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ABSTRACT

An operational simulation has been performed to predict the performance

of multipole correctors for compensation of linear, quadratic, and cubic momen

tum dependencies, due to systematic field errors, of the SSC lattice. An itera

tive scheme, using beams varying over successively larger momentum ranges, is

found to be satisfactory. Both distributed bore-tube compensation elements as

described in the Conceptual Design Report and "Simpson's rule" lumped correc

tors (also known as the "Neuffer" scheme) have been successfully employed. To

get started a coasting beam with rms energy spread of 10-5 , roughly a factor

of five smaller than has been achieved in the Tevatron, seems to be required.

Realistic assumptions are made about closed orbit errors, about errors in other

parameters, and about the precision with which tunes can be measured.



1. Introduction.

The sse will exhibit strong momentum dependence due to systematic field

errors - more so than is true of existing accelerators because of the large radius of

the sse and the small bore size of its magnets. In the Conceptual Design Report

(CDR), bore-tube compensation coils have been included for the compensation of

this chromatic behaviour. (We will use the word "chromaticity" in a general sense

of any functional dependence on momentum as well as in the narrow technical

sense of rate of change of tune with respect to momentum.) In this report we

describe an operational simulation of the performance to be expected in the use

of these coils for chromaticity control. Similar analysis is performed using one of

the possible lumped compensation coil schemes.

Even with purely linear elements the accelerator will exhibit chromatic de

pendence but this will be less important than that due to nonlinear dipole field

multipoles. Of these the most important is the b2 (sextupole) field which is due

to persistent supercondueting currents. According to CDR plans, there will be

coils to compensate for this and coils will also be present for the b3 (oetupole)

and b4 (decapole) multipoles, which would also lead to unacceptably large tune

shifts if left uncompensated. [1] The accelerator theory by which these correctors

can be set to achieve the required compensation is well understood and has been

described in various reports. [2] [3] [4] [5]

Implicit to these calculations is the assumption that the field defects are

known from previous measurements. It has been assumed [6] that the dominant

b2 effect can be reduced by roughly a factor of ten by "dead reckoning" based

on magnet test facility measurements alone, but that the necessary further im

provement of about a factor of one hundred will be based on measurements using

the beam itself. In this report we investigate the feasibility of this compensation

using an operational simulation technique.

Issues to be studied include the beam quality required (especially when get

ting started), the anticipated precision of tune measurement, a prescription for
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setting correctors (based on measurement), and finally, after doing as well as

possible, determination of whether the available correctors and prescriptions are

capable of producing the specified performance. The "operational simulation

strategy" for studying these questions is to model each aspect which can poten

tially degrade performance as realistically as practicable and to see how they all

"play together". This can be regarded as complimentary to possibly more inci

sive, but more specialized, analytic investigations, in that it can be expected to

treat correctly the all-too-common instances of harmful conspiracy between two

or more bad effects. Equally important goals are to help in planning operational

procedures and to establish instrumental specifications.

In earlier studies of the effects of field errors it has always been found that

orbit distortion as quantified by the variable called "smear" is dominated by

random magnet errors while tune shifts are dominated by systematic magnet

errors. This report is intended to study tune shifts and we neglect random magnet

errors. An example of the above-mentioned possibility of harmful conspiracy is

that random orbit displacements taken with systematic magnet errors can cause

appreciable smear. We defer investigation of this affect to a later report and

concentrate entirely on tune shifts.

Emphasis will be on use of the bore-tube correctors but performance of a

lumped corrector scheme will also be analysed. For lumped schemes, since the

ultimate performance is almost surely inferior to a continuous scheme, determi

nation of whether the required performance specifications can be met is especially

important.
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2. Assumed Errors and Available Correctors.

In an ideal simulation every lattice parameter in a fully realistic lattice would

be randomly assigned consistent with its specified tolerance. This is clearly too

ambitious and we have restricted the analysis in various ways while attempting

to retain, and treat faithfully, the most critical features. We have restricted the

analysis to single particle motion, ignoring effects like emittance dilution and

loss of particles from the tails of the particle distributions. Another important

restriction has been to deal only with a lattice having no intersection regions.

