pressure cannot be bigger than about 60 atm to be on the safe side.
However, if the copper layer has a thickness of 4 mils, P,, becomes about 182 psi and
the allowable helium pressure is less than 10 atm.

VI. BEAM-TUBE TORQUE LIMITATIONS

If the copper layer on the inner surface of the bore tube of the SSC dipoles is not
uniform in thickness, the Lorentz forces due to the currents induced in the copper
by the collapsing magnetic field during a quench of the magnet can produce a torque
tending to twist the tube about its axis.* If, for example, the copper thickness varies
with the polar angle ¢ as,

t(p) = t1(1 + esin2¢p) , (6.1)

from Fig. 1a and Eq. (4.2), the torque for a length £ of the tube is
T = 4]5 dp P, R*esin 2psinp cosp , (6.2)
0

where P, is the Lorentz pressure at the equator. Then the Lorentz torque per unit

length per radius squared is
T 1

ﬁ = E TI'(:'P.m . (6.3)

This torque is resisted by the plastic keys attached to the top and bottom of
the bore-tube correction-winding assembly (Fig. 10). These keys fit into slots at
the centers of the poles of the magnetic collars. The keys are 3 in. in length and
occur every 18 in down the length of the bore tube. In cross section, the keys are
0.131-0.132 in. in width where they fit into the 0.132-0.134 in. slots in the collars
and 0.200 in. in width at the base where they are glued to the Kapton outer layers

of the correction-winding assembly. The keys are located relative to the bore tube
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by 0.080 in. diameter plastic pins that are attached to the bore tube and fit into
corresponding holes in the keys. The bore-tube winding assembly is glued to the bore
tube and also tightly strapped to the bore tube, so that it can transmit any torque
in the bore tube out to the collar. The weak point in this chain is the plastic key.

A reaction force F' will be acting on the key by the collar at a distance d above
the copper layer on the bore tube. Then this force is given by

r=2F(R+d), (6.4)

where d is the height of the key from the base up to the point where F is acting
(~ 3 mm) plus the thickness of the wrapping (~ 1 mm).

Suppose that the elastic limit is met at a cross section of the key at a distance d’'
from the point where F' acts. If the shear yield point 7,, is exceeded, we have

F
ab v (6.5)

If the tensile yield point oy, is exceeded, according to Eq. (2.20) we have

6Fd
2 = Tw (6.6)

where a and b are the width and length of the key at the cross section where the
failure occurs.
The ratio of the yield shear force Fy, to the yield tensile force Fi.y is

Fa _ 64"y

-Ften a Typ

(6.7)

If the failure is at the base, a = 0.2 in and &’ = 3 mm. However, if the failure is
midway from the base, a = 0.131 in and d’ = 1.5 mm. Then

3_54_'{'_23 base
F Typ
:h = i (6.8)
- 27042 midway
Typ

Since 7,,/0y, varies between 0.5 to 0.7, we can conclude that the failure in a cross
section is more likely due to tensile stress than to shear stress.

We will estimate the limiting torque on the bore tube when elastic failure occurs
in three ways:

18



1. Experimental limit

Skaritka® has measured, at room temperature, the torque 7; at which the plastic
keys deform, the result being about 40 to 50 ft-lbs. The corresponding bore-tube
vield torque per unit length per radius squared is

é = e% = 62.3 to 77.9 psi , (6.9)
where £ has been taken as 18 in., the distance between the keys down the length of
the bore tube. Skaritka estimates that these materials are two to three times stronger

at cryogenic temperatures and plans to repeat the experiment at helium temperature.

2. Shear failure

Skaritka attributes a cryogenic shear strength 7., to the key material in the range
of 3000 to 4000 psi from measurements by Naseem Munshi® for the LBL magnet
group. We apply such a shearing stress to a cross section of the key at midway where
the area a x b = 0.131 in x 3 in is smallest and is therefore weakest. Using Eqs. (6.4)
and (6.5), the corresponding yield torque per unit length per radius squared is

T 2ab(R +d)
¢RZ LR?

