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FOREWORD - WARNING

This lecture is supposed to be on the topic of tracking codes. Tracking codes are

software beings and therefore one might have expected me to discuss some of the existing

codes. Well, in fact, I have avoided discussing or even mentioning any of the existing

codes. For example, when the word "TEAPOT" appears in this lecture, the reader should

automatically replace it by the locution "TEAPOT Philosophy." This lecture turns out to be

on the topic of the ideal single particle code for a large circular machine. This code does

not exist, although I will proudly say that the sse Central Design Group has two mutant

versions of this ideal code.

The purpose of this lecture is to set guidelines for critical judging of the abilities of

existing codes and the future codes that some of you might design.

The initial chapter will consist of a description of the capabilities of an ideal code.

This will narrow down the possible solutions. Finally, let me say that despite my avoid­

ance ofcode names, I am perfect!y willing to denigrate, attack and even clarify what exist­

ing codes do. Of course, I will do this in private (in front of no more than 1,000 persons).
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Introduction - The Requirements

Our ideal monster should be able to satisfy the following requirements:

1) Adequate for large circular machine.

2) Can track exactly a particle within its model. (No approximation of its map).

3) Should include synchrotron oscillations exactly.

4) Should produce exactly Taylor expansions of its map around any trajectory. This

can be used to do fast tracking or to perform some exact perturbation theory on the

ring.

How do we start to construct this beast? Well let us look at the flow chart which describes

the steps involved in designing the code.

Select the Fields

and write

the Hamiltonian

Approximate

H

Approximate

the map.
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Firstly, we must select the kind of fields our code will model. (No gravitational

field necessary!) Typically, for a large machine this means ideal fields which are constant

over a region of space and zero elsewhere (or delta function kicks).

Secondly, we must consider whether or not an approximation of the Hamiltonian H

could lead to some simplification without invalidating the code completely. Incidentally, by

approximation I do not mean something like a thin lens approximation. When one replaces

a thick element by a thin one, one selects a different field. By approximation I mean

something like expanding a square-root. It must be without "physical" interpretation to be

called an approximation of H.

Finally, one can allow for an approximation of the exact map resulting from the

field selection and the approximate H. This is forbidden by rules 2) and 3). However, our

choices of fields and H, must be such that a subroutine of our code must allow for the pro­

duction of a Taylor expanded map around any trajectory if needed.

It is clear from the previous discussion that one must always have in mind the three

boxes of the flow chart and the four dogmatic criteria while designing my visionary code.

(As well a glass of beer in hand!)

The chapters of this lecture describe the ingredients which are necessary to con­

struct this ideal code. Hence, I will tell you the answer and if you don't like it, you can

challenge or ignore it.

i) The fields selected will be that of an ideal combined function sector bend. Arbi­

trary entrance angle will have to be mimicked by thin quadrupoles. This is per­

mitted by rule 1.

ii) The Hamiltonian H follows from i). However, a Hamiltonian K which approx­

imates H in large machine will also be discussed.

iii) The code will have to be a canonical integrator. (3 solutions: one for H and two

for K.) Canonical integrators can often be interpreted as a re-selection of the

fields.
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iv) The exact Taylor series map extraction will make one of the canonical integrator of

K hard to use. (Thesis project therel)!

The items i) to iv) motivate the topics of the chapters to follow.

Chapter 1 Potpourri of things that ought to be known. (H. K and the ability to manipu-
late maps.)

Chapter 2 Canonical Integrators.

Chapter 3 Map extraction.

Chapter 4 The beginning of a perturbation theory based on maps alone. (phase advance,
Floquet ring ...)
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Chapter 1 - The Tools

1. The Hamiltonians of the Combined Sector Bend

Here, I will refer the reader to the treatment of Ruth presented in a previous summer

school.J In scaled variables and parametrized in terms of s (the design path-length), this

Hamiltonian is just:

x x2 x 2 2 P -H:= -+ - - (1 + -) [(1 + a)2 - p - P FJ2 _..l - V
P 2p2 P x y 13

v=~;c As; q =electric charge

(l.la)

(1.lb)

Here. Px and Pyare scaled by poe. the design momentum. The momentum P'tis -: and

is canonically conjugate to the differential time 't [= c(T-To)]. Finally f3 is v; and ais just

(P-Po)/Po. The expression (l + a)2 can be written as:

(1.2)

(1.3a)

(1.3b)

We will see that it is possible to write a canonical integrator (which amounts to a reinter-

pretation of the fields) for H.

Furthermore, it is possible to find a reasonable approximation of H. Consider the

Hamiltonian K gotten by expanding the square root to second order in Px and Py:

222
K =_ ax +~ + Px + Py 6,0 - V

P 2p2 2(1+ a)

Ao=O-l+E.l
f3

This famous approximation is valid for two reasons. First. p~ and p~ are small

compared to 1, and small compared to x2 and y2 in a typical accelerator (since the Twiss

B-functions are usually larger than the y-functions).

