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Abstract 

Quark models with four-fermion interaction including derivatives of fields in the 
strong coupling regime are used to implement composite-Higgs extensions of the 
Standard Model. In this approach the dynamical breaking of chiral syn1metry occurs 
in two (or more) channels (near poly critical values for coupling constants), giving 
rise to two (or more) composite Higgs doublets. Two types of models are built 
for which Flavour Changing Neutral Currents (FCNC) are naturally suppressed. 
In the first Model I the second Higgs doublet is regarded as a radial excitation 
of the first one. In the second Model II the quasilocal Yukawa interaction with 
Higgs doublets reduces at low energies to a convelltionallocal one where each Higgs 
doublet couples to a definite charge current and its v .e. v. brings the nU1SS either 
to up-or to down-components of fermion doublets. For the special configuration 
of four-fermion coupling constants the dynamical CP-violation in the Higgs sector 
appears as a result of complexity of v.e.v. for Higgs doublets. 
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1. Introduction 

The fundamental particles of the Standard Model (SM) of electroweak interactions, 
leptons, quarks and gauge bosons, acquire masses through the interaction with a scalar 
field (Higgs boson). The mass generation is mediated by the Higgs mechanism which rests 
on the Electroweak Symmetry Breaking (E\VSB). To accommodate the well- established 
electromagnetic and weak phenomena, the Higgs mechanism requires the existence of at 
least one weak iso-doublet, complex scalar field. After absorbing three Goldstone modes 
to build massive states of vV±, Z bosons, one degree of freedom ren1ains, corresponding 
to a real scalar particle (Higgs boson). If SM remains valid as a weak-coupling theory 
till very high energies then this particle cannot have a mass heavier than few hundreds 
of Gev. Thus the search for the Higgs boson is one of the fundamental quests for testing 
the minimal SM. Current estimations based on the different theoretical requirements and 
experimental implications[l, 2] give the SM Higgs mass in the" intermediate mass" window 
65 < MH < 200Gev for a top quark mass value of about 175Gev [3]. Despite of the recent 
successes of the 8M in its excellent agreement with the precision measurements at present 
energies [4], it is generally believed that the SM is not the final theory of elementary 
particle interactions. 

There are many extensions of the 8rvr which lead to the enlargement of the Higgs 
sector of the SM. For instance, the Minimal Supersym!lletric Standard Model (MSSM) 
[5] entails two elementary Higgs doublets at low energies, the Two-Higgs- Doublet Model 
(2HD~1) contains two complex SU(2)[ - doublet scalar fields with hypercharge Y = ±1 
to couple the up-type / down-type right-handed quarks to its Higgs doublet. The search 
for relations between the many Higgs-field dynamics and the masses of t-quark and Higgs 
boson give the selection rule for a particular model beyond the SM as. well as for its 
acceptable parameters [6], [7], [8], [9]. In more complicated theories ( see [1] and references 
therein) such as SUSy SrvI ones, E6 ones, or Left-Right symmetric ones [10], several 
neutral scalars, charged scalars and even double-charged scalars are required in order to 
give all amplitudes acceptable high-energy behavior [1, 2]. 

However there exists an alternative possibility [11] to restrict the number of ele­
mentary particles to the observable fermion and vector-boson sector with generation of 
scalar Higgs particles due to attractive self-fermion interaction. Namely, the quark self­
interaction may be responsible for the production of quark-antiquark bound states which 
are identified as composite Higgs particles. The idea that the Higgs boson could be a 
bound state of heavy quark pairs has been developed and worked out in a series of papers 
by various authors [11], being motivated by the earlier work of Nambu and Jona- Lasi­
nio (NJL) [12]. In particular, for t- quarks, it is provided by the Top-Mode Standard 
Model (TSM) Lagrangian, known also as the Bardeen-Hill-Lindner (BHL) Lagrangian 
[11]'[13]'[14]. The possibility that multiple four-Fermi interactions (for three and a heavy 
fourth generations) are important in EWDSB, leading to an effective 2HDM at low ener­
gies, has been investigated in [15]. In this model Higgs induced Flavour Changing Neutral 
Currents (FCNS's) are naturally suppressed [16]. Some recent theoretical aspects and 
questions of tt- condensation frameworks one can find in the review of [17]. In these 
scenarios the heavy top mass is explained by the" top-condensation" where new strong 
forces lead to the formation of it bound states and the EWSB. In a minimal version of 
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quark models the top-condensation was triggered by a local four-fermion interaction. 
The main goal of this paper is to give the description of the design of the Quasilocal 