This is not because we feel there are no important problems in connection with

intersection regions but rather that they are being deferred until later.

The "arcs-only" lattice which we have analysed is made up of 320 cells, each

essentially identical in all parameters to a regular-arc cell of the sse. The tunes

were fixed at

Qx = 81.285

o, = 82.265
(2.1)

These correspond to phase advances per cell of 92.5490 and 91.4460 respectively.

The integer tunes are separated by one unit in order to reduce sensitivity to

systematic coupling effects, [7] but in the present analysis no systematic coupling

errors have been included. The fractional tunes are thought to be favorable

for colliding beam operation, based on SPFS experience. [8] There are almost

certainly choices for the fractional tunes which would have simplified some of the

manipulations to be described below. Furthermore, in actual operations, it could

be sensible to make such tune choices as part of preliminary tune-up. However,

we haye chosen not to pursue such a strategy.

A discussion follows of the errors that have been incorporated in the sim

ulation (not necessarily all simultaneously). According to the eDR the most

important nonlinear systematic dipole field errors, being due to persistent cur-
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rents, are, at injection (9]

b2 = - 4.7 units

b4 = 0.30 units

b6 = - 0.07 units

(2.2)

where, according to convention, "units" stands for parts per 104 fractional error

at a radius of 1 cm. The values entered into the TEAPOT input file are derived

from these.

In TEAPOT all elements are replaced by thin elements. It has been shown[5]

that replacement of the actual 16 m long sse dipoles by two thin half-lengths

dipoles (call them dip1 and dip2) causes tune shifts less than ±0.0002j this was

judged to be adequate. The starting nonlinear systematic multipoles used for

these magnets were

dipl, ~ = 4.2, ba = 0.6, b4 = 0.6

dip2, b2 = -5.2, ba = 0.0, b4 = 0.0
(2.3)

The differences between (2.3) and (2.2) will now be discussed. In the CDR the b2

bore-tube correction coil extends half the length of the dipole and it was assumed

its settings could be "dead-reckoned" from factory magnet measurements to an

accuracy of ±10%. Suppose a "worst-case" field of -5.2 units in both dip1

and dip2 is corrected, as regards field integral, entirely in dipl, but under the

erroneous assumption that the field error is -4.7 units. The b2 values in (2.3)

result and the b4 errors are the result of a similar argument starting from (2.2).

Though there is no systematic b3 term coming from persistent currents it was

judged [10] that the systematic errors in ba and b4 could be comparable, and that

was the basis for the ba values in (2.3).

The multipole b6 has been treated differently. An estimate of the importance

of this multipole, for the value given in (2.2) and using formulas given below,

suggests that it should be negligible for all amplitudes of interest. No correction
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elements for this multipole were assumed to be present and in most cases the

field error was not included. It was confirmed to be negligible in the few cases

for which it was explicitly included.

It has been suggested, especially by Neuffer, [3] that systematic compensation

be performed using lumped multipole correctors at the regular F and D locations

in the spool pieces situated next to the quadrupoles, as well as one extra lumped

corrector at C at the center of each half-cell. The layout is indicated in the sketch

at the bottom of Table 2, and the multipole strengths are indicated there. For

the present investigation the same systematic errors (2.2) were assumed, with

the actual values known only to within 10%. The strengths of D, F, and C

multipoles were constrained to be in the ratios 2 : 2 : 4 as indicated in Table 2,

except that specially tuned oetupoles [5] , known to give excellent tune constancy,

were used.

It can be feared that the presence of closed orbit errors will hinder the empir

ical chromaticity compensation. Closed orbit compensation has been described

elsewhere, [11] and those methods have been repeated here. Results will be given

with and without orbit errors. The rms bend errors used were aaO = 5.9 units,

and abO = 8.5 units, though these were multiplied by y'2 to compensate for the

fact that each dipole is split in half with random errors being assigned inde

pendently to each half. Roll errors of 0.6 mr, similarly increased by V2, were

assumed. Quadrupole locations were assigned rms uncertainties of 0.5 mm, both

horizontally and vertically, and, within the quads, rms location uncertainties of

0.1 mm were used. The combined effect of the various errors causing closed orbit

shifts was that the rms orbit deviations both horizontally and vertically were 0.6

mm, after correction. As mentioned above, no coupling errors were included.
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3. Analytic Estimates and Numerical
Calculation of Chromatic Coefficients.