Also. the term ~p2. potentially troublesome in small ring, can be ignored in a largep x

ring where p is large.3,4
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We will see that K is solvable in terms of two canonical integrators.

2. Approximate Maps and Their Representation5,6

In general, we will be confronted with a map n around some orbit Of course.

such a map can be represented by a Taylor series (Einstein summation convention):

(2.1)

Since the map is generated by a canonical integrator, it can be represented by a factored

product of canonical maps. Each of these maps is generated by a Lie operator (except for

the linear part for which we keep the matrix representation R):

where.

and,

~ ~

: f (~): g (~ ) = [f,g]t =Poisson Bracket,

~

: f (~) 'fJ = Identity.

(2.2a)

(2.2b)

(2.2c)

Canonical operators represented by Eq. (2.2a) act on functions of the argument of their Lie

generators and are denoted by script letters.

This implies, for example, that Eq. (2.1) is represented in terms of Lie transform-

ations as

(2.3)

To simplify the notation. we will often write Eq. (2.3) as

(2.4)

Furthermore, it also implies that a product of two Lie transformations with the same

argument in their generator act in the reverse order from the usual matrix multiplication.

Before proving this, we will give two standard results involving Lie operators:

exp(: f :) exp(: g :) exp(: -f :) =expt: exp(: f :) g .),

6
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~ ~

expt: f:) g (~) = g(exp(: f :)~) . (2.5b)
~

In Eq. (2.5). it is assumed that both f and g are functions of ~. Now. we are in a

position to examine the problem of the reverse ordering!

Consider a two step process represented by the maps N and L:

-:? -:?

t N(~») F; L(~) ) Tf (2.6a)

~ -+
N(~) =exp(: f(~):) (2.6b)

..,,+ ~

L(~) = exp(: g{~) :) (2.6c)

We must have
~~ ~..,-+

l1(~)=L(~) ~

~~ ~ ~ ~

ll(~)=L(~)N(~) ~

~~ ~ ~

=L(N(~)~)N(~) ~

~ ~ ~ ..,-+ ~

= N(~) L(~) N-l(~) N(~) ~

~ ~..,-+

=N(~)L(~) ~ Q.E.D. (2.7)

In Eq. (2.7). we have made use of (2.5a) and (2.5b). The necessity of using only one

argument comes from the required need to concatenate maps.6 The Lie operators must

have the same arguments if Poisson brackets are to be evaluated.

As far as linear operators are concerned. we will tend to use their matrix repre-

sentation:
~

:R. (~) ~a =Rab ~b (2.8)

This concludes this short chapter. For more material on Lie operators. the reader is

invited to consult the references.

7



Chapter 2 - Canonical Integration Techniques? ,8

Consider the time evolution of an operator n. We will assume that it is controlled

by some Hamiltonian operatorf :H: =-:A: - :B: independent of s:

~=n :-H: =rt (:A: + :B:)

Formally the solution of Eq. (1) for the operator from s =0 to s is just:

n(s) = exp(s:-H:) = exp(s:A: + s:B:)

(1)

(2)

The problem encountered in solving the differential equations of a tracking code is the

impossibility of evaluating the operatorn as given by (2) exactly.

Quite often. however, one can evaluate exactly the simpler operators A(S) and 1l(s)

given by

A(S) =exp(s:A:)

B(s) =exp(s:B:)

One possible solution is to represent 11. as

n(s) = A(S) 1l(s) + 0(s2)

A clearer representation consists in symmetrizing the approximate expression.

In fact, one can derive even more complicated schemes with the help of the Campbell

Bake-Hausdorf fOIrnula. 5,6.8

(3a)

(3b)

(4)

(5)

_ (_5_) (...!-) (50-)3) ) (~) (5(1-)3) ) (...!-) (_5_)+0 s5
n(s) -A 2(2-P) :B 2-P A 2(2-P) B 2(2-P) A 2(2-P) B 2-~ A 2(2-P) () (6a)

(6b)

The last canonical integrator is fifth order in "s'', To illustrate these techniques. we will use

the exactly solvable harmonic oscillator.
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We consider the operator :H: given by

'H' = ' ~, + . It.• • • 2· .. 2 '

From Eq, (7), we find the operators :A: and :B: to be

_q2 __2

'A'-'*-'* and 'B·-·L.,·.. -. 2 . . .-. 2 .

The operator .A(s) and ~(s) are exactly solvable and in this case are linear operators.

