
Exact Computati n of Derivatives with
Differential Al bra and Applications

to Be Dynamics

E. Forest, . Berz, and J. Irwin
sse e frat Design Group

March 1988

/



SSC-166

EXACT COMPUTATION OF DERIVATIVES WITH DIFFERENTIAL
ALGEBRA AND APPLICATIONS TO BEAM DYNAMICS

Part 1. A Survey of Differential Algebra and
Its Use for the Extraction of Maps to Arbitrary Order

M. Berz

Part II. Normal Form Methods for Complicated Periodic Systems: A Complete
Solution Using Differential Algebra and Lie Operators

E. Forest, M. Berz, and J. Irwin
sse Central Design Croup"

c/o Lawrence Berkeley Laboratory, Berkeley, CA 94720

March 1988

"'Operated by Universities Research Association for the U. S. Department of Energy



Part I
A Survey of Differential Algebra
and Its Use for the Extraction
of Maps to Arbitrary Order *

M. Berz

SSC Central Design Group
Universities Research Association

c/o Lawrence Berkeley Laboratory
Berkeley, Ca 94720

Abstract

The new method of differential algebras for the description of beam
dynamics is presented. It allows a very straightforward and elega.nt
computation of transfer maps of accelerator systems which can be
analysed for data relevant to accelerators. The order of the procedure
is unlimited and it is accurate to machine precision. The theoretical
background of the method is presented in detail. It is shown how the
method can be used in practice.

1 Introduction

The effect of an accelerator section can be described mathematically by a
map relating the final coordinates zf of a particle to the initial coordinates
Zi

*Part I submitted to Particle Accelerators under the title" Differential Algebraic De­
scription of Beam Dynamics to Very High Orders"
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(1)

The coordinates z contain positions and momenta of the particle. The
vector Gcontains other parameters that influence the motion like energy,
mass or charge of the particle or accelerator parameters like certain mul­
tipole strengths. From this map M, quantities of interest for accelerators
like tune shifts and chromatieities can be extracted. This is described in
detail in a companion paper [16].

Except for the most trivial cases it is impossible to find a closed ana­
lytical solution for the map M. However, expanding M in a power series
yields a set of differential equations for the expansion coefficients which in
many cases Can be solved analytically up to some order. The complexity
of the resulting differential equations, however, increases dramatically with
the order of the expansion coefficients. So this procedure is limited to low
or medium orders. In fact, most widely used codes [1], [2], [3] only have
the capability to compute nonlinearities in (1) through third order.

Recently it has been possible to extend this to higher orders using the
custom made formula manipulator HAMILTON [4J. This program pro­
duces FORTRAN code for formulas of nonlinearities compatible with the
program COSY [5]. At the present time, COSY can compute all fifth or­
der nonlinearities of common beam line elements like bending magnets and
magnetic and electrostatic multipoles including the dependence on the par­
ticle mass.

Since the accuracy of the Taylor series representation of the map in
equation (1) increases by using higher orders, it is desirable to know M to
as high an order as possible. This certainly holds for the purpose of using
the map for subsequent symplectic tracking of simulation particles; but also
for the above mentioned purely analytical purposes like computation of tune
shifts with amplitude, chromaticities, invariants etc. based on Hamiltonian
perturbation theory [6], [7], [16], this is highly desirable.

In this paper we will present a very straightforward way to compute
nonlinearities to arbitrary orders based on differential algebraic techniques.
The partial derivatives are computed to machine precision; the whole pro­
cedure is completely independent of the order and only limited by the power
of the computer.
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Besides the elegance in the computation of transfer maps, the method
is so versatile that it allows the computation of arbitrary derivatives. Here
no analytic formulas for derivatives have to be derived; on the other hand,
the method is always accurate to machine precision independent of the
order of the derivative which is in sharp contrast to methods of numerical
differentiation.
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2 Differential Algebras

In this section we will provide the mathematical background of the theory
of differential algebras required for the advertised study of nonlinearities,
Differential algebras are an offspring of the relatively new field of Nonstan­
dard Analysis {8]' [9J, which allows the introduction of arbitrarily small
quantities, "infinitesimals", in a rigorous theory of analysis. There is also
some connection to the theories of formal power series [10] and automated
differentiation [11]. The use of differential algebras for the field of nonlinear
dynamics was first discussed in [12].

For the sake of clarity, we first address the simplest case of differential
algebras, the structure 1D 1 •

2.1 The Structure .o,
Consider the vector space R2 of ordered pairs (ao, a1), ao,a1 ERin which
an addition and a scalar multiplication are defined in the usual way:

t- (ao, ad = (t . ao, t . ad

(2)

(3)

for ao, a1, be, bl E R. Besides the above addition and scalar multiplication
a multiplication between vectors is introduced in the following way:

(4)

for ao, a1, bo, b1 E R. With this definition of a vector multiplication the set
of ordered pairs becomes an algebra, denoted by 1D1 .

Note that the multiplication is the same one would obtain by multiplying
(ao + a1 . x) and (bo + b1 • x) and keeping terms linear in x.

In the same way than in the case of complex numbers; one can identify
(ao,O) as the real number ao. Where in the complex numbers, (0,1) was a
root of -1, here it has another interesting property:

(0; 1) . (0,1) = (0,0)
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which follows directly from equation (4). So (0,1) is a root of O. Such a
property suggests thinking of d = (0,1) as something infinitely small, small
enough that its square vanishes~ Because of this we call d = (0,1) the
differential unit. The first component of the pair (ao, al) is called the real
part, and the second component is called the differential part.

It is easy to verify that (1,0) is a neutral element of multiplication,
because according to equation (4)

(6)

(7)

(8)

It turns out that (ao, al) has a multiplicative inverse if and only if ao is
nonzero; so IDI is not a field. In case ao :I 0 the inverse is

. -1 1 al )
(ao,at} = (-'-2"

ao ao
Using equations it is easy to check that in fact (ao, ad-I. (ao, «r) = (1,0).

The space IDI is a subspace of the field R"' introduced in Nonstandard
Analysis [8],[9]. Besides the usual real numbers, R"' contains a variety of
infinitely small and infinitely large quantities. The outstanding result of the
theory of Nonstandard Analysis is that differentiation becomes an algebraic
problem: a function f is differentiable if and only if for any arbitrarily small
quantity b, the real part of the quotient

f(x + b) - f(x)
s

is independent of the choice of the specific b. Thus, given any differentiable
function f, we can compute its derivatives by just evaluating the formula
for a special choice of 8. We choose 8 = d = (0,1) and thus obtain

f'(X) = R[f(x + d~ - f(x)] or f'(x) = V[j(x + d) - f(x)] (9)

where n denotes the real part and V denotes the differential part. Hence
differential algebras are useful to compute derivatives directly, without re­
quiring an analytic formula for the derivative and without the inaccuracies
of numerical techniques.

The computation of derivatives shall be illustrated in an example using
the following function:
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1
f(x) = --1

x+-x
The derivative of the function is

(10)

:.\ - 1
j'(x) = (; + ~)2 (11)

Suppose we are interested in the value of the function and its derivative
at x=2. We obtain

f(2) = ~ 1'(2) = _2- (12)
5 25

Now take the definition of the function f in equation (10) and evaluate
it at 2 + d = (2, 1). One obtains:

j[(2,1)]
1

- (2,1) + (2\)

1

(13)

As we can see, after the evaluation of the function the real part of the
result is just the value of the function at x = 2, whereas the differential
part is the derivative of the function at x = 2.

This is exactly what was to be expected from the theory of Nonstan­
dard Analysis. However, for the sake of not relying on the quite advanced
techniques of this relatively new field of mathematics, we also present an
elementary but less proof of the result.