In this section estimates of various effects will be given in order to assess their

relative importance and we give the results of numerical calculations of the tune

dependence resulting from particular multipoles.

(i) Dependence afTune on Momentum. Consider N (numerically 12x320 =

3840) dipoles magnets each bending the beam through an angle 211" / N. The bend

error in a single dipole due to in,ba, and b4 is

(3.1)

where, at the dipole, the transverse displacement (assumed for simplicity to be

purely horizontal) has a betatron part x and an "energy" part fJb where fJ is the

dispersion and h is the fractional momentum offset. We are mainly interested in

the dependence on h of the small amplitude tune. For that we need only retain

the part of (3.1) which is linear in z , (Strictly the transverse displacement from

the off-momentum fixed point should be used hut we ignore the distinction.)

According to the "Golden Rule" the location dependence brings in one power

of the lattice function f3 and yields tune shift estimates for the two transverse

planes given by

where the summation has been expressed in terms of averages < f3r, > etc.,

which will be similar, but not identical for the horizontal and vertical planes.

For purposes of estimation we take

< (3fJ >~ < fJ >< 1J >

=1.85 X 104cm X 2.07 X 102crn

=3.8 X 106cm2
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Substituting this into (3.2), with bz = 0.5 x 1O-4cm - 2 and 8 = 0.001, the leading

term yields a tune shift of 0.19. This is far greater than the specified maximum

tune shift of ±O.005, bearing out the earlier assertion that a large residual chro

maticity will remain to be corrected empirically after the main effect has been

removed using magnetic field measurements.

We will call the coefficients of 6,62 etc. chromaticity coefficients. The

quadratic and cubic coefficients could be estimated as the linear coefficient was in

the previous paragraph, but to obtain any kind of precision in such calculations

the averages of the lattice functions would have to be evaluated more accurately

than has been done. This would include using a momentum-dependent 7J func

tion. Refinements such as this would not however be justified, since in the pres

ence of closed orbit errors feed-down from higher multipoles would also destroy

the simple proportionality of the linear, quadratic, and cubic coefficients to bz, b3

and b4 respectively. The actual dependencies are calculated using TEAPOT.

Thorough comparisons between TEAPOT tune calculations and analytic tune

calculations of Neuffer have given excellent agreement for simple lattices. [5J Fig.

1 shows the momentum dependence of the pure lattice (with the linear chromatic

ities corrected to zero). Figures 2, 3, and 4 show the momentum dependencies

that result for the values of ~,b3 and b4 given in (2.3) but with only one turned

on at a time, for the otherwise pure lattice having no closed orbit errors. Poly

nomial fits are given. That the chromatic coefficients in the two planes are not

quite equal in magnitude (but opposite in sign) is because the averages enter

differently for the two planes in (3.2). The linear coefficients agree to within

ten percent with the estimate given just below (3.3). It can be seen, consistent

with (3.2), that b: mainly causes a linear dependence on 6, b3 mainly a quadratic

dependence and so on.
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(3.4)

(ii) Incremental Orbit Error Due to b2 in the Presence of Other Orbit

Errors. It is found that chromaticity compensation in the presence of orbit

errors is more difficult than in their absence and one can look for the leading

cause. One possibility is that the steering effect of the multipole correctors yields

undesirable orbit shifts as the correctors are adjusted. Here we estimate, for b2,

the magnitude of the effect and find it to be negligible.