A(S)[:]=MA[:]{~ ~][:]

n(s)[:]=~ [:]~[~ SI][:]
Ofcourse, the operator n(s) can also be found exactly. It is just a rotation of angle s:

[q] [q] [COS(S) Sin(S)][q]
n(s) p = M P = -sinfs) cos(s) p .

(7)

(8)

(9a)

(9b)

(10)

As an exercise, the reader can check on this example the accuracy of the formulae (4), (5),

and (6). Remembering that the operators act in opposite order from matrix multiplication,

one gets the results:

[
2 ]I-s S

M(4) = =M+O(s~
-s 1

(11)

2
1 .a, s

2 3
M(5) =

3 2
=M+ O(s ) (12)

s .z, 1- z,
4 2

[
a b] 5

M(6) = c a =M + O(s ) ,

9
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where, for example, a and b given by

a =1- s2 + ~ _ ( 62~2 - 521~ + 558 ) s6 = cos(s) + 0 s5)
{ 2 24 1054081\2 - 4786561\ + 435744 (

b = s _ s3 + (l99~2 - 162~ - 520) s5 = sines) + 0(s5) . (l4a)
6 40176~2 + 8928~ - 74024

or,

s2 s4r: 1 - 2' + 24'- 2.07 10-
3

s6

s3
b := s - "6 + 1.45 10-2 s5 . (14b)

As one sees, the results are as advertised. Canonical integration techniques can be derived

for a wide class of problems and with different goals in mind. They preserved the sym­

plectic properties of the phase-space flow and they are composed of a succession of simple

operations such as drifts and multipole kicks.

The applications we have in mind are related to tracking codes. Let us take the

approximate Hamiltonian K for ideal small curvature magnets:

2 2 2
-Sx X px py -

K=-+-+ + -L\o-V
P 2p2 2(1+0) 2(1+0)

J 2p 21+0= l----l+p
~ 't

L\S = 8-1 + P't
f3

{"'j- -..:Sl...v(x,y) - Poc As .

(15a)

(15b)

(l5c)

(l5d)

For non-quadratic V, it is impossible to evaluate the map 1"t(s) produced by :K:.

How can we define the operators :A: and :B: of the canonical integrator corresponding to

K?
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Answer:
2

px
A=---

2(1+0)
(l6a)

Ox x2
B=--- +'1

P 2p2

Exercise 1

Evaluate A(s) and n(s) corresponding to Eqs. (l6a) and (16b) and give them a

physical (pictorial) meaning.

Answers

A(s) x=x+~
1+0

A(S)Y=Y+~
1+0

so sx a'1
B(s)px=Px +- --+s-

p p ax

av
B(s) Py = Py + S dY

x do x (1/13 +P't)
n(s) t =t- s- -=t- s- ...;.......Ii;_;......:o...;;;...

P dP't P (1+ 0)

11

(l6b)

(17a)

(l7b)

(17c)

(l7d)

(l8a)

(l8b)

(l8c)



The operator A represents a drift. The operator n is a bit more complicated. Its

'1- x
2

pan consists of the multipole component 'I and the focusing part of the bend. The
2p2

~ part ofn is the left-over of a planar x - s rotation after the exact Hamiltonian H is sim­
p

plified into K. This term introduces dispersion in the bends. (See Exercise 3 for the exact

Hamiltonian H.)

Exercise 2

A lot of the so-called kick codeslO using K (or an erroneous version of it) restrict

themselves to the four dimensional phase-space (x, Px. y, Py). For these codes, the exact

mapping through quadrupoles and dipoles are given by O-dependent matrices. Find the

operators :A: and :B: for these codes. Convince yourself that the time of flight is also

exactly computable and is given by a quadratic polynomial in the transverse betatron vari­

ables. (Hint: Think: of a generating function representing the matrices.)

Answer

First of all, let us rewrite K as follows:

K=-A-B

2 2 2
Ox X px + P

A=---+'1
2

(x,y) + y +.10
P 2p2 2(1+8) 2

(19a)

(19b)

(l9c)

The quantity V2 is the quadratic part of \1. The terms .18 and .182 in K can be ignored since

they produce only a time of flight term which is ignored in a four dimensional treatment.

The famous statement "quadrupoles and dipoles" are linear originates from the map

A(s) produced by :A:. One notices that A is at most quadratic in the transverse variables.

Therefore, it will lead to a linear map of transverse phase space.
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Exercise 3

As discussed previously. the Hamiltonian K is an approximation of the true ideal

element Hamiltonian H:

(20)

Split H into 3 exactly solvable operations. Give them some "physical" interpretation and

solve them. In addition give a possible second order integrator.