By our choice of the starting vector (2, 1), initially the vector contains
the value 1(2) of the identity function 1: x - x in the first component and
the derivative of ['(2) = 1 in the second component.
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Now assume that in an intermediate step two vectors of value and deriva­
tive (9(2),9'(2)) and (h(2), h'(2)) have to be added. According to (2) one
obtains (9(2) +h(2), 9'(2) + h'(2)). But according to the rule for the differ­
entiation of sums, this is just the value and derivative of the sum function
(g+h)atx=2.

The same holds for the multiplication: Suppose that two vectors of
value and derivatives (g(2),9'(2)) and (h(2), h'(2)) have to be multiplied.
Then according to (4) one obtains (9(2)· h(2), 9(2). h'(2) +9'(2)· h(2)). But
according to the product rule, this is just the value and derivative of the
product function (9 . h) at x = 2.

The evaluation of the function f at (2, 1) can now be viewed as suc­
cessively combining two intermediate functions 9 and h, starting with the
identity function and finally arriving at f. At each intermediate step the
derivative of the intermediate function is automatically obtained as the
differential part according to the above reasoning.

An interesting side aspect is that with the search for a multiplicative
inverse in equation (7) one has derived a rule to differentiate the function
f(x) = 1/x without explicitly using calculus rules.

After discussing the algebra ID I and its virtues for the computation
of derivatives, we now address the most general differential algebra, the
structure nDv. It will eventually allow us to arithmetically compute partial
derivatives of functions of v variables through order n.

2.2 The Structure nDv

First we define N(n, v) to be the number of monomials in v variables
through order n. It can be shown that N(n,v) = (nt~)! = C(n + v,v)n.v.
where C(i,j) is the familiar binomial coefficient. Now assume that all
these N monomials are arranged in a certain manner order by order. For
each monomial M we call 1M the position of M according to the ordering.
Conversely, with M] we denote the 1th monomial of the ordering. Finally,
for an I with M] = X;l ..... x~" we define FI = i l ! ..... i v !.

We now define an addition, a scalar multiplication and a vector multi­
plication on RN in the following way:

(14)

7



(al, ...,aN)· (bI, ....bN) = (CI, ...,CN)

where the coefficients c, are defined as follows:

(15)

(16)

c, = s: L
0< "," <N

M,,-' MI' ;; Mi

(17)

To help clarify these definitions, let us look at the case of two variables
and second order. In this case, we have n = 2 and v = 2. There are
N = 0(2 + 2,2) = 6 monomials in two variables, namely

1, x, y, xx, xy, yy (18)

As an example, using the ordering in (18), we have Ixv = 5 and M3 = y.
Using the ordering in (18), we obtain for Cl through C6 in equation (17):

Cl - al • b1

C2 al • b2 + a2 • b1

C3 al . b3 + a3 . b1

C4 2 . (al • b4/2 + a2 . b2 + a4 . bI/2)

C5 al • b5 + a2 . b3 + a3 • b2 + a5 . b1

C6 2 . (al • b6/2 + a3 . b3 + a6 . bI/2) (19)

Where in IDl, d = (0,1) was an infinitely small quantity, here we have
a whole variety of infinitely small quantities that have the property that
high enough powers of them vanish. We give special names to the ones in
components I belonging to first order monomials, denoting them by dM[.
In the example of 2D2, we have dx = (0,1,0,0,0,0) and dy = (0,0,1,0,0,0).
It then follows from the theory of Nonstandard Analysis that instead of
equation (9) we obtain
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f(x+dx,y+dy)=
8/ 81 82

/ 82
/ 82

/

(f, 8x' By' 8x2 ' 8x8y' 8yJ(x, y) (20)

In the general case of v variables and order n, after evaluating f in the
differential algebra one obtains:

(21)

where I(.r~l ......x~"} is the index of the monomial (X~l ..... x~"), as defined in
the beginning of the section.

3 Important Functions on Differential Alge­
bras

In this section we will generalize standard functions like exponentials, log­
arithmic and trigonometric function to differential algebra. As we will see
below, virtually all functions existing on a computer can be generalized in
a straightforward way.

We start our discussion by noting that for any differential algebra vector
ofthe form (0, at, ... , aN) E nDv, i.e. with a zero in the component belonging
to the zeroth order monomial, we have the following property:

(0, al, ... , aN Y= (0,0, .... , 0) for i > n (22)

which follows directly from the definition of the multiplication in nDv de­
fined in equation (16).

Let us begin our discussion of special functions with the exponential
function exp(x). Assume we have to compute the exponential of a differ­
ential algebra vector that has already been created by previous operations.
First we note that the functional equation exp(a + y) = exp(x) . exp(y)
also holds in Nonstandard Analysis. As we will see, this facilitates the
computation of the exponential considerably.
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(23)

In the last step use has been made of equation (22) which entails that the
sum has to be taken only through order n and thus allows the computation
of the root in finitely many steps. Hence the evaluation of the real number
exponential exp(ao) which internally on a computer requires a power series
summation and hence cannot be done accurately, is more subtle then the
rest of the operations in differential algebra.

A logarithm of a differential algebra vector exists if and only if ao > 0.
In this case one obtains

al az aN
log[ao' (1 + (0, -, -, ... -)]

ao ao ao

~ ;+1 1 al az aN ;
(log(ao), 0, ... , 0) + L.,..( -1) -;-(0, -, -, ...,-)

;=1 'l ao ao ao

( () ) ~( )i+I 1 al az aN ilog ao ,0, ... ,°+ L.,.. -1 -:-(0, -, -, ... ,-)
;=1 'l ao ao ao

(24)

Again use has been made of the fundamental property of the logarithm
log(x . y) = log(x) + log(y) which transforms directly into Nonstandard
Analysis and leads to simplifications by virtue of equation (22).

As the last example, we will derive a formula for the root function.
Even though there is a direct method to compute roots by solving a set of
linear equations for the coefficients of the root, we present here a technique
based on power series following an approach similar to the exponential and
logarithm. The root has the following power series expansion:

~ ~( ); 1 . 3 ..... (2i - 3) ;
v1+x=L.,..-1 . ·x

i=O 2 . 4 ..... (2z)

10
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Using this formula and the definitions of addition and multiplication
(14), (16), one directly obtains for the square root of a differential algebra
vector:

v(ao, aI, a2, ... , aN)

al a2 aNvao' 1 + (0, -, -, ,.., -)
ao ao ao

rz: . ~(_1)i 1· 3 ..... (2i - 3) . (0 at a2 aN)i
- yao w ( ') '" ... ,i=O 2 . 4 . 2z ao ao ao

rz: . ~(_1)i 1· 3 (2i - 3) . (0 al a2 aN)1
yao L...J ( ") '" ... ,

1=0 2 . 4 . .... 2z ao ao ao
(26)

Using the addition theorems for sine and cosine, one obtains formulas
with finite sums in a quite similar way; in general, suppose a function f has
an addition theorem of the form

I(a + b) = 9a(b) (27)

and 9a(b) can be written in a power series, then by the same reasoning its
differential algebraic extension is computable exactly in only finitely many
steps. In practice it turns out that this can be done for all commonly
supported functions in a FORTRAN computer environment.

4 The Implementation of Differential Alge­
bra on a Computer

The arithmetic and the functions of differential algebra can be implemented
on a computer for arbitrary order and arbitrary number of variables. As it
turns out, this is not easily possible for the field R* of Nonstandard Analysis;
hence we sacrifice the universal existence of multiplicative inverses.