Quark Models of type I and type II which provide two composite Higgs doublets and satisfy 
phenomenological restrictions on FCNC suppression. The particular, sample choice of 
formfactors and bare Yukawa coupling constants is made to obtain estimations for typical 
mass spectra in Model I and Model II. 

We propose the quark models with Quasilocal four-fermion interaction [18] where 
the derivatives of fermion fields are included into vertices to influence on the formation 
of the second Higgs doublet. Such extensions of the Higgs sector lead to a broad spect­
rum of excited bound states, moreover they may be viewed as more natural than other, 
above mentioned extensions since the particles involved in EWSB form only a ground 
state spectrum generic for SM. In these quasilocal NJL-like quark models (QNJLM) the 
symmetries do not forbid further higher dimensional vertices and one should expect that 
the ground states could be accompanied by (radial) excitations with identical quantum 
numbers but much higher masses. 

Thus, from the viewpoint of the 2HD:NI SM, the QNJLM are attractive because: i) 
it is an extension of the minimal TSM which adds new phenomena (e.g. broad spectrum 
mass of bound states including charged Higgs bosons); ii) it is a minimal extension in that 
it adds the fewest new arbitrary constants; iii) it easily satisfies theoretical constraints 
on p 1 and the absence of tree-level FCNC's suppression [16] in accord?-nce with thet"'-.J 

experimental evidence; iv) such a Higgs structure is required in order to build a model 
with the CP- violation [19] because the one-Higgs doublet interaction does not provide 
any effect of dynamical C P- violation. We shall show in a toy model with quasilocal 
four-fermion interaction how P-parity breaks down dynamically for the special choice of 
coupling constants [20]. 

This article is organized as follows: Section 2 contains the simplest Gross-Neveu 
model which reminds how the Dynamical Chiral Symmetry Breaking ( DCSB) arises in 
the scalar channel due to strong interaction. In Sec. 3, we formulate the main rules for 
the construction of the QNJLM which admits the polycritical regime. Here the effective 
potential and the mass spectrum for composite scalar and pseudoscalar states are. derived 
for them. For more evidence, in Subsec. 3.3, we investigate the two- channel QNJLM 
in the large-log approximation. In the vicinity of the tricritical (polycritical) point all 
possible solutions are analyzed. It turns out that there exist three phases with different 
correlation lengths in the scalar channel. Moreover the special phase of dynamical P­
parity breaking is found. In SecA and 5 two types of models are built for which FCNC 
suppression may be naturally implemented. In the second model the quasilocal Yukawa 
interaction with Higgs doublets reduces at low energies to a conventional local one where 
each Higgs doublet couples to a definite charge current and its v.e.v. brings the mass 
either to up-or to down-components of fermion doublets.In 8ec.4, the first extension of 
the 8M ,composite two-Higgs bosons for QN JLM (2HQM) is proposed where the second 
Higgs doublet is regarded as a radial excitation of the first one. The second model 
is constructed in Sec.5 so that the quasilocal Yukawa interaction with Higgs doublets 
reduces at low energies to a conventional local Yukawa vertex where_ each Higgs doublet 
couples to a definite charge current and its v.e.v. brings the mass either to up-or to down­
components of fermion doublets. In this version the top and bottom masses are explained 
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by "top-, bottom- condensations". On the base of the effective potential for the Model II 
and the positivity of the second variation for them the mass spectrum for composite states 
is investigated. It is interesting that for the special configuration of coupling constants 
appears the dynamical CP-violation in the Higgs sector. In the Summary we discuss 
the obtained results and a possibility to use them in different aspects of high energy 
physics. The Appendix contains the calculation of the matrices of the second variations 
for composite two-Higgs bosons in Model I ,II and the effective potential of l'v1odel II for 
the special choice of quasilocal formfactors. 

