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ABSTRACT

In this paper, we generalize the concept of phase
aavance to non-linear systems. We show how non-linear
perturbation theory can be made in a totally Hamiltonian
free context. As examples, we give expressions for the
computation of first and second order tune shifts. as well
as for the canonical transformation responsibile for the
first order distorsions of the invariants. Our reliance
on Lie operators allows for a very simple implementation
of these methods in the context of an algebraic
manipulator.



Introducti on

Traditionally. the use of Hamiltonians (or Newton IS equations) have played

a central role in single particle computations. Indeed. given a set of

canonical coordinates i = (Q1' P1' ...• qn. Pn). the motion of the particle

is governed by some Hamiltonian H

(1. 1 )

Here. T is some time-like variable which parametrizes the motion of the ray

In accelerator studies. one is often interested in perturbing H at select

locations by the introduction of multipole errors or rf cavities. To a great

accuracy. these are localized perturbations (or kicks). hence the exact

knowledge of H inbetween two of these "kt cks" is totally irrelevant. The only

things that matters are the maps between these kicks.

In the case of linear systems with mid-plane symmetry. the previous

statements are familiar to most readers. For example. one is used to

statements such as "two sextupoles lI'-apart cancel their geometric effect. u

In this paper we will show that this concept is generalizable to non-linear

systems. In particular. we will show how the phase advance between two points

is intimately connected to the chosen canonical transformation which puts the

map into a normal form depending only on the action variables. In other words

the formula

lup =

T
1

T
2

J 1 dT
13

(1 .2)



is correct in systems with midplane symmetry because one goes to a normalized

set of coordinates using

If one were to use the following tranformation instead

- OL
xN = V'y x + - P

.;y

then the phase advance would be given by

(1.3a)

(1 . 3b)

(1 .4a)

(lAb)

.6<p = J

TJ.

T

2 ~ dr
y (1 .5)

Here K(T) is the focussing function of the lattice

2

(H = P
2

+ K X ).
2

and y is the usual Twiss Parameter.

Between "matched" sections of a ring, such as cells, the definition of

(1.2) and (1.5) can only differ by factors of 2~. It is easy to prove

directly using Eq. (1.5) and the well known formulas for the derivatives of

or.. 13. and y

T
2

J
K

11<p = - dr
Y

T
J.

T
2

= J ~d
I3Y T

T
J.
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't T
2 2 •

I
1 I

Q dT== - dT +
P 1 + Q

2

T T
1 1

't T
2 2

I
1 + tan -1 C Q.E.D. (1.6)== - dT
P

't T
2 1

Hence, the phase advances are linked to the canonical transformations (1.3) or

(1.4). The canonical transformations are themselves motivated by the kind of

perturbations one applies to the ring; for multipole kicks the usual

transformation (1.3) is easier to use. In this paper, we will formulate these

concepts in a map formalism, abandoning the Hamiltonian completely.

In section 2, we show how the assumption of integrability leads to a

non-linear phase advance. In section 3, we propose a definition of the

canonical transformation for systems without midplane symmetry; our definition

matches Edwards-Teng's definition as demonstrated in Appendix I. In section

3, we commit a small sin in writing differential equations for all our

operators in flagrant violation of the spirit of the author. This is done to

facilitate the connection to the previous work of Courant-Snyder1 and

Edwards-Teng. 2

Finally, in section 4. we show how one can compute some quantities such as

tune shifts and distortions arising from a perturbation of a non-linear ring.

This is done in a totally Hamiltonian-free language using the concepts of

section 2.

Before going further. we would like to summarize some properties of maps

and some notations. 3

[f,g] af • !9. _ af • ~
-+ -+ -+ -+aq ap ap aQ

3

(1. 7)



:f:g = [f,g]

co .f.n
exp(:f:) = I --'--;

n=O n.

