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ABSTRACT

An operational simulation has been performed to predict the performance
of multipole correctors for compensation of linear, quadratic, and cubic momen-
tum dependencies, due to systematic field errors, of the SSC lattice. An itera-
tive scheme, using beams varying over successively larger momentum ranges, is
found to be satisfactory. Both distributed bore-tube compensation elements as
described in the Conceptual Design Report and “Simpson’s rule” lumped correc-
tors (also known as the “Neuffer” scheme) have been successfully employed. To
get started a coasting beam with rms energy spread of 1075, roughly a factor
of five smaller than has been achieved in the Tevatron, seems to be required.
Realistic assumptions are made about closed orbit errors, about errors in other

parameters, and about the precision with which tunes can be measured.



1. Introduction.

The SSC will exhibit strong momentum dependence due to systematic field
errors — more so than is true of existing accelerators because of the large radius of
the SSC and the small bore size of its magnets. In the Conceptual Design Report
(CDR), bore-tube compensation coils have been included for the compensation of
this chromatic behaviour. (We will use the word “chromaticity” in a general sense
of any functional dependence on momentum as well as in the narrow technical
sense of rate of change of tune with respect to momentum.) In this report we
describe an operational simulation of the performance to be expected in the use
of these coils for chromaticity control. Similar analysis is performed using one of

the possible lumped compensation coil schemes.

Even with purely linear elements the accelerator will exhibit chromatic de-
pendence but this will ‘be less important than that due to nonlinear dipole field
multipoles. Of these the most important is the by (sextupole) field which is due
to persistent superconducting currents. According to CDR. plans, there will be
coils to compensate for this and coils will also be present for the b3 (octupole)
and by (decapole) multipoles, which would also lead to unacceptably large tune

]

shifts if left uncompensrcn:ed.{1 The accelerator theory by which these correctors

can be set to achieve the required compensation is well understood and has been

(2] (3] [4] [5]

described in various reports.

Implicit to these calculations is the assumption that the fleld defects are
known from previous measurements. It has been assumed!® that the dominant
by effect can be reduced by roughly a factor of ten by “dead reckoning” based
on magnet test facility measurements alone, but that the necessary further im-
provement of about a factor of one hundred will be based on measurements using
the beam itself. In this report we investigate the feasibility of this compensation

using an operational simulation technique.

Issues to be studied include the beam quality required (especially when get-

ting started), the anticipated precision of tune measurement, a prescription for

2



setting correctors (based on measurement), and finally, after doing as well as
possible, determination of whether the available correctors and prescriptions are
capable of producing the specified performance. The “operational simulation
strategy” for studying these questions is to model each aspect which can poten-
tially degrade performance as realistically as practicable and to see how they all
“play together”. This can be regarded as complimentary to possibly more inci-
sive, but more specialized, analytic investigations, in that it can be expected to
treat correctly the all-too-common instances of harmful conspiracy between two
or more bad effects. Equally important goals are to help in planning operational

procedures and to establish instrumental specifications.

In earlier studies of the effects of field errors it has always been found that
orbit distortion as quantified by the variable called “smear” is dominated by
random magnet errors while tune shifts are dominated by systematic magnet
errors. This report is intended to study tune shifts and we neglect random magnet
errors. An example of the above-mentioned possibility of harmful conspiracy is
that random orbit displacements taken with systematic magnet errors can cause
appreciable smear. We defer investigation of this affect to a later report and

concentrate entirely on tune shifts.

Emphasis will be on use of the bore-tube correctors but performance of a
lumped corrector scheme will also be analysed. For lumped schemes, since the
ultimate performance is almost surely inferior to a continuous scheme, determi-
nation of whether the required performance specifications can be met is especially

important.



2. Assumed Errors and Available Correctors.

In an ideal simulation every lattice parameter in a fully realistic lattice would
be randomly assigned consistent with its specified tolerance. This is clearly too
ambitious and we have restricted the analysis in various ways while attempting
to retain, and treat faithfully, the most critical features. We have restricted the
analysis to single particle motion, ignoring effects like emittance dilution and
loss of particles from the tails of the particle distributions. Another important
restriction has been to deal only with a lattice having no intersection regions.
This is not because we feel there are no important problems in connection with

intersection regions but rather that they are being deferred until later.