The implementation of the addition and scalar multiplication is trivial.
However, the efficient implementation of a multiplication requires some
care. First we note that we can increase the speed by defining a slightly
different multiplication than in equation (17) with the c, as
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Ci =
0< ",,,,<N

M,,-' M",;;; M,

(28)

This multiplication is the same as in the case of the multiplication of
power series. However, in this arithmetic not all power series coefficients of
the product are computed; coefficients belonging to terms of orders higher
than n are disregarded. For many cases this view of differential algebras as
"truncated power series algebras" (see ref. [12]) is sufficient.

The definition of the multiplication (16) requires the knowledge of all
possible factorizations of a monomial into two submonomials. The compu­
tation of all these factorizations can be quite time consuming. Additionally,
in practice it happens frequently that many of the entries in a differential
algebra vector are zero.

So it is advantageous to turn the problem inside out so that no factor­
izations in submonomials are searched, but rather each component of the
first vector is multiplied by each component of the second vector and the
product is stored at the place where the product monomial belongs.

In order to do that an easy way of finding the address of the product
monomial is required. This is done as follows. First, all N(n, v) monomials
M are coded with an integer 0 in the following way: Let M = xil ..... x~"

Then we define O(M) as follows:

This means that the exponents are just "decimals" in base (n + 1). Note
that sinee ill ::; n this representation is injective, i.e. different monomials
have different codings. Note also that all codings are always less than
(n + 1)11, but not all such codings oecur.

Now suppose two monomials M and N have to be multiplied and sup­
pose their product has an order less than or equal to v. Since the multipli­
cation corresponds to an addition of the exponents, it follows that

O(M· N) = O(M) + C(N) (30)

To exploit this for the finding of the desired coordinate position 1M (see
section 2) of the product of two monomials, an array D is required that has
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the property

1M = D(C(M)) (31)

This array can be generated easily by the computer. Since the codings
are bounded by (n + L)", the array has to have at least this length. With
6 variables, this enables orders of 8 or 9 if one wants to stay inside the
boundaries of computer storage; with 8 variables the order would decrease
to about 4 which is too strict a limitation. To circumvent this, a slight
modification of the above coding and decoding will be presented.

Without loss of generality, we assume the number of variables v to be
even; if it is not even, increase it by one and ignore the additional variable.
We define two coding numbers CI and C2 for any monomial in the following
way:

- i1· (n + 1)° + i 2 • (n + 1)1 + ... + i¥ . (n + 1)(¥-1)

i¥+l . (n + 1)° + i¥+2 . (n + 1)1 + ... + i v . (n + 1)(¥-1)

(32)

Then we store the N(n,v) monomials in the following way. We start
with all monomials that have C2(M) = 0 and group them by order; within
one order, the monomials are stored according to ascending values of C l (M).
Then we store all those with C2(M) = 1, again by order, and so forth, going
through all possible values of C2 • Again we obtain

CI(M· N)
C2(M. N)

Cl(M) + Cl(N)

- C2(M) + C2(N) (33)

Finally we introduce some "inverse" arrays D; and D 2 in the following
way:

(1M of first monomial M with C1(M) = Cl)

(1M of first monomial M with C2(M) = C2) - 1 (34)

Again the arrays D 1 and D 2 can be generated by the computer.
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Using the definitions of Ct, C2 , D1 and D2 and using the storage scheme
outlined above, it now follows that the address of the product of the mono­
mials M and N can be found directly as

For the sake of clarity, an example for the arrays Ct, C2, d1 and d2 is
given in appendix 1 for n = 3 and v = 4. This example also illustrates
equations (32) through (35).

The coding defined in (32) entails that the maximum length of the arrays
D1 and D 2 can now be chosen much lower, namely as (n + 1) ~. Assuming
a maximum length of 1 million, this entails limitations on the maximum
order given a certain number of variables as listed in table 1.

Table 1: The maximum order for different numbers of variables due to a
limitation of the length of the reverse addressing arrays D 1 , D 2

number of variables
maximum order

6 8
99 30

10
14

12
10

After addition and multiplication are available, the implementation of
differential algebra functions is done quite easily using the formulas dis­
cussed in section 3.

For practical purposes it is of importance that in the FORTRAN en­
vironment differential algebraic operations can only be utilized by calls to
subroutines. For this reason a precompiler [13] was developed that allows
the use of a new data type "differential algebra" in regular FORTRAN for­
mulas. The precompiler parses the entire program and transforms formulas
containing differential algebraic quantities into subroutine calls.
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5 The Computation of Transfer Maps

5.1 An Illustrating Example

Differential Algebras can be used very efficiently to compute the transfer
map of equation (1) of particle optical systems in its Taylor series repre­
sentation.

To illustrate this, let us start the discussion with a very simple example,
the midplane motion in a 90° homogenous bending magnet. Let Xi and
a, = sineat) denote the initial distance and scaled transverse momentum
relative to the reference trajectory (see Fig. 1). Then we are interested in
the values xJ and aJ = sin(af). Since the trajectories in the magnet are
circles, we can readily read from Fig. 1:

A R sin(ni) = R ai

B R (1 - cos(ai» + Xi = R (1 - VI - an + Xi

af sin(af) =, - ~

Xf - A-R(1-coS(fif))=A-R(1-Vl-a}) (36)

These equations allow the computation of the final coordinates xj, af in
terms of the initial coordinates Xi, a.. However, taking these equations and
performing all operations in differential algebra allows us to even obtain all
derivatives of xf, af with respect to Xi, ai. These so obtained derivatives,
evaluated at Xi = 0, ai = 0, are then the expansion coefficients of the map
in equation (1). For the sake of clarity, let us explicitly show how xJ and
aJ are computed.

Using the ordering in (18) and identifying the variable a with y, we
obtain using the arithmetic defined in equations (14), (15) and (16)

Xi (0,1,0,0,0,0)

ai (0,0,1,0,0,0)
A (0,0, R, 0, 0, 0)

B (0,1,0,0,0, R)
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(37)

Figure 1: The motion in a 900 homogeneous bending magnet with radius
of bend R

1
af - (0,- R,O,O,O,-l)

1
Xf - (O,O,R,- R'O,O)

Comparing the so obtained result with any matrix code [1], [2], (3],
[5], we find complete agreement; as an example, the fact that the second
component of xf is zero implies that ~ = 0 and hence (x,x) = 0 (or in
TRANSPORT notation R1 ,1 = 0) which is a well known property of 900

bends.
In case an additional particle optical element is to follow this bending

magnet, one does not have to start all over evaluating this new element at
Xi = (0,1,0,0,0,0), a; = (0,0,1,0,0,0), but one can start already with Xi

and af of equation (37). This way one can save the usually quite involved
concatenation process and increase performance significantly.

The example discussed in this section has been implemented on the
computer. Using the Differential Algebra package, it is easily possible to
extract all nonlinearities of this two-dimensional example through order
fifty.
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5.2 Generation of Maps Using Numerical Integration

In this section we will address the general case in which no closed solution
of the problem exists. We will see that also in this case we are actually able
to compute transfer maps of arbitrary order for arbitrary particle optical
elements. Even though we do not have analytical formulas that relate the
final coordinates to the initial coordinates, there is still a way to computa­
tionally relate the final coordinates to the initial coordinates, by numerical
integration of the equations of motion.

In this case, the final coordinates are still computed from the initial
coordinates using standard arithmetic and functions, however the relations
are more complex than in the case of the homogeneous sector.

Now blindfoldedly performing all these operations in differential alge­
bra automatically leads to all desired derivatives of the transfer function,
regardless of the form of the equations of motion.