:f: O = JF = identity map.

exp(:f:) exp(:g:) exp(:-f:) = exp(:exp(:f:)g:)

-+ -+exp(:f:) g(z) = g(exp(:f:)z)

-+
z = (Q , p , Q , P , .•• , qn' Pn)

1. 1. :2 :2

( 1.8)

(1 . 9a)

(1.9b)

(1.10)

(1.11)

(1.12)

Script letters (Ar) represent mappings while the usual capitals (M) will

denote the matrix representation of .L if Ar happens to be a linear map.

n
.L zi = I M.. z. = M.. z..

lJ J lJ J
j=l

(1.13)

Finally, Lie operators are concatenated in the reverse order from matrix

multiplication. This is proven below using some of the properties listed

above. Consider a two step process

-+ A/ -+ 2' -+xo ------+ ~ ------+ Z

- -+ -+
~(~) = exp(:g(t):)

So, we must have
-+ .. -+ -+
z = Yn) ~

y (~) ,;Y (1
0

)
-+

= Zo

..:i' ( ;V (10 )
-+ -+ -+

= zO) "1/ ( zO) Zo

,;Y (zo) g (1 ) AI'(1
0

) - 1. ft (zo)
?

= zo0

Now, we are ready for the generalization of some familiar concepts.

4

(1 .14a)

(1.14b)

(1.14c)

(1.15)



2. Non-Linear Floguet Variables and the Associated Phase Advances

Consider two positions. a and b, on a closed orbit as shown in Fig. 1.

Let us write the mappings around the ring as J(a and Lb' Also, let us

assume that the mapping from a to b is /Vab' Finally, we assume that the

motion is integrable. that is

~ ~ exp(:-;-J - F(J):)

F(J) ~ detuning tenm

(2.1a)

(2.1b)

(2.1c)

(2.1d)

The invariants of the motion Ii are simply given by

i ~ 1, n; K ~ a.b. (1 .2a)

... ... ...
Af K ~ exp(:-p-I - F(I):) . (2.2b)

The phase advance ~ between a and b will have its definition rooted in the

choice of sfa and ~b. To prove this, we explore the relationship between

sd' a. sd' band, /Vab'

Using Eq. (2.1a), we solve for AYb in terms of.9i'and .w'b.

'''b ~ .w'b 1 g; .w'b . (2.3)

We can substitute for ~its expression in terms of sf and .4a a

(2.4)

However from the definition of /Vab' we also have

(2.5)
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From Eq. (2.4) and (2.5). we derive the identity

vi( =~a

,W.
a

(2.6a)

(2.6b)

Exploiting (2.6a), we rewrite it as

~ ~ ~

= exp(:-lJ·(aJI) - F(S8I):)

Comparing Eq. (2.1) and (2.2b), we conclude that

~ 1 = i

From this, we can write down the most general form for ~

~(i) = exp(:r(1):)

-1' 1 dr<p( ) =
d1

(2.1)

(2.8)

(2.9a)

(2.9b)

The quantity ~(i) is the non-linear phase advance between the points a and

b. In fact, this is easy to show by rewriting AVab in terms of ~. Using

(2.6b) and (2.2a), we must have

(2.10)

The interpretation of Eq. (2.10) is simple and depicted in Fig. 2.

Remembering that the operators in (2.10) are in the reverse order from the

usual matrix multiplication. we conclude that a ray at location "a" is taken

into non-linear Floquet variables by ~;~, then it is propagated by a simple

6



-+ -+
rotation of angle ~(J) by ~{J)and. finally. it is brought back to the ring

at location b by sf b.

Again. we need to emphasize that the definition of ~ is not unique. The

phase advance between two points depends on the insertion and extraction

-1 4mechanism of ~a and sfb respectively.

In the next section we illustrate this on the linear case where the

con~~pt of phase advance is familiar (Courant-Snyder in 2-dimensions and

Edwards-Teng in 4-dimensions). However we would like to emphasize one

particular sub-set of possible choices for

Consider the following statement:
I

S¥s are chosen such thatTHEOREM: If two transformations ~ ands
Afs' then the two resulting phase advancesthey depend 2nlY on the mapping

will have the same fractional tunes through a matched section.

This was displayed explicitly on the examples (1.3) and (1.4). For that

reason, we will always present examples of

(i.e., depending on Ar alone).s

Sill' which are internally defined.s

~~--------- .

• -- ---->7'

I=i j . 1

7



3. The phase Adyance of kjnear System: A Sjmple Example

In a linear system all the transformations and operators of section 2 have

a unique matrix representation. i.e .• given a transformtion ./"i, we have

.5P z . =
1

I T.. z .
j lJ J

(3.1)

In particular. the mapping ,~of (2.1b) has the form.