The “arcs-only” lattice which we have analysed is made up of 320 cells, each
essentially identical in all parameters to a regular-arc cell of the SSC. The tunes
were fixed at

Q. = 81.285
y = 82.265

(2.1)

These correspond to phase advances per cell of 92.549° and 91.446° respectively.
The integer tunes are separated by one unit in order to reduce sensitivity to
systematic coupling effects, " bt in the present analysis no systematic coupling
errors have been included. The fractional tunes are thought to be favorable
for colliding beam operation, based on SPPS experience. ] There are almost
certainly choices for the fractional tunes which would have simplified some of the
manipulations to be described below. Furthermore, in actual operations, 1t could
be sensible to make such tune choices as part of preliminary tune-up. However,

we have chosen not to pursue such a strategy.

A discussion follows of the errors that have been incorporated in the sim-
ulation (not necessarily all simultaneously). According to the CDR the most

important nonlinear systematic dipole field errors, being due to persistent cur-
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(9]

rents, are, at injection
by = — 4.7 units
by = 0.30 units (2.2)
bg = — 0.07 units

where, according to convention, “units” stands for parts per 10% fractional error
at a radius of 1 em. The values entered into the TEAPOT input file are derived

from these.

In TEAPOT all elements are replaced by thin elements. It has been shown ™!
that replacement of the actual 16 m long SSC dipoles by two thin half-lengths
dipoles (call them dipl and dip2) causes tune shifts less than 3-0.0002; this was
judged to be adequate. The starting nonlinear systematic multipoles used for

these magnets were

dipl, by = 4.2.b3 = 0.6, b = 0.6

(2.3)
dip2, by = —5.2,b3 = 0.0,bs = 0.0

The differences between (2.3) and (2.2) will now be discussed. In the CDR the by
bore-tube correction coil extends half the length of the dipole and it was assumed
its settings could be “dead-reckoned” from factory magnet measurements to an
accuracy of £10%. Suppose a “worst-case” field of —5.2 units in both dipl
and dip2 is corrected, as regards field integral, entirely in dipl, but under the
erroneous assumption that the field error is —4.7 units. The by values in (2.3)
result and the b4 errors are the result of a similar argument starting from (2.2).
Though there is no systematic b3 term coming from persistent currents it was
judged 3% that the systematic errors in b3 and by could be comparable, and that

was the basis for the b3 values in (2.3).

The multipole bg has been treated differently. An estimate of the immportance
of this multipole, for the value given in (2.2) and using formulas given below,

suggests that it should be negligible for all amplitudes of interest. No correction
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elements for this multipole were assumed to be present and in most cases the
field error was not included. It was confirmed to be negligible in the few cases
for which it was explicitly included.

(3]

It has been suggested, especially by Neuffer, - that systematic compensation
be performed using lumped multipole correctors at the regular F and D locations
in the spool pieces situated next to the quadrupoles, as well as one extra lumped
corrector at C at the center of each half-cell. The layout is indicated in the sketch
at the bottom of Table 2, and the multipole strengths are indicated there. For
the present investigation the same systematic errors (2.2) were assumed, with
the actual values known only to within 10%. The strengths of D, F, and C
multipoles were constrained to be in the ratios 2 : 2 : 4 as indicated in Table 2,

(5]

except that specially tuned octupoles™ , known to give excellent tune constancy,

were used.

It can be feared that the presence of closed orbit errors will hinder the empir-
ical chromaticity compensation. Closed orbit compensation has been described

M1 2nd those methods have been repeated here. Results will be given

elsewhere,
with and without orbit errors. The rms bend errors used were o409 = 5.9 units,
and o3¢ = 8.5 units, though these were multiplied by v/2 to compensate for the
fact that each dipole is split in half with random errors being assigned inde-
pendently to each half. Roll errors of 0.6 mr, similarly increased by /2, were
assumed. Quadrupole locations were assigned rms uncertainties of 0.5 mm, both
horizontally and vertically, and, within the quads, rms location uncertainties of
0.1 mm were used. The combined effect of the various errors causing closed orbit

shifts was that the rms orbit deviations both horizontally and vertically were 0.6

mm, after correction. As mentioned above, no coupling errors were included.



