SSC-152

The Superconducting Super Collider

\\ﬂ
\_\«. .
\b

- Differential A ebraic Description
of Beam Dynami¢s to Very High Orders

" M. Berz
SSC Central Design Group

January 1988




SSC-152

DIFFERENTIAL ALGEBRAIC DESCRIPTION
OF BEAM DYNAMICS TO VERY HIGH ORDERS

M. Berz

SSC Central Design Group”
c/o Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720

January 1988

*Operated by Universities Research Association for the U. 5. Department of Energy




Differential Algebraic Description of Beam
Dynamics to Very High Orders

M. Berz

SSC Central Design Group, Lawrence Berkeley Laboratory
Berkeley, Ca 94720

Abstract

The new method of differential algebras for the description of beam
dynamics is presented. It allows a very straightforward and elegant
computation of transfer maps of particle optical systems. The order
of the procedure is unlimited. The theoretical background of the
method is presented in detail. It is shown how the method can be
used in practice.

1 Introduction

The effect of a particle optical system can be described mathematically by a
map relating the final coordinates Zy of a particle to the initial coordinates
z

% = M(Z) (1)

The coordinates 7 contain positions and momenta of the particle. In case
particles of differing masses or differing charges are to be investigated, which
is the case in the description of particle spectrometers, these quantities can
also be included in 2.

Except for the most trivial cases it is impossible to find a closed ana-
lytical solution for the map M. However, expanding M in a power series
yields a set of differential equations for the expansion coefficients which in



many cases can be solved up to some order. The complexity of the result-
ing differential equations, however, increases dramatically with the order of
the expansion coefficients. So this procedure is limited to low or medium
orders. In fact, most widely used codes [1], [2], [3] only have the capability
to compute nonlinearities in (1) through third order.

Recently it has been possible to extend this to higher orders using the
custom made formula manipulator HAMILTON [4]. This program pro-
duces FORTRAN code for formulas of nonlinearities compatible with the
program COSY [5]. At the present time, COSY can compute all fifth or-
der nonlinearities of common beam line elements like bending magnets and
magnetic and electrostatic multipoles including the dependence on the par-
ticle mass.

Since the accuracy of the Taylor series representation of the map in
equation (1) increases by using higher orders, it is desireable to know M
to as high an order as possible. This certainly holds for the purpose of
using the map for subsequent tracking of simulation particles; but also for
purely analytical purposes like computation of tune shifts with amplitude,
chromaticities, invariants etc. based on nonlinear normal form theory [6],
(7] this is highly desirable.

In this paper we will present a very straightforward way to compute
nonlinearities to arbitrary orders based on differential algebraic techniques.
The nonlinearities are computed to machine precision; the whole procedure
is completely independent of the order and only limited by the power of
the computer.



2 Differential Algebras

In this section we will provide the mathematical background of the theory
of differential algebras required for the advertised study of nonlinearities.
Differential algebras are related to the theories of nonstandard analysis [8],
[9], formal power series [10] and automated differentiation [12]. Their use
for the field of nonlinear dynamics was first discussed in [13].

For the sake of clarity, we first address the simplest case of differential
algebras, the structure D, .

Consider the Vector space R? of ordered pairs (@p,a1), @o,a1 € R in
which an addition and a scalar multiplication are defined in the usual way:

(ap,a1) + (bo, b)) = (a0 + bo, a1 + by) (2)

t-(ao,a1)= (t-ao,t-al) (3)

for ag, a1, bo, b1 € R. Besides the above addition and scalar multiplication
a multiplication between vectors is introduced in the following way:

(ao,a1) - (bo, b1) = (@0 - bo, a0 - by + a1 - bo) (4)

for ag, ay, by, by € R. With this definition of a vector multiplication the set
of ordered pairs becomes an algebra, denoted by ;Dy.

Note that the multiplication has a certain similarity to complex multi-
plication; in fact, the second component of the product is exactly the same
as in the case of complex multiplication.