Y2 ;: expt : -~.j:) (3.2a)

_(COS}!i
• R. 

1

-s i nlJi

(3.2b)

For the linear system we select the operator s:/ (dropping the subscript

referring to the location) in anticipation of future non-linear insertions

inside our ring. Most of the time. we introduce kicks which arise from

multipoles and rf cavities. They are characterized by a simple lie operator
- -*A(q). Going across a kick is given by

-*f - -*z '" exp(:A:)z
or,

-*f -* aA "" -*q q - q
-*ap

-*f -* + ~AP '" P -*aq

(3.3a)

(3.3b)

(3.3c)

Considering that we might later investigate the response of our linear system
- -*under the perturbative effect of A(q), we would like to choose a definition

of ,(1 which modifies A(q) as little as possible.

In the case of a system with uncoupled degrees of freedom, this was done

by Courant-Snyder. In this case • .It has the f orm"

.If' c, ex p ( : -~ .1:)

222
I. '" y.q. + 2~.q.p. + ~.p .• 1 +~. ~1'Y1"

1 11 111 11 1

8

(3.4a)

(3.4b)



-+ ~-+

The transformation.W' which is least destructive to q [and as a result to A(Q)]

is given in each degrees of freedom by the formulas

oW' q. "" v'Jr.j q i1

1
a.

sip. = - (p. - _1- Qi) .
1 v']J; 1 v'lJi1

(3.5a)

(3.Sb)

With this choice of sI , the component qi is only modified by a scaling of

magnitude v'Jr.f •

As an example of the treatment of fully coupled systems, we can adopt the

same philosophy. We chose .W' on the basis of the following criteria

A. . > 0
21-1. 21-1

A. . = 0, i=1, n •
21-1 21

(3.6a)

(3.6b)

With these rules, the map .W' will reduce to the Courant-Snyder transformation
..

if the system is decoupled and in 4-dimension it will reduce to the

Edwards-Teng parametrization. Equation (3.6) fixes si completely and

therefore the fractional part of the phase advance between two points is

fixed. It should be noted that a possible permutation of the sub-spaces of R

leaves some ambiguity. This must be resolved once and for all at the

beginning by assigning each tune ~. to a definite block of R.
1

For example,

if the system is mildly coupled, one can rely on the approximate formula
1cos lJ

1
. ~ -2 (M. . + M. .) to order the subspaces of R and select .W'

21-1. 21-1. 21 21

unambiguously.

In the last part of this section, we derive an expression for ;, A, and M

using the conditions of EQ. (3.6) and the assumption that Mis generated by

some quadratic Hamiltonian. This violates our prejudice of avoiding the

Hamiltonian and using mappings only. We provide this only to facilitate the

connection to previous treatments.

9



We start with a Hamiltonian H given by

... 1
H(z;,.) == 2" l s. ·Cr) ziZJ".. lJ

lJ

let us assume that S(,.) has a periodicity of 1

(3.7)

(3.8)

Denoting by AV the transformation connecting the ray at,. to the
"0" a

ray at ,. it can be proven that,Al' obeys the equat ions

==

(3.9)

Integrating Eq. (3.9) from,. = "0 to ,. = TO + 1 will produce the one-turn

map ..4'TO' let us assume that we extracted the map sf TO associated to the

prescriptions of Eq. (3.6).

We now move infinitesimally from TO by an amount ~T. Using EQ. (1.10),

we must have

... ...
,98-1. = exp(:~<p.J:)...

6<p

Using line (3.9), we obtain AVTOTO + ~T to first order in ~T

-1.
Similarly. we expand B~~ to first order in ~~.