Answer

H=-A-B-C

A == «1 + B)2 _p2 _p2)1/2 _P-r
x y 13

B :;;; ~((l + 0)2 _ p2 _p2)1/2
P x y

x2 xC=--+'l--
2p2 P

(21a)

(21b)

(21c)

(21d)

The operator A(S) is just a drift of length s. The operator :B(s) is a drift in cylindrical coor­

dinates, it represents a rotation of angle! in the x-s plane. Finally, C(s) (= exp(;sC:» is a
p

kick containing themultipole content of thebend 'I. the focusing power of the sector bend

-x2 x2 and the actual dipole kick -.
2p P

The only difficult term to evaluate is ~(s). We proceed using the differential equa-

tion associated with :8(8). Consider a function of phase space g(t(s» where

? = (x, Px- y, Py- 't, p,;):

d -4 d ~
ds g(z(s» =dS exp(:sB:) g( z(O»

=: B : :B(s) g(t(O»

== [B, g(t(s»]

13
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Equation (22) is essentially Hamilton's equation of motion for the Hamiltonian-B.

Replacing get) by the various components of "t, we obtain:

dx x Px
ds = P(f2 _ p;)lf2

~-ods -

dP-r - 0
ds -

Starting with (23b), we get:

Px(s) = cos(~) Px(O) + sin(!.) Ps(O)
p p

Ps =: ~f2 - p;

Substituting in (23a), we obtain for xes):

n<,(O) x(O)
x(s) = x(O)~ =-------­

Ps(s) cos(~)(l _ Px(O) tan(~»
p Ps(Q) p

14

(23a)

(23b)

(23a)

(23d)

(23e)

(23f)

(23g)

(24a)

(24b)

(25)



Similarly, substituting (25) into (23c), we get

s
x(O) Ps(O) Py(O) J

y(s) = y(O) + Ps(s't2 ds'
P 0

x(O) Py(O) sin(!.) x(O) Py(O) tan(!')
=y(O) + P =y(O) + P (25)

Ps(s) P (0) (1 _ Px(O) tan(!'»)
s Ps(O) P

The only computation left involves the time of flight 'to Quite clearly. the answer looks

very similar to y(s):

A [mal comment about ~(s):

x(O) sin(!.)

't(s) = 't(O)+ (t -p.V --Ps"":"(s-:-)....;.p- (27)

~(s) is a drift in cylindrical coordinates. therefore the differential equations were not

necessary. By simple geometry. one can reconstruct Eqs. (24) through (27).

What about a quadratic integrator? One possible choice used in the program

TEAPoT4 goes as follows:

(28)

Clearly, a fifth order integrator is messy with three operators to play with. (I had not the

courage to look at it.)

A few readers have probably noticed that A and B can be combined Why?

Conclusion

We have demonstrated in this chapter how two modelings of the equations of

motions for ideals elements (combined sector bends) can be broken into exactly solvable

pieces, on which the theory ofcanonical integration can be applied.

In Exercise 1, we look at a solution for the approximate Hamiltonian K which is

fully six-dimensional. In Exercise 2. we look at the restricted four-dimensional problem
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and pointed out that the six-dimensional extension is also solvable exactly in terms of

quadratic generating functions.

Finally, we looked at the exact ideal sector bends Hamiltonian and found an exactly

solvable division in tenus of three operators. It should become clear in the next chapter that

the map generating algorithm is quite hard to implement in 6 dimensions for the Hamil­

tonian K of Exercise 2. (although possible)
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Chapter 3 - Extraction of a Consistent Approximate Mapll

1. The Idea

We have restricted our code to canonical integrators. In other words. we have an

exact analytical expression for every step of the tracking. In general. we have seen that the

i th step in the tracking can be expressed as:

(1.tc)

(l.lb)

The function Pi (~) has an analytic expression known to us. Now. we attempt to follow

~ ~
an arbitrary ray z", "close" to zp:

To proceed further. we expand Pi (ii) in a Taylor series in ~:

1i+1 + ~+1 =Pi (it + ~)p p

or,

(1.2a)

(1.2b)

(1.3a)

(1.3b)

where }tim (~) is a polynomial of degree m in ~.

Clearly all the !tim are computable exactly, since F (1i) which is just F:, is known

analytically. In the optics literature, Fim (""(t) is often known under the name "mth order

(transport) matrix."

Ifour kick code is provided with a concatenator for such matrices, then the total

map for a section of the ring will involve the product over i of all the Fim(m < mmax).
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Here, mmax is the maximum order of these matrices. For example. if on!y a linear

approximation of the map is needed (as required in a Newton search for the closed orbit).

then the entire process will involve a first derivative ofPi (ii) evaluated at -::, and a linear

matrix multiplier.

Notice that our matrix is accurate to order mmax in ~ and to all order in ~. quite

unlike Taylor series codes (Lie algebraic or "matrix" codes) which are only accurate to

order mmaxaround the design orbit i = O.