2. 	 DCSB in Models with Four-fermion Interaction 
and the Critical Regime 

Let us remind how the Dynamical Chiral Symmetry Breaking (DCSB) arises in a 
model with local4-fermion interaction due to strong attraction in the scalar channel. The 
siInplest, Gross-Neveu (GN) model retaining the scalar channel only can be presented by 
the Lagrangian density, in two forms (the Euclidean-space formulation is taken here), 

2 
- TIl + 9 (-)2
q .If/q 4N A2 qq 

c 
(1) 

where p = i'j.L8j.L and q - (qi) stands for color fermion fields with Nc components. For 
the time being we take the number of flavours Np = 1 and the current quark mass mq O. 
In Eq. (1) the scalar auxiliary field ¢(x) (a prototype of the Higgs field) is introduced in 
order to describe the dynamical symmetry breaking phenomenon in the large-Nc limit. 

This model is implemented by an O(4)-symmetric momentum cutoff A for the fermion 
energy spectrum. For a quark model the cutoff A can be thought of as a separation 
scale which appears when evaluating the SM low-energy effective action from a more 
fundamental theory. The regularized effective action Sell for auxiliary field, 

(2) 

possesses the mean-field extremum on constant configurations ¢ =< ¢ >= md = canst. 
The relevant effective potential VelI can be obtained by integration over fermions, 

Ve (¢) = Sell = Nc{A4(~_lnA2+¢2)_¢2A2+¢4InA2+¢2 + 87r2A2¢2} (3) 
I I (vol.) 87r2 2 2 J.l2 2 2 92 ' 

where the constant J.l is a normalization scale for quark fields. Its extrema can be derived 
from the mass-gap equation, 

R(¢) O. (4) 

The main contribution into Eq.(4) is given by a tadpole term in the fermion loop which 
is related to a vacuum expectation value (v.e.v.) of the scalar fermion density, 

811"2A2 411"2 
R(¢) = ¢-- + i-(qq) . 	 (5)
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The cutoff independence is realized with aid of fine-tuning, 81f21g2 ~ 1 - 0(11A2). In 
. the language of the theory of critical phenomena it is equivalent to developing our model 
around a critical or scaling point where the quantum system undergoes the second-order 
phase transition. By definition the critical coupling constant is g;rit 81f2. When g2 < 
g;rit the only solution of mass-gap Eq. (4) is ¢ = 0, while for g2 > g;rit there exists another 
nontrivial solution for dynamical mass md #- 0 which brings the true minimum for Vel I. 
Meanwhile the symmetric solution ¢ = 0 does not provide then a minimum anymore but 
realizes a maximum. 

The fine-tuning states that the strong A2-dependence should be compensated by the 
corresponding term in the coupling constant, 

(6) 

Its practical meaning is evident, namely, one produces a mass scale for physical states 
which is much less than the cutoff scale governing large radiative corrections. The de­
viation scale m6 < < A2 determines the physical mass of scalar meson. Indeed its kinetic 
term can be obtained from the second variation of Sell by calculating the I-fermion loop 
diagram (see App. Fig.l), 

(7) 

where the inverse propagator of scalar field reads: 

r(p) = 

(8) 

in the chirally invariant regularization of the fermion loop. The scalar meson mass is given 
by the remarkable Nambu relation m,p ~ 2md and the formfactor I (p) is determined by 
the relation, 

4 
I ( ) = 2N r d k 1 1 (9)

P C Jk<A (21f)4 (k + ~p)2 + m~ (k - ~p)2 + m~' 
In order that the physical mass parameters were insensitive to A, i.e. 8Amd 0, the 
scale mo should be weakly dependent, m5 m~ In(A2Im~), on the cutoff A.rv 

What have we learned from the above model? 