Differential algebraic techniques have been implemented in the program
COSY [5]. They allow the computation of transfer maps of elements with a
dependence on the independent variable for which an analytic solution can­
not be obtained from HAMILTON [4] like fringing fields. Using an eighth
order Runge Kutta integrator, all operations required for a tracking of par­
ticles are performed in differential algebra. This allows the computation
of arbitrary fringing field effects as soon as the spacial distribution of the
electromagnetic fields is known [14}.

In many cases, including the proposed sse [17], the particle optical
system can be represented very well by a sequence of kicks as in TEAPOT
[15}. The sequence of kicks can be viewed as a symplectic integrator of
second order in the independent variable. In this case, the execution of all
arithmetic in differential algebra is particularly easy. It may be used for
very efficient and accurate computation of tune shifts and chromaticities
using normal form theory [6], [7}. This will be discussed in detail in [16].

It is worth mentioning that TEAPOT and COSY are in complete agree­
ment for all nonlinearities through fifth order. In order to show this, we
selected a small ring for which bends and quadrupoles of finite length had
to be split into several hundred drifts and kicks in order to be computable
by TEAPOT. For the actual example and the reason for the ring selection
see reference (15).
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5.3 Hamiltonian Theory

In this subsection we will outline the usefulness of differential algebras for
Hamiltonian systems. One of the most fundamental concepts of Hamilto­
nian theory is the Poisson bracket between two functions of phase space.
This requires the differentiation with respect to phase space variables.

Suppose a differential algebra vector is given. Then it can be viewed
as a descriptor of a function, giving its value and derivatives at a certain
point. In this context the required differentiation is just a "bookkeeping
operation" moving derivatives in the vector to different places. Thus all
the required elements for a Poisson bracket are available. In fact, a Poisson
bracket for arbitrary order and arbitrary number of variables is contained
in the differential algebraic package written by the author.

Having the Poisson bracket, Lie operators, "Poisson brackets waiting
to happen", can be computed. In fact, as soon as the generator v of the
Lie operator: v: vanishes at the origin and has zero first derivatives, the
process is closed in that no feeddown from higher orders occurs.

Using Lie operators, the transfer map or flow of a Hamiltonian system
can be computed as

M =exp(-t: H:) (38)

where H is the Hamiltonian of the system. Note that by the proper choice
of the coordinates it can always be achieved that H(O) = 0 and also the
first derivatives of H vanish. This entails that each summand in equation
(38) can be computed in a closed fashion.

Furthermore, it turns out it suffices to carry only finitely many terms of
the sum in (38) if we want the nth order coefficients of the transfer map to
a certain accuracy. To see this, we show that the norm of the Lie operator
: -tH : is bounded. First note that in order to obtain the transfer map
through order n, it suffices to know H to order n + 1.

We define a norm on a Polynomial of phase space variables in the fol­
lowing way

(39)

It is quite easy to show that for arbitrary Polynomials Pll P2 we have

18



IPI . P21 :::; !PI \ . IP21. Since a derivative only moves coefficients around in
the vector and drops some, it follows for a Polynomial f that

(40)

and thus we obtain for the norm of the Lie operator consisting of the two
derivatives in each summand:

I-t· H· III : -tH : I= sup if!' = I : -tH : I. v (41)

This requires that the sum L~o (-t~~:)'" converge (in a differential alge­
bra sense!), and that it is possible to obtain an estimate as to how many
terms have to be taken in order to obtain a certain accuracy. In general it
turns out that these estimates are even usually quite pessimistic and the
terms in the sum become small more quickly.

This method to obtain the Hamiltonian flow in a computer code has the
additional advantage that it does not require any composition of the maps
of two subsystems; all that is required is to compute H by substituting in
the zalready obtained and then let this differential algebraic vector act on
Z.

In practice it turns out that the savings from the avoided compositions
is more significant than the additional time required for the iterative eval­
uation of the exponential sum exp(: <tH :). In fact, a composition routine
requires N(n, v) differential algebra multiplications, whereas one term in
the sum requires v multiplications per dimension.

In the case the Hamiltonian is time dependent, the above reasoning
requires a slight modification. In this case it is in general not possible to
go through the time dependent element in one step. However, it is possible
to derive an explicit high order numerical integrator in the following way.
First we note that for any function of phase space, we have

df a
dt = [J,H) + fJtf = Of (42)

In our particular case, we are especially interested in the cases in which
f are the components of z. Iterating equation (42), we can obtain higher
order derivatives of f, say up to order u. First note that even for the
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f's of interest in, %J vanishes, but in the higher derivatives such partial
derivatives prevail because H is time dependent.

In order to guarantee that all derivatives of the phase space variables can
be computed to order 'U, H must be known to order v + u. However, terms
with a higher power of t than u can be set to zero. In order to compute
the u derivatives of the phase space vector, which is needed for the uth
order integrator, a total of 6 . u Poisson brackets are required. Considering
that in many practical cases, an element can be transversed in one or very
few steps of an eighth order integrator and that like above we still save the
composition process, the effort is still very favorable to the situations in
which compositions are required.
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7 Appendix

List of the ordering of the all monomials M = X;l ..... x~u for order n = 3 and
number of variables v = 4. Also shown are the coding integers C1 and O2

(cf section 4)

1M i1 i2 is i4 C1 O2

1 0 0 0 0 0 0
2 1 0 0 0 I 0
3 0 1 0 0 4 0
4 2 0 0 0 2 0
5 I 1 0 0 5 0
I> 0 2 0 0 8 0
1 3 0 0 0 3 0
8 2 1 0 0 6 0
9 I 2 0 0 9 0

10 0 3 0 0 12 0
11 0 0 I 0 0 1
12 1 0 1 0 1 I

13 0 1 1 0 4 1
14 2 0 1 0 2 1
15 1 1 1 0 5 1

16 0 2 1 0 8 1
17 0 0 0 1 0 4
18 1 0 0 1 1 4

19 0 1 0 1 4 4
20 2 0 0 1 2 4

21 1 I 0 1 5 4
22 0 2 0 I 8 4
23 0 0 2 0 0 2
24 1 0 2 0 1 2
25 0 1 2 0 4 2
26 0 0 1 I 0 5
21 1 0 I I 1 5

28 0 1 1 1 4 5
29 0 0 0 2 0 8

30 1 0 0 2 1 8
31 0 1 0 2 4 8

32 0 0 3 0 0 3
33 0 0 2 1 0 6
34 0 0 1 2 0 9
35 0 0 0 3 0 12
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List of the arrays D 1 and D z for order n = 3 and number of variables v = 4.
For all M, one has 1M = D1(C1(M» + D Z(C2(M» (cf section 4)

j D1U) D'lUl
0 1 0
1 2 10
2 4 22
3 7 31
4 3 16
5 5 25
6 8 32
7 0 0
8 6 28
9 9 33

10 0 0
11 0 0
12 10 34

23



Part II
Norma! Form Methods For Complicated Periodic Systems:

A Complete Solution Using Differential
Algebra and Lie Operators

ETIENNE FOREST

Exploratory Studies Group
Accelerator Fusion Research Division

Lawrence Berkeley Laboratory
and

SSC Central Design Group
Universities Research Association
c/o Lawrence Berkeley Laboratory

Berkeley, CA 94720

MARTIN BERZ AND JOHN IRWIN

sse Central Design Group
Universities Research Association

c/o Lawrence Berkeley Laboratory
Berkeley, CA 94720

March 1988

Abstract

We present two types of formal algorithms: an order by order and a so-called "superconvergent"

procedure, bringing the one period map into a so-called normal form, which displays the harmonic

content of the map. The algorithm is arbitrary in order, in number of parameters and phase space

dimensions, and covers the range of signatures of the unperturbed quadratic invariants found in

circular machine dynamics. The normal form and the map extraction algorithms have all been

implemented using the differential algebra software. In fact, the work of this paper is feasible in toto

because of the differential algebra theory and software.
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1. Introduction

Serious simulations of large and small circular (or periodic) machines require

the use of tracking codes. For example, in the study of the proposed Supercon­

ducting Supercollider (SSC), these codes must be able to treat misaligned, mispow­

ered and misconstructed magnets with substantial random errors. In addition, the

tracking codes must be equipped with closed orbit correction schemes, random and

systematic multipole correctors and even sorting algorithms. At the end, the full

horrendous lattice is ready for tracking. In the case of the SSC, we are dealing

with a lattice file specifying approximately 105 multipoles of different orders and

symmetries. But what is the lattice file of a tracking code? In fact, the lattice file

specifies the horrible realistic Hamiltonian of the SSC.