We can present a flow chart of a computer evaluation of (Fn
m) .

~

S~at. zp
{p1-+1l = Identity.

m

J,
J,

~+1
Evaluate zp and

{pim1exactly.

J,
J,
J,

"--- J,
J, out at j + 1 =k

J,

Typically, there are two possible ways to concatenate the matrices {pi-+k} and the
m

method chosen depends on the representation of the map {pi-+k). In the next section, we
m

examine these two ways.
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2. The Representation of fF;k}

The most straightforward way to represent our expanded map is based on the

Taylor series representation. One expands (1.3b) as follows:

(2.1)

The linear part is represented by a matrix Ri"""""*k and the non-linear contribution by

the so-called non-linear "matrices" Ti-+k. etc ...

A truncation at the level of the "T-matrixtt as it is done in (2.1). would lead to a

second order approximation of the map around the trajectory i p of Eq. (1.2).

Exercise 1

Mentally construct a tracking code consisting of only two possible elements:

[
cosu SinJ.1]

i) rotation: «I>(J.1) = .
-SlDJ.1 cosu

(2.2a)

ii) sextupole kick:
i+l i

q =q

i+l i [ i]2P =p +a q
(2.2b)

Derive the Ri-+i+l and Ti--.+i+l matrices necessary to produce a map producing

algorithm for this fictitious code.

Answer

i) For~, we simply have R =<I> and T = O. The map does not depend on the local

orbit t p = (qp,pp).

ii) For the sextupole, we expand (2.2b) in tenus of qp and pp.

qi+l + ~i+l = qi + ~i
pip 1

19



~R=[ 1 l' 0]. T _a
2aqp 1 ' 211 - •

(2.3)

Is the "matrix" representation the only acceptable Taylor series representation? As

discussed in the introductory chapter. we have seen that Hamiltonian (symplectic) maps can

be represented by Lie operators. These operators also have well defined rules for concate­

nation. 6,9,11 Furthermore, the factorized representation of a map has well behaved Lie

generators if the "matrix" representation is itself well-behaved.. Therefore we will examine

the factored Lie representation because it is well behaved, because concatenation soft-ware

is already available to 5th order in~ and more importantly, high order perturbation theory

can be performed on the Lie representation of a Taylor series map.

In the Lie algebraic language. one possible representation of Eq. (2.1) is given by:

(2.4c)

Exercise 2

Find R and f3 for Eq. (2.3) of Exercise 1.

Answer

R is of course identical to that of Exercise 1. and f3 is given by:

(2.5)

Is there a fundamental difference between the "matrix" representation (2.1) and the

Lie generator representation (2.4)? The answer is a unequivocal no. Both representations

are "Taylor series" expansions. For example, if one truncates at the level of the (R,T)

"matrices" the information retained is identical to what is buried in the (R,f3) pair. In fact,

20



one can go freely between the (R,f3) and the (R.T) representation. The following exercises

illustrate this mathematical tautology.

Exercise 3

Compute f3 from the R and T matrices. Show that the uniqueness of the connection

between (R,T) and (R,f3) is insured by the symplectic condition on the Jacobian of the map.

Answer [Skip Eq. (2.18) if not interested.]

Computation of f3.

We start by assuming a Taylor series representation for a map n. Calling -r the

initial value of the variables:

(2.6a)

or,

(2.6b)

Here we use the Einstein summation convention. Equation (2.6) is to be compared with

the Lie algebraic representation:

(2.7)

Equating (2.6) and (2.7) gives the following equation:

(2.8)

= C+T (R-I C) (R-l C)

21



from (2.8), we can derive an expression for f3:

or, in component form:

Multiplying (2.9b) by the symplectic form J gives Vf3:

-d
V f3 = J T(R-l ~) (R-l ~)

or,
af3 -1 r. -1 r
-=JiaTajk R;r '=l R km ~m
a~i '

Finally, we obtain f3:

-+

~

J
over some path

One very easy path to choose is the "diagonal" between 0 and C:

or, in component form,

22
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(2.9c)

(2. lOa)

(2.10b)

(2.11)

(2.12a)
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Equation (2.11) seems to indicate that given a symplectic matrix R. we can always find a

polynomial f3 reproducing the effect ofT. We know that this is only true ifR and T are the

first and second order contribution to the Taylor series of a symplectic map. Where is the

catch? It resides in the assumption that in (2.10) "Vf3" is an exact derivative.

Ifwe require Vf3 to be an exact derivative, we will obtain a condition identical to

the symplectic condition. Proof:

but. it must be true for alll;c,

multiplying by Rbf and Ras, and summing,

or,
(2.13)

We can show that the symplectic condition applied on the Jacobian ofn leads to

Eq, (2.13). Notice that in deriving (2.12) we implicitly assumed that R was a symplectic

matrix. The real question is whether or not the Tijk matrix is consistent with the symplectic

condition given a symplectic R. Let us check it using the Jacobian ofn.

d~~
M .. = --!. = R.. + 2 T" k ~k .