3. Analytic Estimates and Numerical
Calculation of Chromatic Coeflicients.

In this section estimates of various effects will be given in order to assess their
relative importance and we give the results of numerical calculations of the tune

dependence resulting from particular multipoles.

(i) Dependence of Tune on Momentum. Consider N (numerically 12x320 =
3840) dipoles magnets each bending the beam through an angle 27 /N. The bend

error in a single dipole due to by, b3, and b4 is
[ba(z + 16)? + by(z + 16)® + ba(2 + n6)*)2x /N (3.1)

where, at the dipole, the transverse displacement (assumed for simplicity to be
purely horizontal) has a betatron part « and an “energy” part né where 7 is the
dispersion and § is the fractional momentum offset. We are mainly interested in
the dependence on § of the small amplitude tune. For that we need only retain
the part of (3.1) which is linear in z. (Strictly the transverse displacement from
the off-momentum fixed point should be used but we ignore the distinction.)
According to the “Golden Rule” the location dependence brings in one power
of the lattice function 8 and yields tune shift estimates for the two transverse

planes given by

£AQ == 37 Bl2bb + 3ha(n8)? + ba(n8)71(2n/N) .
> |

—by < Bn > 6+ 3b3/2 < fn > &% + 2by < fn® > &

where the summation has been expressed in terms of averages < fAn > etc.,
which will be similar, but not identical for the horizontal and vertical planes.

For purposes of estimation we take

<Ppo>~<Bo><n>
=1.85 x 10*cm x 2.07 x 10%cm (3.3)

=3.8 x 10%cm?



Substituting this into (3.2), with b = 0.5 x 10~*cm™2 and § = 0.001, the leading
term yields a tune shift of 0.19. This is far greater than the specified maximum
tune shift of £0.005, bearing out the earlier assertion that a large residual chro-
maticity will remain to be corrected empirically after the main effect has been

removed using magnetic field measurements.

We will call the coefficients of 6,62 etc. chromaticity coefficients. The
quadratic and cubic coefficients could be estimated as the linear coefficient was in
the previous paragraph, but to obtain any kind of precision in such calculations
the averages of the lattice functions would have to be evaluated more accurately
than has been done. This would include using a momentum-dependent 7 func-
tion. Refinements such as this would not however be justified, since in the pres-
ence of closed orbit errors feed-down from higher multipoles would also destroy
the simple proportionality of the linear, quadratic, and cubic coefficients to by, b3
and &4 respectively. The actual dependencies are calculated using TEAPOT.
Thorough comparisons between TEAPOT tune calculations and analytic tune
calculations of Neuffer have given excellent agreement for simple lattices. ! Fig.
1 shows the momentum dependence of the pure lattice (with the linear chromatic-
ities corrected to zero). Figures 2, 3, and 4 show the momentum dependencies
that result for the values of b, b3 and b4 given in (2.3) but with only one turned
on at a time, for the otherwise pure lattice having no closed orbit errors. Poly-
nomial fits are given. That the chromatic coefficients in the two planes are not
quite equal in magnitude (but opposite in sign) is because the averages enter
differently for the two planes in (3.2). The linear coefficients agree to within
ten percent with the estimate given just below (3.3). It can be seen, consistent

with (3.2), that b; mainly causes a linear dependence on §, b3 mainly a quadratic

dependence and so on.
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(ii) Incremental Orbit Error Due to b in the Presence of Other Orbit
Errors. It is found that chromaticity compensation in the presence of orbit
errors is more difficult than in their absence and one can look for the leading
cause. One possibility is that the steering effect of the multipole correctors yields
undesirable orbit shifts as the correctors are adjusted. Here we estimate, for by,
the magnitude of the effect and find it to be negligible.