The displacement at point d in the lattice due to bend error 6.8i at point i
• [13]
IS

_ cos(p/2 - ¢Jdi). ~6.(r
Xd - 2' /2 V PiPd 1sm zz

where ¢Jdi is the phase advance from d to i. Suppose that 6.8i is due to a closed

orbit error Xi at the position of a dipole which bends through 27r/N, where N

was defined above. That is

6.8i = (271' / N)b2Xr

Summing over locations i we get

(3.5)

(3.6)

In the summation f3i and the cosine term are not stochastic while x; IS. On

dimensional grounds the sum will come out

(3.7)

where qeo is the rms orbit shift and Ci is a numerical factor of order one. Com

bining equations we get the estimate

< Xd > 71' b2 < f3 > (JeD
--- '" ----=-

qeo - sinp/2VN
(3.8)

Numerical substitution using values introduced above gives the result that the

incremental orbit shift from a one unit change in b2 is about one percent of the

preexisting orbit shift. This is presumeably negligible.
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(iii) Effect of Closed Orbit Shift on Chromaticity Coefficients. In the

presence of closed orbit error Xi at location i, the factors (x + 1]5) in (3.1) must

be replaced by (x - Xi + 7]5). Then the result of keeping only terms linear in x

and linear in 5 is

(3.9)

The second term tends to average to zero but the third term does not. Its

contribution to the linear chromaticity differs from that due to b: by the factor

6(b4/b2)0";o which can be several percent. Corrections to the other chromatic

coefficients can be estimated similarly.

4. Algorithms for Iterating Measurement and Adjustment.

Two algorithms have been used for setting the multipole correction elements.

Both methods assume that a "pencil" circulating beam is available initially hav

ing an rms fractional momentum spread of 0.00001. This is a factor of five

smaller than energy spreads achieved in the Tevatron. [12] We do not regard this

as too serious both because the compensation procedure would probably work

adequately (though less quickly) with a larger spread and because the small

spread can undoubtedly be achieved by scraping (at the cost of intensity.) The

RF frequency stability needed to maintain this energy accuracy does not appear

to be difficult. According to reference[12] pulse-to-pulse injection jitter as great

as 0.0001 can be expected but that will not adversely affect these procedures,

since they use circulating beam. Fractional momentum measurement errors are

assumed to be negligible. [13] Tune determinations have been assigned an error

of ±O.OOOI consistent with recent experience on the Tevatron during the beam

dynamics experiment E778. When this was increased to ±O.OOl in a few cases it

impaired the rate of convergence of the adjustment procedure but did not prevent

its successful completion.
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In each stage of iteration both the horizontal and vertical tunes are measured

at five momenta, ±2L\.o, ±L\.o, and 0.0, making a full range of 4L\.6. In successive

stages the range is increased, always consistent with restricting the maximum

tune shifts to be less than about ±O.005. In practice the successive measurement

ranges used were ±O.000025, ±O.00005, ±O.OOOl, ±O.00025, ±O.00035, ±O.0005,

and ±O.OOI.

Success can only be claimed when this condition is met with 2L\.o = 0.001,

for particles with maximum betatron amplitudes as great as 5 mm, since then

the eDR specified maximum tune shift tolerance will have been met.

Tunes which would be measured in real operation are calculated in the sim

ulation. Each linear transfer matrix is obtained in TEAPOT by tracking several

particles in the near vicinity of each of the off-momentum fixed points. The

tunes are obtained from the traces of these matrices. It has often in the past

been demonstrated that tracking for many turns (say 256), followed by Fourier

analysis, followed by parabolic interpolation, yields accurately (~ ±O.0002) the

same tunes. In real operation that would be the procedure employed.

Calculations have been performed on the SUN 3/140 workstation. The lat

tice is so large that the calculations are very slow-s-calculation of the tunes for

five momentum cases takes 10 minutes. This may be all-too-realistic as the

corresponding measurements on the sse may be very time consuming. It was

however demonstrated during the E778 Tevatron experiment that a single chro

maticity determination could be performed in as little as five seconds. Based on

this, and assuming that the frequency of the accelerator RF can be programmed

non-destructively to the coasting beam of the sse, the entire chromaticity com

pensation procedure could take as little as a few minutes.

(i) Iterative Polynomial Fitting Procedure. This is a straightforward pro

cedure which has converged satisfactorily both with and without closed orbit

errors. Though not exactly true, it is assumed that b2 gives a pure linear cor

rection, b3 a pure quadratic correction, and b4 a pure cubic correction, and that
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the coefficients of these correctors are the same with and without closed orbit

errors. These coefficients are obtained from the data of Figures 2, 3, and 4. At

a given stage of iteration, five measurements both in the horizontal and in the

vertical planes are obtained and fit by polynomials. The shifts of b2, b3 , and b4

needed to cancel these polynomials term-by-term are calculated and the average

of the horizontal and vertical values is used for each multipole. In practice, for

fractional momentum less than ±O.OOOl, only the b2 correctors were required or

used. Two different error seeds were studied with each giving satisfactory conver

gence. With no closed-orbit errors a single iteration was sufficient for each of the

momentum ranges listed above, but in the presence of orbit errors two iterations

were sometimes required before proceeding to the next, wider, momentum range.