In the same way as in the case of the complex numbers, one can identify
(ao,0) as the real number ap. Where in the complex numbe rs, (0,1) was a
root of -1, here it has another interesting property:

which follows directly from equation (4). So (0,1) is a root of 0. Such a
property suggests to think about d = (0,1) as something infinitely small
and small enough that its square vanishes. Because of this we call d = (0, 1)
the differential unit. The first component of the pair (ag,a;) is called the
real part, and the second component is called the differential part.



It is easy to verify that (1,0) is a neutral element of multiplication,
because according to equation (4)

(1,0) - (a0, @1) = (a0, a1) - (1,0) = (a0, a1) (6)

It turns out that (ap, a;) has a multiplicative inverse if and only if a¢ is
nonzero; so 1D, is not a field. In case ap # 0 the inverse is

1 ay

-1

=(—,—= 7

(a0,01)™" = (-, p (7)

Using equations it is easy to check that in fact (ap,a1)™? - (a0, a1) = (1,0).
After having introduced the basic arithmetic on 12,, we will now show

a very remarkable property of this differential algebra: Its usefulness to

compute derivatives. As an example, consider the following function:

1
f@&) = ®)
The derivative of the function is
’ _lf -1
£ =251y ©)

Suppose we are interested in the value of the function and its derivative
at x=2. We obtain

2 3
@) =3 FO)=-o (10)
Now take the definition of the function f in equation (8) and evaluate it
at (2,1). The real part of this quantity is the position at which the function
was evaluated; the imaginary part has to be set to 1 for reasons discussed

below. One obtains:

1
2D+ an
1
(27 1) + (%’ —.:11-)

fl(2,1)]

Il




GD
= G/
= (5-2) (11)

As we can see, after the evaluation of the function the real part of the
result is just the value of the function at £ = 2, whereas the differential
part is the derivative of the function at z = 2.

That this is not by accident can be seen as follows. By our choice of
the starting vector (2, 1), initially the vector contains the value I(2) of the
identity function I : £ — z in the first component and the derivative of
I'(2) =1 in the second component.

Now assume that in an intermediate step two vectors of value and deriva-
tive (g(2),¢'(2)) and (h(2), A’'(2)) have to be added. According to (2) one
obtains (¢(2) + k(2), ¢'(2) + A'(2)). But according to the rule for the differ-
entiation of sums, this is just the value and derivative of the sum function
(g+h)atz=2.

The same holds for the multiplication: Suppose that two vectors of
value and derivatives (¢(2), ¢(2)) and (h(2), #'(2)) have to be multiplied.
Then according to (4) one obtains (¢(2)- h(2), g(2)-F'(2)+ ¢'(2)- h(2)). But
according to the product rule, this is just the value and derivative of the
product function (g - h) at z = 2.

The evaluation of the function f at (2,14 can now be viewed as suc-
cesively combining two intermediate functions g and h, starting with the
identity function and finally arriving at f. At each intermediate step the
derivative of the intermediate function is automatically obtained as the
differential part according to the above reasoning.

An interesing side aspect is that with the search for a multiplicative
inverse in equation (7) one has derived a rule to differentiate the function
f(z) = 1/z without explictly using calculus rules.

After discussing the algebra ;D; and its virtues for the computation
of derivatives, we now address the most general differential algebra, the
structure ,, D,. It will eventually allow us to arithmetically compute partial
derivatives of functions of v variables through order n.

First we define N(n,v) to be the number of Monomials in v variables

5




through order n. Now assume that all these N monomials are arranged
in a certain manner order by order. For each monomial M we call Ijs the
position of M according to the ordering. Conversely, with M) we denote
the Ith monomial of the ordering.