Typ = 246 to 328 psi . (6.10)

3. Tension failure

Assuming a shear yield strength to a tensile yield strength of about 0.7, we can
estimate the tensile yield strength of the key material o,, to be in the range of 4290
to 5710 psi. If the failure is at the base of the key, @ = 0.2 in. and d = 3 mm.
Then, applying Eqs. (6.4) and (6.6), the corresponding yield torque per unit length
per radius squared is

T a’b(R +d)
¢R: 3R
If the failure is at the midplane, a = 0.131 in. and d' = 1.5 mm. Then we have

oy = 150 to 204 psi . (6.11)

Z}T%"i =129 to 175 psi . (6.12)

From the above three estimates, we learn that the key will meet with a tensile
elastic failure before a shear failure, as we mentioned above. Also the tensile failure
will occur at the midplane rather than the base of the key. The results of the ex-
periment in the first estimate do not disagree with the results’in the third estimate

because the material of the key is expected to be stronger at cryogenic temperatures.
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If as a safety factor, the working yield stress is again taken as one half the actual
one, then the allowable torque 7/£R? is about 65 psi. If we take the equatorial
Lorentz pressure P, as about 45.5 psi per mil of copper layer thickness, as estimated
in Section V, Eq. (6.3) leads to

te 2 0.89 mil . (6.13)

This implies that for a copper thickness of ¢; = 2 mil, the thickness variation € as
defined in Eq. (6.1) must be less than 45%. If the layer thickness is ¢; = 4 mil, the
variation € must be less than 22%.

The authors would like to thank Dr. R. B. Meuser for useful discussions, mean-
ingful comments, and his checking of some of the formulas.
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APPENDIX A

During a quench of the magnet, the dipole field drops at a rate B and an emf £
will be induced in the copper layer on the beam tube. According to Faraday’s law,
for a length £ at polar angle ¢,

E(p)¢ = BLRsing . (A1)
The eddy current density will be

() = &) , (A:2)

where o7 is the conductivity of copper. Being inside a magnetic flux density B, the
Lorentz force pulling horizontally outward on a strip of copper subtending an angle
dy is

dF(p) = / _IBJ|d

= 01|BB|t;¢R?sinpdp , (A.3)

where #; is the thickness of the copper layer. Since copper has a conductivity of 300
to 3000 times that of Nitronic 40 which the beam tube is made of, we have assumed
that all the eddy current flows in the copper layer. The horizontally outward Lorentz
pressure is therefore _

Pi(p) = 01|BB|t1Rsing , (A.4)

and the maximum occurs at the equator where ¢ = /2 or

P, = 01|BB|tR . (A.5)
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APPENDIX B
1. The Castigliano’s Theorem

The Castigliano’s theorem’ states: If a body is deformed within the elastic limit
due to the action of n independent external forces Fi,. .., F, and satisfies the following
provisions: (1) the material follows Hooke’s law and (2} the conditions are such that
the small displacements, due to strain, do not affect the action of the external forces
and are negligible in calculating the stresses, then the displacements é,...,6, of the
points of application of the forces, each measured in the direction of the corresponding
force are given by

& = ow , (B.1)
OF;
where W(Fy,..., F,) is the energy of strain of the body expressed as a function of
the n external forces. All the dependent external forces are assumed to be doing no
work here.

Before proving the theorem, let us remark first that not all of the external forces
acting on the body are independent. For example, the reaction forces are dependent
and are usually eliminated from the strain energy W because they do not cause any
displacements at the points of action. However, all displacements are relative. Thus
we can always choose whichever forces as independent to suit our purpose.

Second, the provisions (1) and (2) imply that the displacements are linear functions
of the external forces, or .

& =3 KiF;, (B.2)
i=1
where the matrix K is independent of the forces F;. We want to point out that
provision (1) alone does not warrant these linear relations. Problems such as the
bending of bars by lateral forces with simultaneous axial tension or compression do
not satisfy provision (2) and are excluded from this discussion.
. To proceed to the proof, let us first compute the strain energy. Suppose we start
with all external forces equal to zero and increase only F} slowly to its full value. The
strain energy is equal to the work done by Fj, or using Eq. (B.2),

R 1 o
Wl :[) 61dF1’ == §K11F1 . (B3)
Next we hold F; fixed and increase F; slowly to its full value (F3, ..., F}, remain zero),

the additional strain energy is

I3
W = ]0 8,dFs

23



F;
= fo (Ko Fy, + Koz F))dF?