10

(3.10a)

(3.10b)

(3.11)

(3.12)



Substitution of Eq. (3.11) and (3.12) in (3.10a) gives the result

(3.13)

To impose the condition (3.66), we operate on qi using s( A For
TO+UT

example, let us use q1 = Z1' Assuming that repeated indices are summed and

that Ai j is the matrix representation of sf , we get the equality
TO

.YITO+hT Z = A .z. + fj. S iAi~z~ + fj.~·[J~,z.] A ..
1 11 1 2"" '" "' .... 1 11

(3.14)

We assumed that A is zero. This will be satisfied at TO+hT, if the term in
12

Eq. (3.14) proportional to z vanishes. This condition applied to
2

sf TO+hT forces a relation between A. and hT

hT S. A. - fj. A=:O
21 12 1 11

dcp (T)
1

dT

The other components of $ must obey the equation

(3.15a)

(3.15b)

(3.16)

Notice that in the case of strong violation of mid-plane symmetry the denomi-

nator of Eq. (3.16) can vanish. In that case, our definition of the phase

advance mayor may not be adequate, depending on the nature of the

singularity. In any case, condition (3.6a) is probably maintainable for most

systems.

From Eq. (3.10a), we derive an expression for dA/dT.

dA JS A + At
l

dT =:

with

(3.17a)

I dcp.
1

to. • - d
21,21-1 T

(3.17b)

and A(T ) = A as the initial condition.o 0

11

(3.17c)



Collecting all the equations, we get a hierarchy of equations which

describes the linear system

dN = JSN, N = Identityd,. TO,.O

dfPk = S k .A. k
~

2 .1 1.2
fPk("O) = o.d,. A ,

i 2k-1,2k-1

dA _ I

d,. - JSA + At , A = AO"0

(3. lea)

(3.1ab)

(3.1Sc)

Equation (3.1ea) is the matrix form of Eq. (3.9). As a simple exercise,

we show now how this produces the correct two-dimensional results. A

comparison with the four-dimensional result of Edwards and Teng is found in

Appendix I.

In two-dimensions, we have the well-known results

(3.19a)

(3.19b)

Substituting (3.19b) into (3.1Bb), we get for the phase

S A S
Q.!i! _ 22 12 =~
d,. - A ~11

or,

(3.20a)

,.
(3.20b)

12



Using Eq. (3.19b) and (3.l7a). we can derive two equations

~ =~ , (equation for All)
vl!

d[~] = - K vp + _1 , (equation for A ) .
~ pl/2 12

From (3.2la). we get

it§. = -2 a
ds

(3.2la)

(3.2lb)

(3.22)

And. finally, similarly for a. we obtain using (3.22) and (3.21b) and

2 K g2H = Q + -
2

2

da = KP + B -1 = K(3 _y •
ds (3 (3.23)

Equations (3.22) and (3.23) agree with the usual result derivable from the

expression for dN/ds and the Courant-Snyder invariant.

This concludes our discussion of the Courant-Snyder-Edwards-Teng phase

advance.

13



4. The significance of ~ and its associated phase advance.

Consider two locations, Ita" and lib,'· in the ring. Suppose we introduce

pertubations in the form of multipole kicks at the locations. Calling the

operators of these perturbations :f(~): and :g(~):. we can write the perturbed

map at location "a" as

./t = exp( : f :) .4"'ab exp( :g: ) .# ~~ vi(a

Using Eq. (2.10), we can simplify (4.1) .

.;1(;: exp(:f:) .w~l ~ Jt"b exp(:g:) .w'bl99-~a La'

= .w'-~ exp(: .w'/:) ~ exp(: .w'b9:) fjJ -'gt .s(-~

(4.1)

(4.2)

Equation (4.2) has the following interpretation. The ray is "extracted"

from real space and put into Floquet space at location "a ll by .w;l. Then it

experiences the perturbation f. also seen in its Floquet representation

.91 /. In the Floquet space, it travels to IIb" through a simple phase

advance. Then, it experiences a second perturbation 9 in the form Jt"b9.

Then, it 'phase-advances" to lI a II through the effect of !J8 -1. m. Finally, it

is brought back to the real space by S4f.
a

Notice that the ray is moved into

-1
Floquet space by sf a while the operators are transformed by S4fa '

One trivial use of (4.2) is the computation of tune shifts. At can be

rewritten as

(4.3a)

;: (4.3b)

The map :7' (liT" for "t roubIe ") provides all the information for the

computation of tune shifts and distortions of the invariants. The first-order

tune shifts are the parts of J which modify ,~. The first-order distortions

are the parts of J whi ch modify sf.a
The higher order tune shifts require

the knowledge of the lower distorsions of

14
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For example. suppose we are interested in a 1st order result. We proceed by

rewriting ~f and ~9 in action-angle variables;