We now define an addition, a scalar multiplication and vector a multi-
plication on RV in the following way:

(Clo,al, "'aaN) + (bo’bl)""bN) - (aO + bOaal + blau-:aN + bN) (12)

t-(ag,al,...,aN) = (t-ao,t~a1,...,t-aN) (13)

(007 A1y ey aN) * (b()) bls ""bN) = (CO, €1y €2y veny CN) (14)

where here the ¢; are defined as follows:

= Z a,-b, (15)

0L r,psN
My - My = M;

To help clarify these definitions, let us look at the case of two variables

and second order. In this case, we have n = 2 and v = 2. There are six
monomials in two variables, namely

.14 z, ¥, TT, TY, Yy (16)
Hence N(2,2) = 6. As an example, using the ordering in (16), we have
I, = 5 and M; = y. Using the ordering in (16), we obtain for ¢; through
cg in equation (15):

g = a;+b

¢ = a1-bataz-bh

3 = ay-b3taz-b

ca = a1-bytazy-bytay-b

cs = ay-bs+az-byataz-by+as-b

ce = ay-bg+az-bz+as-by (17)

6



Similar to the Definitions in 1D, looking at the definition of the mul-
tiplication it can be seen that it is related to the product rule for higher
partial derivatives; in fact, evaluating the function f in the arithmetic for

2Dj starting at X = (2,1,0,0,0,0) fand ¥ = (y,0,1,0,0,0) yields

f[(zi 1’ 0, 0) 05 0) ? (y10, 1’ 0) 0) 0)] =
of Of 18*f f 18f
(f’ axs ay?zaxzﬁ away12ay2)(x’y)

(18)
In the general case of v variables and order n, after evaluating f in the
differential algebra one obtains:

ail +iz+.+iv f

P i
Oz} 0x3...0x

= gl 4 - c

0 19
I(.z:.i :c:: ) ( )
where I (. is the index of the monomial (a::; O :1:23 , as defined in the
beginning1 of the section.The proof for this property follows in full analogy
to the case of 1 D;.

i
:L":)

3 Standard functions on differential algebras

In this section we will generalize standard functions like exponentials, log-
arithmic and trigonometric function to differential algebra. As we will see
below, virtually all functions existing on a computer can be generalized in
a quite straightforward way.

We start our discussion by noting that for any differential algebra vector
of the form (0, @y, ...,an) €, Dy, i.e. with a zero in the component belonging
to the zeroth order monomial, we have the following property:

0,a1,...,an) =(0,0,....,0) fori>n (20)

which follows directly from the definition of the multiplication in ,D, de-
fined in equation (14).

Let us begin our discussion of special functions with the root function
vz. The root has the following power series expansion:



—3
viTz= Yyl oY, (21)
1=0 (2';)
Using this formula and the definition of the addition and multiplication
(12), (14), one obtains for the sqare root of a differential algebra vector:

\/(0'0;"-31’“'25'"’ aN)
= \/aD + (0 a1,0az, .. aaN)

_ G @ oy
= ./do- \/1+(0 a0’ 30" """ a0)
= va Syl B o ;e oy

= o (20) ao’ ag’ ap

= Vao- Z( 1y '2 '4” ((2z)3) 0 e 2’ "%)i 22)

In the last step use has been made of equation (20) which entails that the
sum has to be taken only through order n and thus allows the computation
of the root in finitely many steps. Hence the evaluation of the real root
V@ in equation (22), which internally on a computer requires a power
series summation and hence cannot be done accurately, is more subtle then
the rest of the operations in differential algebra.

In a similar way one obtains for the exponential function:

expllao, oy a5 o)) = exp(en) - expl(0,03 00 v)

Oa,a, ,aN):
= exp(aq) - E( 1.2 N)

_ exp(ao) Z(O 01,02, G.N)‘ (23)

=0

Again using (20) the sum brakes down to only finitely many terms, a
property greatly facilitating the effort in practical cases.