1
= KgleFl + 5 I{Q?Fzz . (B4)

Therefore the strain energy due to Fy and F3 is

1 1
W2 - 5 K11F12 -|— KgleFl + 5’I(22F22 . (B5)

However, we will get exactly the same strain energy if we apply F first and then F).
Obviously this implies that K37 = K3 or the matrix K is symmetric. Then, it is easy
to write the strain energy due to all the n external forces as

W(Fh... . Fa)=3 & K,JFF (B.6)
13—1

Differentiation with respect to F; gives

T

ow
=S KiF; =6 , (B.7)
aR ]g; A}

which is the Castigliano’s theorem.

Instead of external force F; and displacement é;, the Castigliano’s theorem can be
trivially extended to include external couple M; and the angular displacement @; at
the point where the couple acts.

2. Applications

Here we apply the Castigliano’s theorem to the deformation of the beam pipe due
to Lorentz pressure. We will compute the bending moment My at the point V in
Fig. 1b and then the deformations at V and H.

Consider an infinitesimal section ds = Rdp on the beam tube. The angular
displacement dg due to a bending moment M, at this section is

M,Rdy
ET

according to the basic equation for deformation of Eq. (2.3) or (2.18). Here, Rdp/E'I
is just the corresponding K of Eq. (B.1). Thus, the strain energy in any section of

the beam tube is given by ,
M; R
W= [ (B.9)

SETP

dp = (B.8)
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where the integration is performed over the section of the tube under consideration.
In above, the contributions of tensile and shear energies have been neglected because
they are a factor (A/R)? smaller, where h is the tube thickness.

To obtain the deformation at V and H, we add two fictitious forces Fy and Fy
at V and H respectively as shown in Fig. 11. The force Fy is split into two halves on
both sides of the point V to preserve the symmetry of the point V. These forces will
be put to zero at the end of the computation.

Consider the section VC. Taking moment about C, the bending moment at C or
at angle ¢ 1s

F Fi+F
M, = M- /“’ %Sin OR(cos § — cos p)df + —Rsing + %R(l — cosp)
0
F, F F
= Mo+ ZtR sin® ¢ + TVR sing + THR(l —cosp) , (B.10)

where M 1s the couple supporting the section at V', the second term on the right side
of the first line is due to the Lorentz force, the third term is the moment due to the
vertical fictitious force at V', and the last term is the moment of the horizontal tensile
force at V supporting the section VC. Note that this expression is exactly the same
as Eq. (4.3) if we set Fy = Fyg = 0.

Now consider the section VH which is supported by the independent distributed
Lorentz force on the arc, Fy /2 and (F; + Fy)/2 at V as well as the couple M, at V.
The strain energy is

M2R
WVH-—-/ QE’I 59 (B.ll)

By symmetry, it is evident that there is no angular displacement at the point V.
Therefore, applying the Castigliano’s theorem,

IWvyy

—0 B.12
oM, ; (B.12)
we get .
/02 M,dp =0, (B.13)
o F.R FyR FyR/. 2
t v H
My=-" - 22 (1—W). (B.14)

which becomes My = F;R/8 in the limit Fy = Fy = 0 as expected in Section IV.
Using Eqgs. (B.10) and (B.14), the bending moment at any point in the beam tube
cant now be written as

F, F
M, = —--Rcos2cp—-—vR (—-—smgo) +-—-R (——cosgo) . (B.15)
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We next consider the tube as a whole, which is supported by the independent
distributed Lorentz forces, Fy at V and Fy at H. The strain energy energy is

W =4 MzR B.16
/ 25T (B.16)
The displacements at V and H are given respectively by
ow KR
by = ——- = B.1
"7 Oy Fo=py=o 2B (B17)
oW FR3
Sy = —— = . B.1
0 OFu|p_p,0  12E1 (B.18)

In the derivation, we have made the assumption that the point opposite to V and
the point opposite to H do not move. Therefore the displacements é and ég are the
total contraction and extension of the diameter of the beam tube. We see that the
results agree with the deformations obtained in Eq. (4.7).

One may raise the question that as we let the fictitious forces go to zero, why
don’t their corresponding displacements éy and éy go to zero also. This apparent
paradox is answered by the fact that the matrix K in Eq. (B.1) is not diagonal. For
example, the displacement &y does not depends only on Fy. 1t also depends on the
helium pressure Fy, as well as the Lorentz force distribution.
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(b)

XBL 883-8395

Fig. 1 {a) The pressure produced by the horizontal Lorentz forces acting on the eddy currents in the

thin copper layer varies sinusoidally with the polar angle ¢, the angle with respect to the
direction of the dipole magnetic field.