... ....... ...
sf f = [~ W (J) elm.~] W(J)a £... + 0 t

~O m

In first order in f and g. the detuning component of Sf is just

(4.4a)

(4.4b)

(4.5)

(4.6a)

The first-order correction of sta • can be written as exp(:6:) and it obeys

the eQuation

exp(:6:)Y~exp(:-6:) = exp(:D(J):) ~+ (second order)

~ exp(:6:) .9'exp(:-~6:) = exp(:D(J):) + (second order)

Solving for 6. we get

6 = (.91'---: J)( sfaf + ~ sI bg)-D(j)

6 =

where
"t -+ aF

v(J) = lJ - aj

(4.6b)

(4.6c)

EQuation (4.6c) is given by (2.1b).

We can use 6 to "rewrite the expression for L .

.,It = st-1 exp( :-6: ) .9' 9fexp(:D:) exp(:6:) da 1 a

15

(4.7a)

(4.7b)



The structure of (4.7) is indentical to the structure of (4.3). The

transformation

to :J2

~ is modified and an extra detuning term has been added
a

~ exp(:O:) = exp(:p.J - F(J) + O(J):) (4.8)

The new "t.roub l e" map Y is second order in f and g. Quite clearly the
1

second-order tune shifts are given by the average over, of the Lie operator
yof l'

These formulas can be generalized to K locations around the ring with K

perturbing insertions f K.

K... _1_
I .9f f KtO(J) = I dcj) ---dcj)

(21f)n 1 n K'
k ':l

~ = ...Y l ~ ~K' ""K' f K' - O(j)\(9\'-5) K'=l

(4.9a)

(4.9b)

r;&
K'

(4.9c)

'~Kl = phase advance between location Kl 1 and Kt •



Conclusion

We have shown how the concept of phase advance is generalizable to

nonlinear systems with or without coupling. We have also shown how one

introduces errors into such a system without using the Hamiltonian frame

work. The four dimensional phase advance described in this paper has been

incorporated in the program FASTRACK which can now compute the linear lattice

functions and the associated phase advance in presence of errors and coupling.

Finally. we would like to point out that the idea of using mappings to

describe the properties of the ring can be extended to spin systems. Indeed.

Yokoya has shown how the tools presented in this paper. the ~-transfonmations

and 9J -phase advance transformation are extendable to systems mixing the

orbital motion around the ring with the spin of the particles. 1

17
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Appendix I: Equivalence of our phase advance to the work of Edwards-Teng.

Consider the Hamiltonian

~2 2 2H = % P + L(p Y - P x) + %Fx + Kxy + Gy . (1.1)x y

This Hamiltonian was studied by Edwards and Teng. They succeeded in

finding a canon;ca1 transformation which reduces the matrix Mof the one turn

map into block diagonal matrix of the Courant-Snyder type.

M= A M A-~
~ ~

IcoS4>

-Dsin4>

_ (B~
M= o ~ )

2

I = (~

o = (:

(1. 2a)

( 1. 2b)

(1. 2c)

The matrices I, 0, B andB are two dimens i ona1. Furthermore, Band
~ 2 ~

B have the Courant-Snyder form
2

B. =,
(

COS).I .+OL . Si n).l '" ,
-y.sin).l., ,

l3·sin).l. ), ,

COS).I.-OL.s;nlJ· ." ,
( 1.3)

They give a prescription in their paper which fixes the quantity cos~

unambigous1y. (cos~~O).

18



Now. consistent with our spirit. we diagona1ize M

M= A R A-1 ( I.4a)
2 :2

0 0 0

-u _1___1

A ~ ~ 0 0=
:2

0 0 "13'2
0

0 0 -CI _1__ 2

~ ~

Hence. we can write Mas

-1M= ARA ; A = A A
1 2

(I. 5)

The quantity A(=A A ) has the property described in section 3, Eq. (3.&). As a
1. 2

result. the phase advance must obey Eq. (3.16). Looking at the plane of B •
1

we get

dcp S A
1 21 12

(h =
+ S A + S A

22 22 23 32

A
11

cos+ +

~=
vI! coset»

1

(1. 6)

Similarly, for the second plane

(1. 7)

..
To no one1s surprise. the expressions for dcp/d~ agree with Edwards-Teng's

results.
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