A logarithm of a differential algebra vector exists if and only if ao > 0.
In this case one obtains



log[(ao, a1, a2, ...,an)] = loglae - (1+ (0, ___1. 931 )]

— log(ao)-f-z:(_l)i-ﬂ (0 .a_l 23 ___,9_,1!):‘

‘-_1 o ao ag
= _1yilip, 9 92 9Ny
1ogao)+§( i (U

(24)

Using the addition theorems for sine and cosine, one obtains formulas
with finite sums in a quite similar way; in general, suppose a function f has
an addition theorem of the form

fla+8) = ga(d) (25)

and g,(b) can be written in a power series, then by the same reasoning its
differential algebraic extension is computable exactly in only finitely many
steps. In practice it turns out that this can be done for all commonly
supported functions in a FORTRAN computer environment.

4 The implementation of differential algebra
on a computer

The arithmetic and the functions of differential algebra can be implemented
on a computer for arbitrary order and arbitrary number of variables.

The implementation of the addition and scalar multiplication is trivial.
However, the efficient implementation of a multiplication requires some
care. The definition of the multiplication (14) requires the knowledge of all
possible factorizations of a monomial into two submonomials. The compu-
tation of all these factorizations can be quite time consuming. On top of
that in practice it happens frequently that many of the entries in a differ-
ential algebra vector are zero.

So it is advantageous to turn the problem inside out in that no factor-
izations in sub monomials are searched but rather each component of the



first vector is multiplied by each component of the second vector and the
product is stored at the place where the product monomial belongs.

In order to do that an easy way of finding the address of the product
monomial is required. This is done as follows. First, all N(n,v) monomials
M are coded with an integer C in the following way: Let M =zi - ... . z'v
Then we define C(M) as follows:

C(M)=C(z?....2%) = i1-(n+ 1)’ +ip-(n+ 1) + ... 4, (n+ )N (26)

This means that the exponents are just "decimals” in base (n 4+ 1). Note
that since 7, < n this representation is injective, i.e. different monomials
have different codings. Note also that all codings are always less than
(n + 1)¥, but not all such codings occur.

Now suppose two monomials have to be multiplied. Since the multipli-
cation corresponds to an addition of the exponents, we have in general for

any Monomials M and N

C(M - N) = C(M) + C(N) (27)

To exploit this for the finding of the desired coordinate position I (see
section 2) of the product of two monomials, an array D is required that has
the property

In = D(C(M)) (28)

This array can be generated easily by the computer. Since the codings
are bounded by (n + 1), the array has to have at least this length. With
6 variables, this enables orders of 8 or 9 if one wants to stay inside the
boundaries of computer storage; with 8 variables the order would decrease
to about 4 which is too strict a limitation. To circumvent this, a slight
modification of the above coding and decoding will be presented.

Without loss of generality, we assume the number of variables v to be
even; if it is not even, increase it by one and ignore the additional variable.
We define two coding numbers € and C; for any monomial in the following
way:

10



Ci(af v aly) = - (n+1°+0-(n+ 1)+ +ig - (n+1)ED
Cz(:c'il et miﬂ = i§-+1 . (n + 1)0 + i%+2 . (n + 1)1 + o F iu . (n + 1)(%_1)
(29)

Then we store the N(n,v) monomials in the following way. We start
with all monomials that have C3(M) = 0 and group them by order; within
one order, the monomials are stored according to ascending values of Cy(M).
Then we store all those with C2(M) = 1, again by order, and so forth, going
through all possible values of C;. Again we obtain

Ci(M-N) = Cy{M)+ Ci(N)
Cy(M -N) = Cy(M)+ C(N) (30)

Finally we introduce some "inverse” arrays D; and D; in the following
way:

Di(c1) = (Im of first monomial M with Ci(M) = ¢1)
Dy(c2) = (Ip of first monomial M with Co(M) =¢c;)—1  (31)

Again the arrays D; and D, can be generated by the computer itself.