(i) 	The cut-off theory can be used for processes involving momenta p much less than A 
for the purposes of discarding high-energy states from the theory. 

(ii) 	The mass scale of meson states is assumed to be much less than A which is imple­
mented in the vicinity of critical values of coupling constants. 

(iii) As a result of DCSB in these models only one type of scalar mesons (Le. eventually 
one Higgs doubl~t) is created in the large-Nc approach. 
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(iv) In such models the (radial) excitations of composite meson states are not present in 
the latge-Nc approach. 

Meantime the conventional quark models with local four-fermion interaction may not 
represent a consistent part of the Beyond-Standard Model (BSM) effective action and 
conceivably they shall be extended with inclusion of higher dimensional vertices which 
are not forbidden by symmetries and induce the appearance of a reach spectrum of excited 
composite meson states. 

3. Quasilocal Quark Models and Polycritical Regime 

3.1. Dominant higher-dimensional vertices in DCSB phase 

In order to involve in the theory the effects of the discarded states at scales of order A 
it is needed to adjust the existing couplings constants in the Lagrangian and to add new, 
quasilocal, non-renormalizable interactions (vertices). These vertices are polynomial in 
the fields and derivatives of the fields and only a finite number of interactions is required 
when working to a particular order in X, where p is a typical momentum in whatever 
process is under study. 

We examine the DCSB patterns in the mean-field approach (large-Nc limit) and 
estimate the vertices with any number of fermion legs and derivatives. The main· rule to 
select out relevant vertices is derived from the requirement of insensitivity in respect to 
the separation scale A following the conception of low-energy effec·tive action [18]. 

We assume that: 

(i) A2-order contributions from different vertices are dominant in creating the DCSB­
critical surface that is provided by cancellation of all contributions of A 2-order and 
defines the polycritical regime; 

(ii) 	 A a-order contributions from vertices assemble in the mean-field action to supply 
fermions with dynamical mass md < < A which establishes the low-energy physical 
scale; 

(iii) respectively A -2 (etc.)-order contributions are irrelevant at energies much lower than 
A and so may be dropped from the theory if such accuracy is unnecessary. 

In the large-Nc approach the following approximation for v.e.v. of fermion operators is 
valid, 

(10) 

where any number of derivatives can be inserted between antifermion and fermion opera­
tors. 

V.e.v. of a bilinear operator is estimated in the assumption that quarks obtain a 
dynamical mass. Namely, 

(11) 
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One can see that the vertices with derivatives in many-fermion interaction are not sup­
pressed and play equal role in the mass-gap equation. 

We omit the full classification of effective vertices relevant in the mass-gap Eq. (see 
[18]) and report only the minimal structure of the QNJLM which admits the polycritical 
regime, 

£ = q I;'q + N~A2 m~o amn qRin (~~2) qL . {him (~~2)qR' (12) 

where amn is a hermitian matrix of coupling constants without zero eigenvalues and it is 
taken to be real symmetric one in order that the interaction did not break the CP-parity. 
Chiral fermion fields are given by qL(R) = 1/2(1 ± r5)q. Vie define the vertex formfactors 
to be polynomials of derivatives, 

Km 

fm(T) = Lf~)Ti, (13) 
i=O 

to have quasilocal interactions. The variable T is related to derivatives, T --1- -82
/ A2

. 

We adopt the following rule for derivative action which provide the hermiticity of fermion 
currents: 

(14) 

Besides let us regularize the interaction vertices with the help of a momentum cutoff, 

(15) 

Without loss of generality one can choose formfactors Ii (T) being orthogonal polynomials 
on the unit interval, 

J
1 

dT f m ( T) f n (T) = 6mn . (16) 
o 

Let us now introduce the appropriate set of auxiliary fields ¢n (x) const and developrv 

the mean-field approach, 

l 

£(r/J) = q(I;' + iM(r/J)PL + iM+(r/J)PR) q + NcA2 L r/J;" a;"~ r/Jn . (17) 
m,n=l 

The dynamical mass functional is a linear combination of formfactors, 

(18) 