One would like to find an exact recursive algorithm, implementing canonical

transformations, which eliminates non-secular terms in the motion of particles, a

scheme that would work for an arbitrarily complex Hamiltonian, and to an order

limited only by the power of the present day computers, and would treat problems

in a phase space and a parameter space of arbitrary dimension, where again the

limits depend only upon the power of our computers.

OUf approach rests upon the premise that:

i) A process which first extracts the formal power series map for one period from

the complex tracking code and then analyses it, is more modular and removes

the need for a local s-dependent perturbation theory.

ii) The production of the map and the analysis of the map should be independent

procedures. In particular, the extraction ofthe map should not have to involve

canonical variables.

iii) An adequate and desirable analysis of the final map, is best achieved by ex­
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pressing it in terms of Lie generators.

For linear effects, statements i) to iii) have been common place in accelerator

physics since the early work of Courant and Snyder [1]. Indeed, the Twiss param­

eters and the fractional tunes can be extracted from the one-turn matrix. Similar

quantities are available for coupled systems. It is also true that one propagates the

Twiss parameters by matrix (i.e., map) manipulations. Incidently, the Courant­

Snyder invariant is just a multiple of the Lie generator of the linear map produced

by the matrix! Hence it became clear to one of the authors (E.F.) that for maximum

efficiency in the treatment of large and messy periodic systems one should extend

the matrix manipulations to non-linear maps, and rewrite the whole of perturba­

tion theory in a Hamiltonian-free context [2]. For the relatively simple Hamiltonians

used in the design of circular machine, Forest has used the concatenator and the

analysis tools of the program MARYLIE [3]to perform exact extraction and analysis

of fifth order maps in (x, Px, y, py,T, PT)' (The tracking codes used were TEAPOT

and THINTRAC) [4].

The reader will notice that fifth order and six variables falls short of the goals

set forth in this paper. Fortunately, Berz, described a tool in the preceeding paper

of this issue, which, in the views of his co-authors will supersede previous techniques

of numerical differentiation implemented on computers. While working in the field

of particle spectrometers, he realized the importance of the extraction of formal

power series for arbitrarily complex optical system (or in other words extract high

order aberrations). Numerical differentiation techniques do not allow for high order

computations because the precision decays rapidly with the order of the aberrations.

This lead Berz to investigate the differential algebra (DA) (an application of non­

standard analysis [5, 61) and produce a DA-software package which allows the user

to compute all the partial derivatives of any computed quantity with respect to any
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number of variables. As discussed in the preceeding paper, this implies that one

can always produce a formal power series map of any system provided a tracking

code exists. (Of course, more than one existsl)

In this paper, we will present the tools which are needed to perform the normal

form algorithm on the map, using the mathematical operations available in the

differential algebra software of Berz. All the operations are formal in the sense that

we restrict ourselves to truncated power series i.e. derivatives up to a certain order

and do not discuss questions of convergence.

This combination of extraction of mappings and the analysis software provides a

definitive tool for perturbation theory on complicated periodic system for it is only

limited by the power of the present day computers, not by human lack of ability

and stamina.

A Short Mathematical Survey of Symplectic Maps

In this short survey we will introduce the maps to be studied in the later sections

of this paper. Initially, we take some care to emphasize the difference between a

function "f" and the value "f(x)" the function may take once it is evaluated on a

given element "x". This is important because the Lie algebraic maps of classical

mechanics act on functions, not on the rays.

Let us assume that we have a 2N-dimensional phase space. A vector x in this

space will be of the form:

(1.1a)

where q are the positions and p the momenta. Being canonical variables they obey

the famous Poisson bracket condition

[qi,Pj} = hij.
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Let us assume that we start with a transformation Q which maps linearly the set V of

functions of phase space and parameter space into itself i.e. it is an endomorphism

of V:

f E V L Qf E V; Q E End(V)

z E rn..2N L fez) E rn..

z = (x,~); ~ = vector of Np parameters.

Let us define 2N projection functions:

(1.2a)

(1.2b)

(1.2c)

(1.2d)

Let us assume that Q leaves the Poisson bracket invariant [I, g], i.e. [j,g] = [9j,9g].

Then we call 9 a symplectic map. For a symplectic map such as Q, the following

can be shown [7):

(QJ)(z) = j(z)

z= «(QIIl)(Z), "', (Qll2N)(z)) .(1.3)

Assuming that 9 represents the system under study, the function Qili (E V) gives

the it h component of the final ray as a function of the initial ray z. To abbreviate

the notation, z will be denoted by gz and Zj by QZi. We consider endomorphisms

of V such as 9 because exponentials of Lie operators provide an infinite supply of

maps of the type of Q. As we will see, Lie operators are essential if symplectic maps

are to be put in normal form. Clearly, as we just mentioned, if 9 is the map for
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one period of the system, Qz is the ray after one period. This is exactly what the

DA-software gives us to any pre-specified order No - 1:

Qz = (Qx,S)

No-l

Qz = Mz + L rk(Z).
k=l

M = Matrix or linear part.

Fk (z) = homogeneous polynomial function of order k .

No - 1 = maximum order of the formal power series considered..

(1.4a)

(lAb)

(lAc)

Notice that in general it can be arranged that Q(O) = 0. In the next section, two

other properties will be assumed:

1) There exists aDA-function :Fz (:F E End(V») which brings the rays to

the b'-dependent fixed point of Q:

glz = (F-1z) 0 (gz) 0 (:Fz)

or mathematically 9f has the property:

No-l

gf(x,15) = (0,15) + M{N(x,O) + L r[(X,6)
k=l

a! (0,6) = (0,6) V6.

(1.5)

(1.6a)

(1.6b)

Here "0" is the composition of two functions. It is available in the DA-software

package.
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2) We will also assume that there exists an endomorphism of V denoted by AL

which leaves the sub-space of linear functions globally invariant and brings MIN
into a very simple form [8J:

No - l

Mz = (0,5) + Rx + L rk(X,5)
k::::l

(1.7a)

(1.7b)

In Eq, (1.7), every (qi,Pi) undergoes either stable or "unstable" rotation under the

effect of R. Using the script letter to represent the symplectic map associated to

Rx:

v~v (l.8a)

or,

- sin f.l i )

cos JLi
(L8b)

= ( cosh fti

- sinh u,
- Sinh Pj )

cosh Pi
(l.Se)

The reader can glance at Eq. (3.1b) for the Lie generator equivalent of Eq. (1.8).

It is worth pointing out that Fz will exist if all the p,j's are different from zero.

Indeed, in this paper we do not consider integer tunes.