The displacement at point d in the lattice due to bend error A#; at point @
. [13]

18

_cos{p/2 — dai) = ,
o= 24 s (34)

where ¢4; is the phase advance from d to i. Suppose that Af; is due to a closed
orbit error z; at the position of a dipole which bends through 27/N, where N
was defined above. That is

AG; = (21 /N )by z? (3.5)

Summing over locations ¢ we get

= 252513/2?:: Z\/,(T,x cos (1/2 — da;) (3.6)
=1

In the summation §; and the cosine term are not stochastic while z? is. On

dimensional grounds the sum will come out

Y =b/<B >, VNG (3.7)

where o, is the rms orbit shift and C; is a numerical factor of order one. Com-

bining equations we get the estimate

<.’Bd>~7"b2<6>0’co

Oco siny/Q\/]V

Numerical substitution using values introduced above gives the result that the

(3.8)

incremental orbit shift from a one unit change in 62 is about one percent of the

preexisting orbit shift. This is presumeably negligible.
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(iii) Effect of Closed Orbit Shift on Chromaticity Coeflicients. In the
presence of closed orbit error z; at location ¢, the factors (z + 76) in (3.1) must
be replaced by (z — z; + n6). Then the result of keeping only terms linear in z

and linear in § is
Ab; = 21 /N[2by — 6b3z; + 12b4z?néx (3.9)

The second term tends to average to zero but the third term does not. Its
contribution to the linear chromaticity differs from that due to b5 by the factor
6(bs/b2)0?, which can be several percent. Corrections to the other chromatic

coeflicients can be estimated similarly.

4. Algorithms for Iterating Measurement and Adjustment.

Two algorithms have been used for setting the multipole correction elements.
Both methods assume that a “pencil” circulating beam is available initially hav-
ing an rms fractional momentum spread of 0.00001. This is a factor of five
smaller than energy spreads achieved in the Tevatron.[lz] We do not regard this
as too serious both because the compensation procedure would probably work
adequately (though less quickly) with a larger spread and because the small
spread can undoubtedly be achieved by scraping (at the cost of intensity.) The
RF frequency stability needed to maintain this energy accuracy does not appear

[12] pulse-to-pulse injection jitter as great

to be difficult. According to reference
as 0.0001 can be expected but that will not adversely affect these procedures,
since they use circulating beam. Fractional momentum measurement errors are
assumed to be negligible.[13] Tune determinations have been assigned an error
of +0.0001 consistent with recent experience on the Tevatron during the beam
dynamics experiment E778. When this was increased to -0.001 in a few cases it
impaired the rate of convergence of the adjustment procedure but did not prevent

its successful completion.
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In each stage of iteration both the horizontal and vertical tunes are measured
at five momenta, £2A6, +Ad, and 0.0, making a full range of 4Aé. In successive
stages the range is increased, always consistent with restricting the maximum
tune shifts to be less than about £0.005. In practice the successive measurement
ranges used were +0.000025, £0.00005, +£0.0001, 0.00025, £0.00035, +0.0005,
and £0.001.

Success can only be claimed when this condition is met with 2Aé = 0.001,
for particles with maximum betatron amplitudes as great as § mm, since then

the CDR specified maximum tune shift tolerance will have been met.

Tunes which would be measured in real operation are calculated in the sim-
ulation. Each linear transfer matrix is obtained in TEAPQOT by tracking several
particles in the near vicinity of each of the off-momentum fixed points. The
tunes are obtained from the traces of these matrices. It has often in the past
been demonstrated that tracking for many turns (say 256), followed by Fourier
analysis, followed by parabolic interpolation, yields accurately (~ 4-0.0002) the

same tunes. In real operation that would be the procedure employed.

Calculations have been performed on the SUN 3/140 workstation. The lat-
tice is so large that the calculations are very slow—calculation of the tunes for
five momentum cases takes 10 minutes. This may be all-too-realistic as the
corresponding measurements on the SSC may be very time consuming. It was
however demonstrated during the E778 Tevatron experiment that a single chro-
maticity determination could be performed in as little as five seconds. Based on
this, and assuming that the frequency of the accelerator RF can be programmed
non-destructively to the coasting beam of the SSC, the entire chromaticity com-

pensation procedure could take as little as a few minutes.