Using the definitions of Cy, C;, D; and D; and using the storage scheme
outlined above, it now follows that the address of the product of the mono-
mials M and N can be found directly as

Ing.v = D1[Ci(Im) + Ci(In)] + D3[CaInr) + Ca(In)) (32)

For the sake of clarity, an example for the arrays ¢;, ¢, dy and d; is
given in appendix 1 for n = 3 and v = 4. This example also illustrates
equations (29) through (32).

The coding defined in (29) entails that the maximum length of the arrays
D, and D; can now be chosen much lower, namely as (n + 1)%. Assuming
a maximum length of 1 Million, this entails limitations on the maximum
order given a certain number of variables as listed in table 1.

11



Table 1: The maximum order for different numbers of variables due to a
limitation of the length of the reverse addressing arrays Dy, D,

number of variables 4 6 8 10 12
maximum order 999 99 30 14 10

After addition and multiplication are available, The implementation of
differential algebra functions is done quite easily using the formulas dis-
cussed in section 3.

For practical purposes it is of importance that in the FORTRAN en-
vironment differential algebraic operations can only be utilized by calls to
subroutines. For this reason a precompiler [13] was developed that allows
the use of a new data type ”differential algebra” in regular FORTRAN for-
mulas. The precompiler parses the entire program and transforms formulas
containing differential algebraic quantities into subroutine calls.

5 The computation of transfer maps

Differential Algebras can be used very efficiently to compute the transfer
map (1) of particle optical systems in their Taylor series representation.

To illustrate this, let us start the discussion with a very simple example,
the midplane motion in a 90° homogenous bending magnet. Let z; and
a; = sin(a;) denote the initial distance and scaled transverse momentum
relative to the reference trajectory (see Fig. 1). Then we are interested in
the values z; and a; = sin(ay). Since the trajectories in the magnet are
circles, we can readily read from Fig. 1:

A = R sin(a;) =R a;

B = R(1-cos(a;))+ai=R(1—4/1-a})+=
. B
ay = sin(ay)=——

R

12



Figure 1: The motion in a 90° homogeneous bending magnet with radius
of bend R

g = A—R(1—cos(ay))=A—R(1—,/1-a}) (33)

These equations allow the computation of the final coordinates zy,ay in
terms of the initial coordinates z;,a;. However, taking these equations and
performing all operations in differential algebra allows us to even obtain all
derivatives of zf, as with respect to z;, a;. These so obtained derivatives,
evaluated at z; = 0, a; = 0, are then the expansion coefficients in (1). For
the sake of clarity, let us explicitly show how z; and a; are computed.

Using the ordering in (16) and identifying the variable a with y, we
obtain using the arithmetic defined in equations (12), (13) and (14)

z: = (0,1,0,0,0,0)

a; = (0,0,1,0,0,0)

A = (0,0,R,0,0,0)

B = (0,1,0,0,0,—;-.12)
1

1
ar = (0, —'—E,O, 0,0, —59

13



(0,0,R,——,0,0) (34)

2R

Comparing the so obtained result with any Matrix code [1], [2], [3],
[5], we find complete agreement; as atl example, the fact that the second
component of z; is zero implies that —-f— = 0 and hence (x,x) = 0 (or in
TRANSPORT notation R;; = 0) whlch is a well known property of 90°
bends.

In the last step we will see that we are actually able to compute transfer
maps of arbitrary order for arbitrary particle optical elements. In this case
of course we do not have analytical formulas that relate the final coordinates
to the initial coordinates. However, there is still a way to computationally
relate the final coordinates to the initial coordinates, namely by numerical
integration of the equations of motion.

In this case, the final coordinates are still computed from the initial
coordinates using standard arithmetic and functions, only the relations are
more complex than in the case of the homogeneous sector.

Now blindfoldedly performing all these operations in differential alge-
bra automatically leads to all desired derivatives of the tranfer function,
regardless of the form of the equations of motion.