(ii) Least Squares Procedure. This is a scheme which, in principle, should

converge in several iterations. However it may not be more efficient as it requires

accurate determination of each of the chromaticity coefficients for each of the

multipole coefficients and, as noted above, these depend on the particular closed

orbit errors. For the lattice with no closed orbit errors this scheme converged

after five iterations. For a lattice with closed orbit errors, but using the ideal

orbit chromaticity coefficients, it did not converge. This method does not natu

rally take much advantage of the initial use of a beam of very small momentum

spread. The formulation of this method will be given both for reference and be

cause minimisation procedures may be be required when the more complicated

chromatic behavior due to intersection regions is included, or if the simple aver

aging of horizontal and vertical corrections proves inadequate, or for analysing

not-quite-systematic behavior.

The problem is to obtain the best settings for the b2, b3 , and b4 correctors

based on the ten "detected" tune offsets, b.Q~O)(d) and .6.Q~O)(d), d = 1,2, ... ,5

at the five momenta noted above. The solution is set up superficially as a linear

least squares method, but in such a way that iteration is natural, which makes

it effectively a nonlinear method. This also makes it natural to start with fitting

functions calculated for the ideal lattice but then to improve them based on
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calculations or observations made with errors present.

The notation to be employed is that the subscript d (for detector) runs over

the five momentum values and the subscript a (for adjustor) runs over the three

multipole indices, 2, 3, and 4. All summations which appear are over these

ranges.

The offsets .6.Q~~1(d) are due to unknown errors but they are assumed to have

been measured. Initially they are measured with the ba set to zero, but in later

iterations they will be obtained with preliminary values ba present which will be

modified to ba + t:.ba as the result of the iteration. Formulas for the x tune offset

including the effects of the offsets t:.ba are

a

d= 1,2, ... ,5 (4.1 )

where, for each adjustor, q1a)(d) has previously been obtained from data like

that in Figures 2, 3, and. 4, as the tune offset at the values Cd due to unit

strength change in corrector a. These quantities depend implicitly on all the

lattice parameters including errors. Initially they are calculated for the ideal

lattice but, as noted above, it may be necessary to improve them operationally

in the presence of actual errors. An expression like (4.1) can also be written for

t:.Qy(d).

The function to be minimized is the "badness" function

B(t:. b2 , t:.b3 , t:.b4) = B(t:.ba )

= L[~Q;(d) + .6Q;(d)]
d

(4.2)

The best settings for the 6.ba will be those that minimize B(6.ba ) ; they are

obtained by solving the equations

DB
&.6.ba = 0 a = 2,3,4 (4.3)

Substituting from (4.1) into (4.2) and (4.3), we get three equations which can be
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written in matrix form as

MB=V

with solution

where B = (~b2, ~b3, ~b4f is a vector of the unknowns,

v = (Va) = - I)~Q~o\d)q~a)(d) + ~Q~O)(d)q1a)(d)]
d

is the vector of inhomogeneous terms and

M = (Mab) = L)q~a)(d)q1b)(d) + qta) (d)q1b
) (d)]

d

is the coefficient matrix.

(4.4)

(4.5)

(4.6)

(4.7)

After the replacement of ba by ba+~ba new tune offsets can be measured and

the process repeated. As described earlier the momentum range must be greatly

restricted initially. When the range is expanded, if the fitting functions q1a
) (d)

and q~a)(d) can or must be recomputed (or remeasured) it could be done, but at

the cost, roughly, of quadrupling the time per iteration. That has not been done.