(i) Iterative Polynomial Fitting Procedure. This is a straightforward pro-
cedure which has converged satisfactorily both with and without closed orbit
errors. Though not exactly true, it is assumed that b, gives a pure linear cor-

rection, b3 a pure quadratic correction, and b4 a pure cubic correction, and that
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the coefficients of these correctors are the same with and without closed orbit
errors. These coeflicients are obtained from the data of Figures 2, 3, and 4. At
a given stage of iteration, five measurements both in the horizontal and in the
vertical planes are obtained and fit by polynomials. The shifts of b9, b3, and by
needed to cancel these polynomials term-by-term are calculated and the average
of the horizontal and vertical values is used for each multipole. In practice, for
fractional momentum less than £0.0001, only the b2 correctors were required or
used. Two different error seeds were studied with each giving satisfactory conver-
gence. With no closed-orbit errors a single iteration was sufficient for each of the
momentum ranges listed above, but in the presence of orbit errors two iterations

were sometimes required before proceeding to the next, wider, momentum range.

(ii) Least Squares Procedure. This is a scheme which, in principle, should
converge in several iterations. However it may not be more efficient as it requires
accurate determination of each of the chromaticity coefficients for each of the
multipole coefficients and, as noted above, these depend on the particular closed
orbit errors. For the lattice with no closed orbit errors this scheme converged
after five iterations. For a lattice with closed orbit errors, but using the ideal
orbit chromaticity coefficients, it did not converge. This method does not natu-
rally take much advantage of the initial use of a beam of very small momentum
spread. The formulation of this method will be given both for reference and be-
cause minimisation procedures may be be required when the more complicated
chromatic behavior due to intersection regions is included, or if the simple aver-
aging of horizontal and vertical corrections proves inadequate, or for analysing

not-quite-systematic behavior.

The problem is to obtain the best settings for the by, b3, and by correctors
based on the ten “detected” tune offsets, AQ;O)(d) and AQ;O)(d), d=1,2,...,5
at the five momenta noted above. The solution is set up superficially as a linear
least squares method, but in such a way that iteration is natural, which makes
it effectively a nonlinear method. This also makes it natural to start with fitting

functions calculated for the ideal lattice but then to improve them based on
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calculations or observations made with errors present.

The notation to be employed is that the subscript d (for detector) runs over
the five momentum values and the subscript a (for adjustor) runs over the three
multipole indices, 2, 3, and 4. All summations which appear are over these

ranges.

The offsets AQQ;(d) are due to unknown errors but they are assumed to have
been measured. Initially they are measured with the b, set to zero, but in later
iterations they will be obtained with preliminary values b, present which will be
modified to b, + Ab, as the result of the iteration. Formulas for the = tune offset

including the effects of the offsets Ab, are
AQx(d) = AQP(d) + Y Abug{M(d)  d=1,2,..,5 (4.1)

where, for each adjustor, qg(ca)(d) has previously been obtained from data like
that in Figures 2, 3, and 4, as the tune offset at the values §; due to unit
strength change in corrector a. These quantities depend implicitly on all the
lattice parameters including errors. Initially they are calculated for the ideal
lattice but, as noted above, it may be necessary to improve them operationally

in the presence of actual errors. An expression like (4.1) can also be written for
AQy(d).
The function to be minimized is the “badness” function
B(Aby, Abs, Aby) = B(Ab,)
= 3 1AQXd) + AQHW)] (42)
d

The best settings for the Ab, will be those that minimize B(Ab,); they are

obtained by solving the equations

8B
OAb,

0 a=234 (4.3)

Substituting from (4.1) into (4.2) and (4.3), we get three equations which can be
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written in matrix form as

MB=Y (4.4)

with solution

B=M1y (4.5)

where B = (Aby, Ab3, Ab4)T is a vector of the unknowns,

V= (Vo) = =3 1800 (e (d) + AQ (e (d)] (456)
d
is the vector of inhomogeneous terms and

M = Ma) = > 16 (D) (d) + ¢ (d)gl ()] (4.7)
d

is the coefficient matrix.

After the replacement of b; by b, 4+ Ab, new tune offsets can be measured and
the process repeated. As described earlier the momentum range must be greatly
restricted initially. When the range is expanded, if the fitting functions q_&“)(d)
and qg(,a)(d) can or must be recomputed (or remeasured) it could be done, but at

the cost, roughly, of quadrupling the time per iteration. That has not been done.