The computation of F'z and the transformation of the matrix MIN into R are

all operations which have been implemented for an arbitrary phase space dimension

in the DA-software.

Therefore, in the body of this paper, we will deal exclusively with the map M

and its DA-representation Mz. It is on this map that the full combined power of

the Lie algebraic methods on the symplectic group and the tools of the differential

algebra package permit a general solution of the normal form problem.
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Before going further ~ the reader is assumed to have a strong knowledge of Lie

operators in classical mechanics. In particular, we will often go back and forth

between functions belonging to V and their associated Lie operators belonging to

End(V). The notation of Dragt is used throughout this paper:

: f : g = (f, 9J = V ft J v 9

J - symplectic form.

(1.9a)

(1.9b)

It is worth pointing out that the commutator of two Lie operators :f: and :g: is

just the Lie operator of their Poisson bracket :If,g]:. This is a very important

homomorphism of the commutator algebra of Lie operators and the Poisson bracket

algebra of functions. It is used implicitly in many manipulations used throughout

this paper.

In Section 2, we introduce and justify the existence of a map denoted by T

critical to the normal form algorithm on a factored Lie representation of the map.

In Section 3~ we introduce a new basis for the functions of phase space which uses

the linear eigenfunctions of T (or R). In Section 4, we discuss the evaluation of

(7-1Ir )(x) in terms of the differential algebra tools.

In Section 5, we extract a Lie generator from a DA-function of the form of

(1.7b) again using DA-tools. This is then used in Section 6, were the full recursive

algorithm is displayed.

To simplify the notation, the parameter 6 is left out of the subsequent discussion

until Appendix A. Hence z is replaced by x. The vector z can be put back in by

mentally letting all operators leave 6 unchanged.
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Finally, the appendices discuss the "coasting" plane normalization, the super-

convergent procedure and the normalization of the pseudo-Hamiltonian of the map.

(Not a new topic, except for its implementation in the differential algebra context).

2. Canonical Transformations on Symplectic Endomorphisms of V

The normal form algorithms of Deprit [9,10,11,12, 131proceed by successive

transformations on the Hamiltonian. The infinitesimal Lie generator of the map

between s and s + ds is just :-H: . In our case, we do not work on a map near the

identity but on a map far from it since it represents one period of OUf system.

Let us assume that our map M is made out of two pieces, an unperturbed linear

part n and a perturbation proportional to a smallness parameter 0:. Following Dragt

and Finn [7], it is best to factor the total map into two pieces:

M = 'Rexp(: af:) (2.1)

Consider a canonical transformation A whose purpose is to modify M into a new

factorized representation )t/ defined to first order in a. Using a Lie representation

for A, we get for N

= exp(: o F :)R.exp(: a] :)exp(: -aF :)

= 'R.exp(: o/R-1 F :) exp(: 0:1 :) exp(: <oF :)

= R.exp (: a{-(£ - n-1)F + j} + 0(0:2 ) :)

(£ = identity map) (2.2)

Denoting by T the operator £ - 1(.-1, it is clear from Eq. (2.2) that one must study

the range and the kernel of T in order to specify what possible linear terms in a
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can remain in Eq. (2.2) [14, 15]. Suppose f is decomposed as follows:

1= Ir + 10 t- 1. KerT (2.3)

Then, we can select A or F such that N' becomes exp (: afo + O(a2 ) :). The

function F is just given by:

F = 7-1 f,. . (2.4)

From this short discussion one sees the central importance of the map R. The

eigenvectors of R of unit eigenvalue will constitute the kernel J{er 7 so critical to

the inversion of T.

In the next section, we examine a suitable eigenbasis for the study of n in the

general case.

3. The Eigenfunctions of R and the Resonance Basis

As discussed earlier we assume that the linear map R has been brought to the

following Lie representation:

R 0:= exp(: h :),

N N

fz = L - ~k (qi + (€k - €k)PZ) = L f;
b=l k=l

(3.1a)

(3.1b)

for stable motion in kt h plane.

for unstable motion in kt h plane.
(3.1e)

In Eq. (3.1), we purposely neglect the "coasting" plane which is obtained when

€k = Ek = O. Its inclusion would complicate the discussion, since it is not true

anymore that the vector space of polynomial functions is a direct sum of the range

ImT and the kernel Ker T[16J(see Appendix A).
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The evaluation of 7-1 iT requires a decomposition of Ir in eigenvectors of: h : .

These eigenvectors are easy to obtain, the answer is given by:

(3.2a)

(3.2b)

(3.2c)

Using this new basis, we can easily find the kernel J(er 7. Let us define a new

vector as follows:

(3.3)

Using the differential property of the operator: h :, we can compute the eigenvalue

of [rn, n) [11]:

: 12 : [m, n) = (n - m)· A [m;n}. (3.4)

Assuming that the AkS are irrational and prime amongst themselves, we conclude

that

jill, n) E K er T ::::=} 11 - m = o. (3.5)

Providing that one can easily change basis to the [m, 11), the computation of 7-1IT

is trivial [14, 15]:

IT = L Am,n [m, n)
m,n

T - 1f:r = ~ Am,n I}c: ( ) 111, 11 .
m.n 1 - exp (m - n) . >.

(3.6a)

(3.6b)

In the next section, we show how to perform the change of basis and the com­

putation of 7-1 using the differential algebra composition and the special exponent
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dependent scalar multiplication.

4. The Evaluation of 7-1If'

The symplectic maps which we study have real Lie generators. However, we have

seen that the evaluation of T- 1iT requires the introduction of complex eigenvectors

if one or more planes undergo stable oscillations under the action of n. We will

describe here how one uses the composition of two differential algebra maps to avoid

dealing with complex vectors.

First, we introduce the special exponent dependent scalar multiplication avail­

able to the user of the DA-software. Consider a function f of ]R2N into lR

f - "" A;"l isn- L...,; j Xl' •. X2N (4.1)

and an arbitrary function g(j) from N 2N to JR. Using gO), we built a new function

cPuf as follows:

(4.2)

The transformation </>g, like the Lie map M acts on the space of phase space func­

tions of IR2N into R.

We now introduce a transformation </>1r by defining 7T"(j) to be:

M = 2:~1 €;i2; = number of powers of momenta

in the stable planes

1I(j) = (-1)~!;

• M±l1I(J) = (-1) 2 ;

even ]1

odd A1

(4.3)

In the definition of 1r(j), the function Ei is the stable plane identifier of Eq. (3.1).
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Furthermore, we introduce two functions which will serve in the computation

of 7-1. Using Eq. (3.6b), we define the functions a(j) and b(j) to be respectively

the real and imaginary part of the following function:

a+ib -
1

1 - exp ((m - n) . A)

(4.4)

The explicit formulae for the functions a and bare:

C
O) 1 - cos Aet;

aJ =
1+ e2t- - 2et- cos A

• A t-
bO) = sm tie

1 +e2c!!" - 2ec!!" cos A

{
A = 2: ti(mi - ni)f.Li ,

A = 2: €iCmi - ni)f.Li .

(4.5a)

(4.5b)

(4.5c)

Clearly, two more exponent dependent scalar multiplications can be defined, namely

To complete the battery of tools necessary for the evaluation of 7-1i-, we will

define three real change of basis using the composition. Consider two functions ~

and <J' belonging to V :

One can always define the function 8' 0 ~ from IR2N to IR2N as follows:

(~o ~)Cx) = SS(?R(X»)
X E IR2N

13
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The DA-composition allows for operations of the type of (4.7) whenever ~ and SS

are polynomial functions. We now define three transformations from IR2N to lR2N

by their effect on the basis components qk and Pk:

{ In (x) _ In P _ sszs». .
~r 12k-J - ~r k - 2 '

(4.8a)

= fkqk + €kPk

= fkPk + £kqk ,
(4.8b)

{
2R;lqk = qk + Pk

~;lpk = qk - Pk .
(4.8c)

Strictly speaking the DA-composition computes SJ 0 ~ in a formal sense only since

it truncates at a predetermined order. Here however, since ?RT , :.} and 3t;1 are

linear transformations, the composition will be exactly performed. We are now in

a position to compute 7-1ir in terms of the operations described in this section.