IJ d~. IJ IJ
J

We substitute (2.14) in the symplectic condition:

&tJM=J

23
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(Rji + 2Tjik ~k) Jjm (Rms + 2Tmsn ~n) = Jis . (2.15)

Equation (2.15) is complete to first order in r;. Retaining the zeroth and first order terms

produces two equations

zeroth order

first order Rji Tjm Tmsn ~n + Tjik ~k Jjm Rms = 0

(2.16a)

(2.16b)

By assumption Eq. (2.16a) is satisfied. On the other hand, (2.16b) is a new condition

involving Tijk. Notice that (2.16) is a first degree polynomial in , which is zero for all ,.

This implies that the coefficients of each ~b must vanish separately.

Rji Tjm Tmsb + Tjib Jjm Rms = 0 . (2.17)

If we play with the dummy indices of (2.17) we can turn it into (2.13). We apply the fol­

Iowing change of nomenclature on (2.17)

First Term

m~i

s~ s

Second Term

m~a

S~ S

The transformation on (j.m) is allowed to bedifferent in both terms, since j and m are

summed over. The three remaining indices must transform identically. One can check that

(2.17) looks exactly like (2.13) once we perform the renaming operation.

As expected, the uniqueness of f3 is equivalent to the symplectic condition. Or, we

can say that the path chosen in (2.11) is indeed irrelevant if the symplectic condition is sat­

isfied. Indeed, if we produce a polynomial f3 from a symplectic matrix R and some second
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order matrix T, and then reverse the process to produce back the T matrix, this T matrix

will agree with the original one if, and only if, the original T obeys (2.13).

Conclusion

We hope that the reader is now convinced of the mathematical equivalence of vari­

ous ways to write a Taylor expanded map. The choice of representation used inside the

tracking code is irrelevant since one can transform freely between representations.

At the end, however, a symplectic (Lie generator) representation is ideal for the

perturbation theory of a circular ring. We will glance at this in the next chapter which is

devoted to the concept of a Floquet ring.
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Chapter 4 - Floquet Ring and Phase Advance

1. Old Stuff Revisited

Traditionally. the use of Hamiltonians (or Newton's equations) have played a cen­

tral role in single particle computations. Indeed, given a set of canonical coordinates

i = (qI.PI•...•qn.Pn). the motion of the particle is governed by some Hamiltonian H

-4
dz -4 -:?"d'S = [z, H( z ; s)]

--1 = --1(s)

(1.1)

Here, s is some time-like variable which parametrizes the motion ofthe ray 1(s).

In accelerator studies. one is often interested in perturbing H at selected locations by

the introduction of multipole errors or rf cavities. To a great accuracy, these are localized

perturbations (or kicks). hence the exact knowledge of H in between two of these "kicks"

is totally irrelevant. The only things that matter are the maps between these kicks.

In the context of tracking codes, we have already expressed our preference for

canonical integrators which use kicks or otherwise exact analytical expressions for the

various parts of the ring. Hence, it is only natural to adopt the perturbation theory to the

concept of canonical integrators. Central to a Hamiltonian-free perturbation theory is the

concept of the Floquet ring and its associated phase advances.

Why is a Hamiltonian free formulation ideal for canonical integrators?

We have seen how it is possible in a routine manner to extract a well defined

approximation of the map between any two points along the true closed orbit.

The localized nature of potential perturbations and the simplicity of map extraction

lead us to consider a map oriented perturbation theory and to abandon, in the context of

tracking codes, the continuous description favored by Hamiltonians.

In the case oflinear systems with mid-plane symmetry, the previous statements are

familiar to most readers. For example, one is used to statements such as "two sextupoles

rc-apart cancel their geometric effect." In this chapter we will show that this concept is
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generalizable to non-linear systems. In particular, we will show how the phase advance

between two points is intimately connected to the chosen canonical transformation which

puts the map into a normal form depending only on the action variables. In other words,

thefonnula

Sz 1
A<p = J - ds

8. ~

is correct in systems with midplane symmetry because one goes to a normalized set of

coordinates, or in other words, to a Floquet ring by the transformation

x
XN = -
~

If one were to use the following transformation instead

XN =-fYx+~ p
~

PN = ....E....
(f

then the phase advance would be given by

SzK
Acp= J -ds

81 "1

Here K(s) is the focusing function of the lattice

p2 + K x2
( H = 2 ) .