5. Results.

A selection of initial, intermediate, and final tune dependence curves are
shown in the following figures. For Figures 5 through 11 bore tube compensation
coils were used. Fig. 5 shows the tune dependence with no closed orbit errors
but with the full, uncompensated, systematic errors given in (2.3). Fig. 6 is the
same thing except that the linear chromaticity is taken out using the chromaticity
sextupoles. Figures 7 and 8 show the result of applying the least squares fitting
procedure to these data without any concern for the operational practicality of

running the accelerator with such gigantic tune shifts.
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The next figures illustrate compensation in the presence of all errors which
have been mentioned, using the polynomial fitting procedure. Fig. 9 shows a
starting situation, Fig. 10 shows an intermediate situation, and Fig. 11 shows
the final results for two different seeds. In both cases the final behavior is fully
satisfactory.

The final result of compensation using “Simpson’s Rule” compensation as

(3]

recommended by Neuffer is shown in Figure 12 for two different seeds. In
this scheme there is one lumped correction element at the center of each half-
cell, constrained to be twice as strong as the lumped corrector at the regular

spool-piece location.

Tune variation, both horizontal and vertical, for the distributed coils is given
in Table 1 for two different sets of random numbers. Tune shifts away from the
small amplitude values are given (in units of 0.001) for points defining the ex-
tremes of momentum and betatron variation according to the CDR specifications.
In these units, variation by less than £5 is defined as meeting the specification.

(4]

The format of this table is further explained in reference*” . Table 2 shows simi-

lar results for the lumped scheme. Though noticeably inferior to the distributed

results the CDR specifications are easily met.

We would like to acknowledge the help of our TEAPOT collaborators Ruth

Hinkins, Vern Paxson and Tjet Sun.
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mediate situation.
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Table 1.

TUNE DEPENDENCE AFTER OPERATIONAL COMPENSATION OF SYSTEMATIC DIPOLE ERRORS

Yy
Method: DISTRIBUTED (BORE TUBE) COILS
S5mm
0.001 5
Random seed: 1 2 ~0.001 %
4 ¢ ¢ 4] Smm
0.4 0.1 . 1.0 g-1 .
0.2 0.1 0.4 0.1
0.4 0.4 . 0.4 0.6 AQx
0.4 0.1 0.0 0.1 . o/
0.1 0.1 . 0.3 0.2 . 00
0.4 0.5 0.1 0.6 .
0.0 0.8 . 0.2 0.6
0.1 0.6 . 0.2 0.4 .
0.5 0.5 . 0.4 0-4 &Qy
I
0.4 0.6 . 0-3 06 . ! oo
0.4 0.4 . 0.4 0.4 .
D.3 0.4 . 0-3 0.3 .
A r—#r%ﬂﬂr-—'he——iw L g p s g ae )
V ) H —__l | E—— | ) | ) e | T R——) lppamnge] j ——— | == ) et 4 v'
* b2 coil + : superlmposed b3 and b& coil Dipole
Error
27 4.2 -4
see text X 330x13 *-5.2 10
27 dg.e -4
320x12 0.0 *10
2m 0.6 -4
330x13 * 0.0 *10
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Table 2.
TUNE DEPENDENCE AFTER OPERATIONAL COMPENSATION OF SYSTEMATIC DIPOLE ERRORS

y
Method:; LUMPED (SIMPSCN'S RULE = NEUFFER) COILS
Stm
0.001 s
Random seed: 1 2 0.001
. “\e x
$ ¢ '*””—6 S5mm
0.2 0.5 0-5 0.5 .
0,4 0,2 0.6 1.1 .
1.9 1.3 3.1 2.5
AQX
0.3 0.6 - 0.4 1.3 o
0.1 0.3 0.3 0.2 /oo
0.4 0.6 . 0.0 1.3
0.5 0.0 0.6 0.1
0.4 0.8 0.8 1,1 .
0.4 0.8 . 1.6 1.0 AQ
¥y
0.4 0.0 ) 0.5 0.0 ] oy
0.4 0.7 0.6 1.1 oo
0.2 0.6 0.4 1.0 .
— e r——lﬂ@Egza__EEEH__EEE3__§§ﬂ@ﬁ===f—£==j—4r—nﬁk; F——3——t {}
’ Dipole
Error
27 =4
2 4 2 4 X 3I50%13 X =4.,7 %10
0.0122 0.0156 ~0.0122 0.0156 0.3 x10™"
2m -4
2 4 2 4 X 330%12 x (0.3 *I0
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