Before giving the result for 7-1iT in terms of the real number transformations

listed in this section, let us write the result for 7-1i- using complex number trans-

formations. Using Eq. (3.2b), we define the resonance to cartesian transformation

~c and its inverse ~;;-1:

m qk + Pk
;JLcqk = 2

~ qk - Pk
cPk = 2(i€k + fk)

14
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In terms of the transformation ~c, 7-1 iT is given by

(4.10)

Finally, in terms of the real transformation directly available in the DA-software,

7-1i1' can be written as

The addition in (4.11) is defined in the usual manner:

(f + g)(x) - f(x) + g(x).

(4.11)

(4.12)

In the next section, we examine how one produces a first order factorized repre-

sentation of the type (2.1) from a power series representation of the ray. This will

be an essential element of the recursive loop used in the analysis of the one period

mapM.

5. The Extraction of a Eirst-Order Lie Representation

Our ultimate goal is to perform a perturbative computation of the power series

representation of the map to arbitrary order. To achieve this we must be able to

extract a Lie generator to first order in some smallness parameter 0:'.

Consider the map M of Eq, (2.1), let us assume that we have a formal power

series representation of n-1M(i.e. n-1Mx = (Mx) 0 CR.-IX)):

No-l

n.-1Mx = x +0:' L Gk(x;a)=x+o:G(x;a).
k=2

(5.1)

In Eq, (5.1), the functions Gk(X) are homogenous polynomials in x and No - 1 is

the highest power in x. Assuming a Lie representation for n-1M as done in (2.1),
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we can evaluate its effect on x:

n-1Mx = exp ( : af(x;a) :)x = x+ a [f(x;O),x] + O(a?)... (5.2)

Comparing Eqs. (5.1) and (5.2)~ we get equation for f(x;O) [7, 17J:

[J(X; 0), x] = G(x; 0)

- JV f(x; 0) = G(x; 0)

x

==* f = / JG(x'; O)dx' .
o

over an arbitrary path

(5.3)

In the formula for f, the matrix J is the symplectic form used to define the Poisson

bracket. The independence of f from the integration path is a consequence of the

symplectic nature of n-1M [17]. To perform this integration, we choose a path

along the "diagonal":

,
x =1]X,

dx' = dry x . (5.4)

We can write the resulting f with the help of the special exponent dependent

transformation ¢. We first define a function O'(j) which simply counts the powers

of x in each monomial of G:

(5.5)aO)= ----
1

(Ejk) + 1
k=l

The integral for f is then given by the DA-software operation:

N

j(x; 0) = x t J ¢>O'G(x; 0) = I: {X2k( ¢O'G)2k-l - X2k-l (q)O'Ghk } (5.6)
k=l

Finally, we must point out that it is possible to compute the DA-function asso-
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dated with this first order approximation of the map n-1M because of our ability

to perform Poisson bracket on DA-functions:

( )
n.-: o/k-l)

exp :af(x;O): x=x+ L (k-l)! :!(x,O):k-I X ,

k=2

(5.7)

Needless to say that this function or its inverse (a ~ -a) can be composed with

another DA-function exactly in a formal power series sense thanks to the DA-

software. This is how we can bypass the Campbell-Baker-Hausdorffformula.

In section 6, we will reach our final goal, that is to write a recursive procedure

brings a map into a normal form.

6. Recursive Loop for the Order by Order Normalization of the Map M

Let us assume that we have a map M factored into the linear part R of Eq.

(3.1) and a non-linear map No:

M=RNo,

No-l

Nox=x+ L G k·
k=2

Our final goal is to express M as follows

A = exp(: Fo :) ... exp(: Fw ) ••• exp(: FI .},

No = exp(: Tl :) ... exp(: To :).

(6.1)

(6.2a)

(6.2b)

(6.2c)

In general, as we will see, the transformation <Pa and <Pb introduced in Eqs. (4.4)

and (4.5) will determine the target map No. For example, if all the Tw's belong to
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J(er T, we simply define a and b as follows:

if
N

L Ihk - hk-ll = 0 then a == b =:::: 0 ,
k=l

(6.3)

Otherwise, aO) and b(j) are given by (4.5).

Sometimes, one would like to leave one or many resonances not belonging to

K er T in the Tws. This is achieved by letting a and b be zero for the particular j

vectors belonging to these resonances. Finally, in the case of total removal of the

resonances (Eq. (6.3)), the map 'R.No can be written as a single exponent:

n
n.Nn == exp (: h + L t; :) .

w=1

(6.4)

In this particular case, we can even compute the formal pseudo-Hamiltonian at that

particular surface of section:

M = exp(: H:)
n

if = A-
1 (12 +~ Tw ) . (6.5)

Again, we emphasize that all the operations given here are within the power of the

DA-theory and software.

We now describe the recursive process leading from the factored representation

of (6.1) to the final result of Eq, (6.2). This will be achieved in it steps where n is

just No - 2 for an order by order perturbative calculation. For the superconvergent

process of appendix C, n is just the integer part of 1+log(No - 2)/log 2. We will see

that the nature of the process is partly determined by the function 0"0) introduced

in Eq. (5.5).
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Let us look at the DA-operations leading from the wth step to the (w+1)th step.

To start we assume that the following maps and DA-functions have been found:

Awx = exp(: Fw :)x = x + F W

No-l

Nwx = x + L Gk' = x + G W

k=2

N~x = exp(: -Tw :) ••• exp(: -T1 :)x

We first compute TW+l and Fw+1:

(6.6a)

(6.6b)

(6.6c)

(6.7)

For a superconvergent process O'(j) is exactly given by Eq. (5.5). However for the

normal order by order process described in this section, O'(j; w) is w-dependent:

{

0' (j; w) = W~3

O'(j;w) = 0

2N

if L: j k = w + 2 ,
k=l

otherwise
(6.8)

Of course, T""'+l is just the left over part which is saved along during the evaluation

of T-1. More precisely, the terms which are zeroed by tPa and tPb are kept and

transformed along with those leading to Fw+l.

To close the recursive loop, we must compute Aw+1x, This is of course a DA-

operation since it involves a finite number of Poisson brackets, namely at most

(No - 2)j(w + 1) terms of the Lie exponential map. The same can be said about
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A;;ilX, Hence we obtain the DA-map NW+l :

(6.9)

By exponentiation of the Poisson bracket or composition, the map N~+l is also

computed:

(6.10)

This last operation brings us back to the initial point of Eq.(6.6) with w raised

to w + 1. The similar process of normalization can be now applied on the pseudo­

Hamiltonian ii. This will involve a few changes in the recursive process and a

redefinition of the function a and b. We describe this in Appendix B.