(1.2)

(1.3a)

(1.3b)

(1.4a)

(lAb)

(1.5)

and "1 is the usual Twiss parameter. Hence the phase advances are linked to the canonical

transformations (1.3) or (04).
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Between "matched" sections of a ring, such as cells, the definition of (1.2) and

(1.5) can only differ by factors of 21t. It is easy to prove directly using Eq. (1.5) and the

well-known formulas for the derivatives of a, 13, and y.

~ K
Aq>= f -ds

81 'Y

~

= f KI3 ds
81 f3'Y

~ 1 ~ a'
= f - ds + f --ds

r:l 1 + a 2
81 !J 81

~ s2
= J 1:.. ds + tan- l a
~ f3

Q.E.D. (1.6)

ITthe lattice is matched at S1 and S2. it follows that a(s1) = a(s2) and the two phase

advances are equal modulo an integer. The canonical transformations are themselves

motivated by the kind of perturbations one applies to the ring; for multipole kicks the usual

transformation (1.3) is easier to use. In this chapter. we will formulate these concepts in a

map formalism, abandoning the Hamiltonian approach.

We will show how the assumption of integrability leads to a non-linear phase

advance. Finally, we give a flow chart of the actual implementation of a phase advance

calculation suited for a canonical integrator code.

2. Non-linear Floquet Variables and the Associated Phase Advances

Let us assume that we have a map 1'1.s representing one turn around a circular

machine from s back to s. We will assume that ns is integrable. that is:

There exist R. unique and As such that As 1'1.8 A s·1 = R. for all positions s around

'che ring, and R. is given by the formulae:
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-+ -+ -+
R. =exp(: - j..l • J s - F( J s) :)

-+ .
F( J s) = Detumng term

cu = ...} 2Ji cos <Pi

Pi =- ...} 2Ji sincf>i

Using As, one can define a new set of action-angle variables:

Is= ']I-l-+J"'s s

-+ -+
rts = exp(: -Il· I s - F( I s) :)

(2.1a)

(2.1b)

(2.1c)

(2.1d)

(2.2a)

(2.2b)

(2.2c)

-+ -+ -+
The invariants I s have a different functional expression in terms of q s and p s at different

s. (Think of the dependence of the Twiss parameter a, ~ and yon s.) However. if evalu­

-+
ated for a given particle along its trajectory. I s remains a constant.

-+
As seen in Eq. (2.2a), the map ns has a unique functional dependence on Is.

independent of the location s.

Before going further, we present here a few exercises to clarify some of the concept

needed in this discussion.

Interlude on the Uniqueness of :R.

Exercise 1

Under what conditions is R. unique? In other words, what are the properties of A which

guarantee that R. is unique independent of the choice of A. and independent of the point of

observation.
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Answer

The map A must produce an analytic transformation around the origin, and then R is

unique within a permutation of the eigen-planes,

Exercise 2

Modify the statements of lines (2.1) and the results of Exercise 1, to include the case of no

synchrotron oscillations. (coasting beam)

Answer

There exists R unique and As such that A.s rt, A.~l = R

\ --+-+ (X2 -+
R=exp(: -J..L. J s - '2 P't +F(Js,p'd:)

a = Momentum compaction

-+
J s = (1s,l, Js,2) ~ Transverse space

(2.3a)

(2.3b)

(2.3c)

(2.3d)

The uniqueness of R is insured by the analyticity of A and the time (r) independence of its

generator.

Exercise 3

Define the action angle variables of R.

Answer

{ qi = -v2Ji COS($i) , i = 1,3 (synchrotron oscillations)

Pi = .y 2Ji sin($i) , i = 1,2 (coasting beam)
(2.4a)

{ for coasting beam
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Exercise 4
~ ~

Starting with a map of the form exp{:r(J ):). modify the function T(J') through an illegal

transformation as defined in the previous exercises.

Possible Answer

For example, consider a phase advance in the x-y space

~ ~ ~ ~ ~

R=exp{:-~· J:); r{J)=~. J =~xJx+~yJy

Now, consider the transformation A = exp{: Y$y Jx :). We can easily evaluate the

operator A:

A cl>x =$x - Y$y

AJx -r,

Finally, we compute the transformed operator R:

~

R =A n A·l =exp(:r(A J ):)

= exp(: -(~x + Wy) Jx - ~y I y :)

(2.5)

(2.6)

(2.7)

The form of r has been altered. However, it is quite clear that the expressions for

$xand (j)y are not analytic around the origin (q,V) = O.

End of the Interlude

Now that we have a clearer idea of the origin of the unique nature ofR.let us go

back to the discussion leading to the phase advance. Consider two positions, a and b, on a

closed orbit and their one turn maps na. and M-b as well as Nab the map between a and b.
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The phase advance CPab between s = a and s = b will have its definition rooted in the

choice of A. a and A.b- To prove this, we explore the relationship between A.a, A.b and

Nab. (From now on all the operators act on the phase space at s =a unless explicitly stated

otherwise.) From the definition of Nab, we get:

Using the integrability condition, we replace M-b by its expression in terms ofR:

tLa=NabAb1R
A.bNab .