(b)) The bending moment M, in the beam tube at ¢ is equal to the sum of the moment My
at V plus the moments due to the tension force 1 F, at V plus the integral moment due
p 7 £ P &
to the Lorentz forces.
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Fig. 2 (a)
(&)

(e)

(d)

[ M

Weight

XBL 883-8392

Uniform massive beam supported at its ends.

Bending moment M, tensile force T, and shearing force S at arbitrary section B of the
beam.

y-z cross section of the beam. The z-direction is along the neutral axis of the beam, and
the y-direction is down, the curvature of the beam puts the top of the beam in compression
and the bottom in tension.

1~z cross section of the beam. The z-direction is the other transverse direction. Because
of the Poisson’s ratio effect, the top width of the beam is increased and the bottom width
decreased.
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_——— B B’

XBL 883-8396

Fig. 3 A differential section ds of the neutral axis AB is deformed to the position A'B’, u being
the displacement.

——
x

_ yield point

(@) (b)

XBL 883-8398

Fig. 4 (a) The vertical force F' acting on a thin rod tends to produce buckling. The lowest mode of
buckling is illustrated.

(6) The maximum displacement & is zero up to critical force F¢ and then increases rapidly up
to the yield point, beyond which the material deforms inelastically.
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(b)

XBL 883-8393

Fig. 5 (a) Because of the horizontal Lorentz forces, the round beam tube (dashed circle) is deformed
into an ellipse-like shape. At the four points A, B, C, D, the radius of curvature is
unchanged and therefore the bending moment vanishes.

(6) Section AA' of the elliptical structure. p is the external pressure due to the helium. F is
the total force at end A due to the helium and is tangential to the circle.
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HELIUM PRESSURE IN ATM

Fig. 6

LIMITING HE AND LORENTZ PRESSURES
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EQUATORIAL LORENTZ PRESSURE IN PSI

The limiting helium and Lorentz pressures corresponding to the expected Nitronic 40
yield-point stress of 175 kpsi at 20°K (upper curves). The dotted curves correspond to

the uncertainty of +35 kpsi in ayp. The lower curves result if a safety factor of two in oyp

is applied. Beam tube radius is 1.66 cm and wall thickness is 1.0 mm.
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HELIUM PRESSURE IN ATM

LIMITING HE

AND LORENTZ PRESSURES
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EQUATORIAL LORENTZ PRESSURE IN PSI

Fig. 7 The limiting helium and Lorentz pressures corresponding to the expected stainless steel

yield-point stress of 115+ 25 kpsi (upper curves). The lower curves result if a safety factor

of two in ayp is applied. Beam tube radius is 1.66 cm and wall thickness is 1.0 mm.
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HELIUM PRESSURE IN ATM

LIMITING HE AND LORENTZ PRESSURES
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EQUATORIAL LORENTZ PRESSURE IN PSI

Fig. 8 The limiting helium and Lorentz pressures if the thickness of the Nitronic 40 beam tube

(Fig. 6) is increased to 1.5 mm.
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LIMITING HE AND LORENTZ PRESSURES
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Fig. 9 The limiting helium and Lorentz pressures if the thickness of the stainless steel beam tube
(Fig. 7) is increased to 1.5 mm. Note for the cases oyp = 57.5 and 45 kpsi that the helium
pressures at zero Lorentz pressure occur at oyph/R rather than at the critical pressure,
corresponding to the condition of Eq. (5.19).
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Copper thickness
o) =t (1 + € sin 2¢)

b=3in

0.131 in midplane
0.2 in base

1.5 mm midpiane
3 mm base

XBL 883-8397

Fig. 10 Geometry of the plastic key that fixes the angular position of the beam tube with respect to
the magnet collars and resists the Lorentz torque that could be produced by non-uniform

copper thickness.
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(b)

Fig. 11 (a)

(8

XBL 883-8394

Geometry of the beam tube acted on by the horizontal Lorentz forces and an arbitrary
vertical force Fiy at V' and an arbitrary horizontal force Fy at H. Same as Fig. 1 except

for Fyy and Fyg.

Force and moment diagram for beam-tube section VC.
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