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o. INTRODUCTION

In the context of large machines the approximate Hamiltonian K, which is obtained by

expanding to second order in the transverse variables while keeping the 8-dependence

(8 == P-Po ) exact, is often a legitimate representation of circular machines. One nebulous
Po

element has always been the general bending magnet. With the exception of the sector bend,

many knowledgeable accelerator physicists have accepted the postulate that the parallel face

bends can be obtained as

P==QSQ

where Q are quadrupoles, and S is the sector bend matrix. This result is correct for o-inde-

pendent linear maps. However, in this paper we will show how one proceeds to a correct

solution using the Hamiltonian K and in particular, we will show that the trick of quadrupole

edge breaks down in a proper o-independent treatment.

We will derive a slightly extended Maxwellian fringe field effect from what Dragt used in

his paper on the chromaticity of small rings. Also, we will provide a 8-dependent matrix for

the body of a parallel face bend. The approach we will follow relies heavily on the work of

Liam Healy, who solved the general bend problem in the context of the code MARYLIE.

1. THE MODULAR DECOMPOSITION OF AN ARBITRARY MAGNET

As described by Healy, the solution of an arbitrary bend can be obtained by a modular

decomposition. Suppose we have a bend of entrance angle 'Vand exit angle $. If this bend has

a total bend angle of c, then it can be physically decomposed as a half parallel face of angle 'V'

a sector bend of a-<j>-'V, and a half parallel face of angle $. This is shown in Fig. 1.

Fig. 1. General bend geometry.

(Borrowed from L. Healy.)



Hence, one needs to concentrate on the solution of the half bend of entrance angle 'V. In

this paper, we will solve this problem within the framework of the approximate Hamiltonian K

used in programs such as PAIRIS or FASTRAC.

The half bend itself can be decomposed into three operations. They are represented in

Fig. 2.

x-z rotation

Fringe
Field

Figure 2

2

'~~3

Body

Firstly, the particle comes in a Frenet frame at location 1. There, the frame of reference is

rotated by 'If (drift in polar coordinate). Secondly, the particle propagates into the fringing

fields. This we will represent in some approximation defined in Sec. 3. Finally, the particle

travels through the body of the magnet from location 2 to 3.

The purpose of the following sections is to derive these three operations within the

approximate Hamiltonian of the FASTRAC style programs. We start in Sec. 2 with the

x-z rotation.

2. THE APPROXIMATE HAMILTONIAN AND THE x-z ROTATION

In a drift, H is given by

(2.1 a)
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or, in polar coordinates,

(2.1 b)

Figure 3

As seen in Fig. 3, the x-z rotation of the axis amounts to a drift in polar coordinates

where x is just the radius r. By analyticity in x, we can extend the results to a negative x.

The rotation of angle 'V induced by Hcan be computed exactly; we then expand in

powers of the transverse variables

- x
x==--

cosv

Px =cosv Px + sirnpB

-y =y

Py =Py

- (1 )x tam"t == t + -- P.B 1+8

(2.2a)

(2.2b)

(2.2c)

(2.2d)

(2.2e)

It is a simple exercise tocheck that Eq. (2.2) is symplectic. Equations (2.2) can thus be

derived geometrically, since they correspond to a drift. We have also subtracted sinur frompx,

so as to express it in deviation variables.
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3. THE BODY OF THE HALF BEND

Using rectangular coordinates. we can propagate inside the bend using the exact

Hamiltonian -Pz.

H= -pz=_[(l+0)2 -P; - p~r2-az

Boaz=-q-x
Po

Assuming that positive p bends inward. we can write

[ 2 2J11 XH = - (l +0)2 - P - P 2 + -
x y p

(3.1a)

(3.1b)

(3.2)

To derive the transport matrix, we must first compute the design orbit (XD,pxD) at

Solving (3.3) gives us

dpx _ [P H] - 1
dz - x' - - p

z z.
PxD = --+ Pxo = --+ sm'l'

p p

(3.3a)

(3.3b)

(3.4)

Clearly, at the end of the half-bend the momentum PxD vanishes. Therefore. we find for the

total length of the half-bend along the z-axis

Zt = p simp (3.5)

To obtain the approximate o-dependent Hamiltonian from H. we must expand it in

power ofPx around the design orbit and keep only terms which are of degree lower or equal

to 2.
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K "".!. (l+8)2 p 2 + .!. Py -PxPxn(.!._ 1 ) _ n _ Pt
2 n3 x 2 n n _~ n., fIT

-" I-PXD IJ-" I-PXD

2 2 2 2Pt 2
n2 = (1 + B) - P =1 - P - - + P

xD xD ~ t

(3.6a)

(3.6b)

The last two terms are added so as to produce the correct differential time of flight. It is easy

to show (using [H(z),H(z')] =0) that K produces a drift-like transformation:

Zt

Y=y + IlPy ; 11 =j ~z

(3.7a)

(3.7b)

+ Pt ~dz
fhJ I-p~D )

(3.7c)

The quantities A, 11 and ~ can all be evaluated. The results are:

A= p simI'
( (1 +8)2 _ sin2'1') 112

11 =p sin-l (:)
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(3.8a)

(3.8b)

(3.8c)

(3.8d)



Here, the ± in front of v refers to the entrance and exit half bend. Again, we emphasize

the drift-like nature of a parallel face bend. The horizontal focussing of the sector bend van­

ished, and the vertical focussing, as we will see later, will appear as a result of a fringe field

effect (solenoidal terms needed to obey Maxwell's equations).