Differential algebraic techniques have been implemented in the program
COSY [5]. They allow the computation of transfer maps of elements with
a dependency on the independent variable for which an analytic solution
canot be obtained from HAMILTON [4] like fringing fields. Using an eigth
order Runge Kutta integrator, all operations required for a tracking of
particles are performed in differential algebra. This allows the computation
of arbitrary fringing field effects as soon as the spacial distribution of the
electromagnetic fields is known [14]. A recent application was the fifth order
optimization of beam optical systems depending critically on quadrupole
fringe fields [15].

In many cases, including the proposed SSC, the particle optical system
can be represented very well by a sequence of subsequent kicks, which
technique is used for instance by TEAPOT [16]. In this case, the execution
of all arithmetic in differential algebra is particularly easy and allows a very
efficient and accurate computation of tune shifts and chromaticities using
normal form theory [6], [7]. This will be discussed in detail in [17].

14



10.
11.
12.

13.
14.

15.

16
17

.

References

K.L Brown, D. C. Carey, Ch. Iselin and F. Rothacker, SLAC 91 (1973
rev.), NAL 91, and CERN 80-04

A.J. Dragt et. al., IEEE Trans. Nucl. Sci., NS-32, 2311 (1985)

H. Wollnik, J. Brezina, M. Berz and W. Wendel, Proc. AMCO-7,
GSI-Rep. THD-26 (1984) p.679

M. Berz and H. Wollnik, Nucl. Instr. Meth. A258 (1987) 364

. M. Berz, H. Wollnik and H. C. Hoffmann, Nucl. Instr. Meth. A 258

(1987) 402
E. Forest, Particle Accelerators 22 (1987) 15
E. Forest, SSC Report SSC-111, Berkeley

. A. Robinson, Proc. Royal Acad. Amsterdam Ser. A, 64, 432-440,

1961

D. Laugwitz, JBer. Deutsch. Math. Vereinigung 75 (1973) 66
1. Niven, Am. Math. Monthly 76-8 (1969) 871

L.B. Rall, Math. Magazine 59 (1986) 275

M. Berz, Nucl. Instr. Meth. A258 (1987) 431 ; M. Berz, Los Alamos
Accelerator Theory Note AT-6:ATN-86-16 (1986)

M. Berz, Los Alamos Report AT-3:TN-87-32 (1987)

M. Berz, Dissertation University of Giessen, 1986 (unpublished, in
German); B. Hartmann, Diplomarbeit University of Giessen 1987 (un-
published, in German)

E. Heighway, W. Lysenko, H. Wollnik and M. Berz, Los Alamos Re-
port AT-3:TN-87-31 '

L. Schachinger and R. Talman, Particle Accelerators 22 (1987) 35

M. Berz and E. Forest, in preparation

15



7 Appendix

List of the ordering of the all monomials M = z} - ...

-zt for order n = 3 and

integers C, and C,

ing

= 4. Also shown are the codi

number of variables v

{cf section 4)

C200000000 L= B R TR T T R R S RS B IR B [ -] 69u
nw..01425836 w014258014258014014 - (=2 -]
Jeoewooooo CQOCOQOO MMM ™m™MmOOO ™= o N - MNm
Heoeoooooeo DA 00 0C0O 0O MMM ™ oo N=o
Heoro A NO - MOOCmMONMNODOMOHNOO~COm™ (=2 ] o0Q
SemoN 0O ma COMOMMOOmMONSNODOmMOO O - O coQ
FroeTeoreegnan B2 ANRIRRNERRERETS

16



List of the arrays D; and D; for order n = 3 and number of variables v = 4.
For all M, one has Ips = D1(C1(M)) + Dy(Co(M)) (cf section 4)

Dy(j) Da(j)
i

10
22
31
16
25
32

o
28
33

0

0
34

W ®nm W~ Ofw,

o=
-0

QOO MO P W~k b

[
[~
-l

17