Finally, we replace R by its expression in terms of M-a:

=B naB-!

-t -t -t
= n exp(: -u> I a - F( I ~:) n-1

-t -t -t
=exp(: -Jl • (B I ~ - F(B I a):)

(2.8)

(2.9)

(2.10)

-t
From Eq. (2.10), we conclude that n must have I a as its invariant, hence B can be written

as:

-t - arab
q>ab=-­

-t
ala

(2.11a)

(2.llb)

The quantity <tab is the phase advance between the points a and b. In fact, this is easy to

show by rewriting Nab in terms of B, Using Eq. (2.10):
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1 -+
= A~ n(Aa I a:> Ab

=A-1 n(1a:> Aba (2.12)

The interpretation of (2.12) is simple. Remembering that the operators act on rays

in the reverse order from ordinary matrix multiplication, we conclude that transporting a ray

from a to b can be seen as extracting the ray at a with ~1 , phase advancing it with B in a

Floquet ring and re-inserting the ray back in real space with Ab. In the Floquet ring, the

ray is just rotated by CPab.

Again, we need to emphasize that CPab is not unique. The Floquet ring depends on

the insertion map As.. Of all the possible As which are available to defme our Floquet

ring, we will restrict them to internally defined As. That means that our rule for selecting

As depends only on n s.t2 Automatically, this insures that matched locations (r1.s = n s')

have a phase advance CPss" independent of the choice of As and As'.

We conclude this chapter with a flow chart implementation of our ideas into the

ideal tracking code. We also suggest a possible definition of the linear phase advance.
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Find the closed orbit
---)

z 0 and the map no

Compute a possible.A~ ("t" for tentative)

using no. with a definite ordering of the eigen-planes.

From i = 1 , itotal = 0

.1,
Get Ni-l i

.1,
Compute A~ =.Ai-l N i-t i

Modify A~ to satisfy the particular conditions imposed

on Ai. (For example Teng-Edwards; see the ensuing discussion.)

.1,
Compute ~i-l i = Ai-l Ni-l i Ail and extract the phase CPi-l i

exit when i =itotal = 0

The flowchart can be applied to a linear or non-linear map. Routinely, however,

tracking codes are expected to provide a linear phase advance. In the linear problem. all the

maps have a matrix representation. Let us impose a sensible constraint on the matrix A(s)

of the operator As. These will be referred to as the Teng-Edwards conditions. They are:

A2i-1 2i-1 > 0

A2i-1 2i =0
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These conditions specify A(s) up to permutations of the invariant subspaces of the

matrix R. Once we assign each tune to a definite block of R, the conditions (2.13) will

guarantee the uniqueness of A(s). In fact, for this choice, the following is true:

suppose that i) the motion is generated by

-4 1~
H( Z; s) = 2~ Sij Zi Zj

and ii) (2.13) is satisfied

then, it can be shown that:

d<J>k _ ~ S 2k i Ai 2k; kth plane.
ds - ~ A2k-12k-l

i

(2.14a)

(2.14b)

Although Eq. (2.14b) is never needed in a canonical integrator code, it allows us to

connect our treatment to the more standard approaches.

Why is the Teng-Edwards choice for A(s) sensible? First, it is worth noticing that in

the case of midplane symmetry, it reduces to the usual Courant-Snyder choice. Then why is

the Courant-Snyder definition desirable? This can be answered by looking at the eventual

perturbations of an ideal linear ring. Most perturbative fields, can be represented by a vector

potential Vs (x, y) as we have seen in the chapter on canonical integrators. Hence, we

would like a definition of A(s) which affects x and y as little as possible. Clearly, this

Courant-Snyder choice is best since it only scales the transverse positions. In fact, in this

Floquet ring, the effective vector potential is given by As V(x,y) (= \fs(-{f3x x , -{"i3y y).

Conclusion

We have shown how the concept of phase advance is intimately linked to the idea of

a Floquet ring. Furthermore, we have seen how these ideas are generalizable to non-linear

systems. Indeed, in a circular machine it is possible to construct a perturbation theory

based on maps alone. Such a peturbation theory is limited only by the order of the map

concatenators available to the codes. At this moment, we have successfully implemented a
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5th order (sixth-order in the Lie generator) in one of the programs used at SSC.13 (In col­

laboration with Beat Leemann and Filippo Neri.)14,15

Finally, we would like to point out that the ideas of Floquet ring and of perturbation

theory on maps can be extended to spin systems as demonstrated by Yokoya.lf
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