4. MAXWELLIAN FRINGE FIELD EFFECTS WITH THE HAMILTONIANS HAND K

Going back to Fig. 2, we are interested in the potential effect of Maxwell's equation on

the dynamics between point 1 and 2.

We start again with the vector potential Az of ax-independent parallel face bend.

Az =-x B(z) (4.1)

It is easy to check that Az does not obey Maxwell's equation. This can be corrected to order y2

A z =-x B

In fact, for a given profile ofB(z), one must solve the equation

We substitute this result in the expression for H:

~ ~ 2 2 2 Pr.H=- (1+u) -(Px-ax) -p ---az
y 13

qA
Q=-

Po

We then expand H to leading order in ax
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(4.2a)

(4.2b)

(4.3)

(4.4a)

(4.4b)

(4.5)



To first order in ax, the map from z =-.6. to z =fj. is just given by:

1'1, =exp(:.[ tax d z] Px : )
-/1 ~(1+0)2_p~_p~

The Lie generator ofn is just given by

Consistent with the expansion in y2, we can neglect p2 completely in1
. Y

1=+_1 y2 Px

2p ~(1+0)Lp~

In that case, n can be evaluated exactly as a "kick"

-
Px=Px

y =y

- y p
Py =Py +- x

P ~(l+&P -P~
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(4.6)

(4.7)

(4.7)

(4.9a)

(4.9b)

(4.9c)

(4.9d)

(4.ge)



do P't _ IIp

dp't = (1+0)
(4.90

In the expressions for the fringe field, Px is usually a large quantity. In fact, it is often useful

to replace Px by Px ± sin'l'. where ± simp is the design entrance (or exit) angle.

In the context of the expanded Hamiltonian K. used in programs such as PATRIS or

FASTRAC, one can simplify (4.9) further.

x =X (4. lOa)

-
Px=Px (4. lOb)

-
Y =Y (4.lOc)

- _ l. sin'l'
Py-Py- [(11::)2 '2 ]1/2P +u - sm 'If

(4.10d)

- 1 y2 sin'l' (1+0) do
t='t-- 3

2p [(l +0)2 - sin2'1'] tz dp't
(4.lOe)

(4.10f)

1 sin'l'
orf=--y2 1

2p [(1+0)2 - sin2'1'J tz

{ Px is replaced by ± simp,

This new expression is consistent with K. The Hamiltonian K is exact in 0J but quadratic in

the betatron variables.
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Appendix I
The Matrix of the General Bend

As pointed out in Sec. 1, we need to compute the sector bend first. This is very easy

using the expanded Hamiltonian K of a sector bend.

2 2
ox x2 r« Py

K=--+-+ +-'---
P 2p2 2(1+0) 2(1+0)

A simple exercise leads to the results

- - sin<i - 5:x =coso. x + Px - p(coso. - 1) o
ro(l +0)

Px = -ro(l+0) sina x + cosd Px + pco(I +0) sinfi 0

- s
y = y + - Py ; s = total path length.

1+0

-
Py=Py

a = a ; a. = bend angle = !.....
~1+0 P

Following our discussion, the general bend can be written as follows

(AI)

(A2a)

(A2b)

(A2c)

(A2d)

(A2e)

(A2f)

Here, rot(",) is the change of coordinate given by (2.2), FC",) is the fringe matrix (4.10), H±(~)

is the half bend given by (3.7) and (3.8), and finally sector(a) is just (A2).

Needless to say that the quadrupoles added to sector bends to create arbitrary bends are

over-simplifications. In fact, it is easy to show using (A3) that for small bending angles 'V, ~

and a, the pseudo-quadrupoles to be added to a sector bend are

G(a,'V,~) ... Q(<!» sector(a-~-'V) Q(",) + 0(2) ...
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1 0 0 0

-tancj> 1 0 0
P

Q(CP) = 0 0 1 0
(AS)

0 0
tancj>

1
(lM)p

One can see that Q(ep) is not a real quadrupole since it depends on 0 in the vertical plane. This

is not surprising, since the horizontal and vertical focussing have totally different origins. In

the horizontal plane, the focussing is completely a geometrical effect due to the presence or

absence of a piece of bend. For a small angle, we expect its o-dependence to be that of the

second term of (A2b). In the vertical plane, the presence of focussing is due to the solenoidal

field, due to Maxwell's equations. Such effects always have a (1 + 0) term in the denominator,

since they came from the (Px - ax)Z drift term in the Hamiltonian. Like the drift in canonical
2(1+5)

variables, they must have a (l + 0) dependence.

In general, one can attempt to write the map of the parallel face bend as

P=f:Sf: (A6)

where S is the sector bend and E is some "edge" map. However, Healy has shown that such a

representation is unphysical, and as a result, f: has some "resonance" type divergences at some

bend angles. Therefore, the quadrupole edge trick cannot be extended in the exact treatment of

a bend even in the restricted 8-dependent quadratic theory ofFASTRAC andPATRIS.
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