Conclusion

We have described in this paper the algorithm necessary for "normalizing'} a map

using its DA-representation. This algorithm has been written and tested against the

less powerful tools installed in MARYLIE 5.0 by Neri and Dragt [3]. The algorithm

itself depends entirely on the ability to partially factor a map in terms of Lie oper­

ators. Its implementation to arbitrary order, arbitrary number of parameters and

arbitrary signature of the quadratic invariants is made possible only by the awesome

power of the differential algebra package of Berz. For example, at this moment, we

estimate that it is feasible to produce a ninth order map (with five variables) for

the realistic lattice of the sse. For smaller machines, we can produce maps of even

higher order. This will be of great use in the investigation of undulators and their

effects on circular light source devices.
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The maps we produce can be exactly analyzed with our algorithm and daredevils

can use them for tracking. Incidentally, the partial map inverter of the DA-package,

in addition of computing the fixed point map :Fz mentioned in the introduction,

permits several "symplectiflcation" schemes of any DA-function used in a tracking

simulation.

Along the lines of perturbation theory, it is clear that the DA-software can be

useful in manners not described or even foreseen by the authors. For example, the

symplectic-SU(2) maps needed in Yokoya's algorithm [15] as well as the algorithm

itself can be written easily using the DA-software. This is especially true since the

coupling from the orbital on the spin motion requires a high order expansion in the

spin directions.

We hope that the reader will derive two conclusions from this paper: firstly, that

formal perturbation theory on the map and a Hamiltonian-free [2]approach to single

particle dynamics in complicated periodic systems is much more powerful than a

straightforward application of the Birkhoff or Deprit normal form algorithm directly

on the messy Hamiltonian [13], and secondly that the differential algebra method

supersedes all numerical differentiation methods and map manipulators by its gen­

erality and precision. For this reason, we restrained ourselves from giving simple

examples, for it would give a false impression to the reader. (See Reference [14],

Appendix B for an analysis of a trivial linear map.)
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Appendix A. The Coasting Plane Normalization Procedure

Let us assume that some part of the 12 are "drift" like in nature. Then 12 can

be reduced and broken into two parts:

12 =12H+hD, (A.la)

(A.lb)

If we further assume that all the Pk'S (k > NH) are constants of the motion of

the full non-linear map, the procedures outlines in the body of this paper follow im­

mediately by simply considering the Pk(k > NH) as parameters instead of canonical

variables. The basis vectors are just obtained from [m, n) of Eq. (3.3):

(A.2a)

(A.2b)

Here h contains the non-canonical parameters as well as the drift-like momenta.

Essentially, the absence of the qk(k > N H) from the Lie generators of the map,

allows for a full diagonalization of T in terms of the [m, n;v) eigenfunctions.

Physically, the longitudinal phase space is an example of a "coasting" plane

whenever RF-cavities are turned off in a circular ring.

When the Pk'S (k > NH) are not constant, the transformation T cannot be

diagonalized. At best T can be put in Jordan normal form. For our resonance

basis, we will again factor the harmonic part from the "drifting" planes:

[m, n, k, l,v} = [m, n} [k, I)D lv}p
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I) £/11 £/lNp
V P = V 1···UNp·

We also factor the map n into the harmonic and the drifting part:

R = RHRn = RnRH = exp(: hH :)exp(: h» :)

Finally, we rewrite the operator T as a product:

T = (~. - R//Rn1
) = TH(£ - n:i/Tji1D) ,

00 • f .k
V=R/}-£=L .-;!D.

k=l

(A.3c)

(AA)

(A.5a)

(A.5b)

(A.5c)

Due to the special nature of Iso, the operator : hn : is nilpotent in a formal

power series sense. In fact, if our maximum order is No, we must have:

No

T-1 = Tjil 2:)Rj/Tji1)k V k.

k=O
(A.6)

The form of T-1 will complicate the process outlined in Section 4. Physically it

corresponds to a particle undergoing oscillations in an RF-bucket with no linear

part. Because of the rarity of this problem, we have not yet implemented the map

T of (A.6) in our normal form software. It should not pose any problem to the

interested user.

Mathematically, the harmonic part RH has a semisimple Lie generator and, as

a result, the space of polynomial functions is a direct sum of the range and the

kernel of RH. In the coasting case, R can be factored into a semisimple part RH

and a nilpotent part Rn substantially complicating the process [16].
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Appendix B: Order by Order Normalization of the Pseudo-Hamiltonian

H

The pseudo-Hamiltonian ii can be written as a sum of a quadratic part h given

by (3.1b) and a non-linear part aV:

H = fz +aV. (B.l)

Following Dragt and Finn [11], we transform the map exp(: H :) by a similarity

transformation A as done in Section 2. One gets the result:

.A! = A exp[: ii :) A-1

= exp(: AH :)

= exp (: 12 : +: - h : F +aV +0(a2
) .•. :)

From (Bl), we define again a map T:

T - ' f z '- ...

(B.2)

(B.3)

Letting: h :-1 act on [rn.rr) provides the new functions aU) and b(j) which are to

be used to produce the transformations ¢a and ¢b. This was already provided by

Eq. (3.4):

:12 :-1 jll-m) = [C n - m).,\]-11U1; 11)

1
- (iLl + Ll) [m, n}

L\. - ifi.- _2Im , n}.
fi.2 + Ll

25

(B.4)



Consequently, we get for a and b

a(j) = 2 is -2 '
6. +~. -~

b(J) = -2 .
l:i.2 + l:i.

(B.5)

Let us start again the recursive process as was done in Section 6, by postulating

the existence of a few maps:

n; = fz +Vw

.~"

Awx = exp(: Fw :)x = x + F W

We first compute Fw+1 again using 7-1:

Here 'Pw+2 projects the part of Vw which is of degree w + 2.

(B.6)

(B.7)

Then the DA-funetion Aw+1X is computed with a finite expansion of the Lie

exponentiation as we did in Section 6. Finally, H w+1 is simply obtained by compo-

sition:

(B.8)

This final step closes the recursive loop.

Again any resonance can be left in by a suitable modification of a(j) and b(j).

One bizarre application of this method in connection with the full DA-software

package, is the ability to compute the full (No - l)th order matrix of any ideal

electro-magnetic element exactly. This is true because the formal solution of an
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ideal element can be written as:

M = exp[: 12 + V :)

Then one can follow our procedure and get for M:

M = A-I exp(: 12 + Vo :)A.

(B.9)

(B.lO)

However, since 12 + Vo is a function of the f~'s only (see Eq. (3.1b)), its mo­

tion can be computed exactly in terms of the sine, the cosine and their hyperbolic

counterparts.

Having the exact solution in terms of elementary functions allows us to compute

the DA-representation of the map (see preceding paper of this issue). Therefore,

we can get Mx:

Mx = (Ax) 0 (exp(: 12 + Vo :)x) 0 (A-Ix). (B.ll)

It is not clear whether this surprising result has a real practical application in the

field of power series codes. (See again the preceeding paper)
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Appendix C: The Superconvergent Algorithm on the Map

A superconvergent algorithm can be constructed by restoring the function a

used in the integration to its general form given by Eq. (5.5) and defining an w

dependent Y map. To achieve superconvergence in the algorithm of section 6, we

define T as follows:

T(w) = E - R-IN~

N~ = tune shift map defined by Eq. (6.6c)

(C.la)

(C.lb)

Because N~ - £ is nilpotent over the space of truncated polynomials , we can

use the trick of appendix A to invert the map Y(w):

N o-3

y-1(w) = 70- 1 L (R- 17o-1
) k 1)~,

k=O

To = £ - tr>,

1)w =N~ - £,

(C.2a)

(C.2b)

(C.2c)

The superconvergent algorithm is faster than the order by order procedure for

very high order calculations. On a simple example, it was slower by a factor of

two at the sixth order but about 80 percent faster at the sixteenth order despite

no special attempts to optimize the superconvergent algorithm. We leave it to the

reader to construct a superconvergent process reproducing the results of appendix

B.
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