5. Results.

A selection of initial, intermediate, and final tune dependence curves are

shown in the following figures. For Figures 5 through 11 bore tube compensation

coils were used. Fig. 5 shows the tune dependence with no closed orbit errors

but with the full, uncompensated, systematic errors given in (2.3). Fig. 6 is the

same thing except that the linear chromaticity is taken out using the chromaticity

sextupoles. Figures 7 and 8 show the result of applying the least squares fitting

procedure to these data without any concern for the operational practicality of

running the accelerator with such gigantic tune shifts.
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The next figures illustrate compensation in the presence of all errors which

have been mentioned, using the polynomial fitting procedure. Fig. 9 shows a

starting situation, Fig. 10 shows an intermediate situation, and Fig. 11 shows

the final results for two different seeds. In both cases the final behavior is fully

satisfactory.

The final result of compensation using "Simpson's Rule" compensation as

recommended by Neuffer[3] is shown in Figure 12 for two different seeds. In

this scheme there is one lumped correction element at the center of each half

cell, constrained to be twice as strong as the lumped corrector at the regular

spool-piece location.

Tune variation, both horizontal and vertical, for the distributed coils is given

in Table 1 for two different sets of random numbers. Tune shifts away from the

small amplitude values are given (in units of 0.001) for points defining the ex

tremes of momentum and betatron variation according to the CDR specifications.

In these units, variation by less than ±5 is defined as meeting the specification.

The format of this table is further explained in reference(4] . Table 2 shows simi

lar results for the lumped scheme. Though noticeably inferior to the distributed

results the CD R specifications are easily met.

We would like to acknowledge the help of our TEAPOT collaborators Ruth

Hinkins, Vern Paxson and Tjet Sun.
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errors, no orbit errors, linear chromaticity
adjusted to zero.

Figure 80 Same as Fig. 6 but with cor
rectors set by least squares method.
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Figure 11. Tune dependences, full orbit errors,
final situation after polynomial fitting method,
two different seeds.
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Rule" or "Neuffer" lumped compensation scheme.
two different seeds.
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Table 1.

TUNE DEPENDENCE AFTER OPERATIONAL COMPENSATION OF SYSTEMATIC DIPOLE ERRORS

Y

Method: DISTRIBUTED (BORE TUBE) COILS

Random seed:

0.4

0.4

0.2
0.4

0.1
0.5

1

0.4
0.1

0.4
0.1

2

0.1

0.1

Smm

-0.001 x
a 5mm

1.0 0-1
0.4 0.1

0.4 0.6 E;Q
x

0.0 0.1 0

0.3 0.2 /00
0.1 0.6

0.0 0.8 0.2 0.6
0.1 0.6 0.2 0.4

0.5 0.5 0·4 0·4 iJQ
y

0.4 0.6 0·3 0·6 0/

0.4 0.4 0·4
00

0·4
0.3 0.4 0·3 0·3

* : b2 coil + superimposed b3 and b4 coil Dipole
Error

bz
Zn 4.2 xlO-4

see iext x x_ 5. Z320 X12

2n 0.6 XI0-4
b

3 320x12 0.0

Zn 0.6 xI0-4
b

4
x x 0.03Z0x12
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Table 2.

TUNE DEPENDENCE AFTER OPERATIONAL COMPENSATION OF SYSTEMATIC DIPOLE ERRORS

y

Method: LUMPED (SIMPSON'S RULE ~ NEUFFER) COILS

Random seed: 1 2

smm6::0.001 0

-O.OO~ x
o Smm

1.9

0.4

0.4
1.3

0.1
0.6

0.2
0.2

0.3
0.3

0.5

0.6

0·5 0.5
0.6 1.1

3.1 2.5
ClQx

0.4 1.3
0/

0.3 0.2 00
0.0 1.3

0.5 0.0 0.6 0.1
0.4 0.8 0.8 1.1

0.4 0.8 1.6 1.0 ClQ
y

0.4 0.0 0.5 0.0 oJ
0.4 0.6 1.1 000.7

0.2 0.6 0.4 1.0

Dipole
Error

2IT -4
b

2 2 4 2 4 x
320x12

x -4.7 x l O

-4b
3 -0.0122 0.0156 -0.0122 0.0156 O.3xI0

4
2'TT x 0.3 XlO-4

b
4 2 4 2 x

32Qx12
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