In accordance with Eq.(14) the differential operator M(¢) is understood as a Weyl ordered 
or fully antisymmetrized product of functions ¢n and derivatives. Thereby we come to a 
model with l channels. When integrating out the fermion fields one obtains the effective 
action of ¢*, ¢ - fields. The effective potential Veil is proved to be a functional depending 
onthe dynamical mass functionaIM(¢*, ¢) and proportional to Nc that allows us to use 
the saddle point approximation for Nc > > 1. 
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3.2. 	 Effective potential and equations on the mass spectrum for 
QNJL Model 

The effective potential for auxiliary fields can be derived with the momentum cutoff 
regularization by averaging over quark fields: 

l 

Veff(</» = N c A2 L </>:na~~</>n 
m,n=l 

Nc [A2 ~ A-.* (87f2a-1
mn87f2 ~ ~m 

m,n=l 

+~ J
1 

d; (IM(r)14 IMoI4) + 0(12)]' 	 (19) 
o 

herein Mo = M(O). The last approximation is valid in such a strong coupling regime 
where the dynamical mass Mo < < A. This regime is of our main interest and it is 
realized in the vicinity of a (poly) critical surface. The critical values of coupling constants, 
a~n omn/87f2 

, are found from the cancellation of quadratic divergences. In this paper 
we study the critical regime in all l channels. The vicinity of this polycritical point is 
described by the following parameterization: 

(20) 


The generalized mass gap equations, 

(21) 


deliver the extremum to the effective potential which may cause the DCSB if it is an 
absolute minimum. They read: 

1 d 
- / ~ (IM(T)12M(T)!mCr) 

n=l o T + A2 

A2 
!m(0)I MoI2Moln MJ 

+ 	 / 
1 d; (IM(rWM(r)fm(r) IMol2 Mofm(O)). (22) 

o 

It can be seen from the first relation that, 

l 	 1 IM(T)14
L 	</>* flmn</>n = JdT ~ ~ 0, (23) 

m,n=l 0 T A2 

which means that for the existence of a non-trivial dynamical mass it is necessary to have 
at least one positive eigenvalue of the matrix flmn . However not all the solutions provide 
a minimum (see, the analysis of two-channel models in [20], [21]). 
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The true minimum is derived from the positivity of the second variation of the effective 
action around a solution of the mass-gap equation, 

(24) 

This variation reads: 

(a, (A eTeT p2 + B eTeT )a) 

+2 (1T, (A1reTp2 + B1reT )a ) + (11, (A1r1rp2 + B1r1r)1T) , (25) 

where two symmetric matrices - for the kinetic term A (A~n) , i, j = (a, 1T) and for 
the constant, mon1entum independent part, B = (B~n) - have been introduced. 

The positivity of the second variation corresponds to the formation of physical mass 
spectrum for composite scalar and pseudoscalar states which can be found from zeroes of 
the second variation determinant at the Minkovski momenta (p2 < 0), 

(26) 

Matrix elements of B are given by the following relations: 

6J1 

d; [( ReM)2 fm(r)fn(r) - MJ fm(O)fn(O)1 
o 

+ MJfm(O)fn(O) (6 In ~ - 4) - Mmn 

+ 2 f1 d; ( ImM? fm(T)fn(T), 	 (27) 
o 

2 f1 

d; [( ReM)2 fm(r)fn(r) - MUm(O)fn(O) 1 
o 

A2 
+ 2M5 fm(O)fn(O) In M6 - 2.6.mn 

(28)+ 	 6 f1 d; ( ImM? fm(T)fn(T), 
o 

81T2 /1 dT 	 )-B:n: = 4 (ReM)( ImM)fm(T)fn(T , 	 (29) 
Nc T o 

where the terms of 1/A2-order are neglected. 	 "­
When exploiting the mass-gap equation (22) one can prove that the matrix B has 

always a zero eigenvalue related to the eigenvector ¢~ =< 1Tm > -i· < am >. It corresponds 
to the arising of the Goldstone mode (the massless Goldstone bosons). 
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The kinetic energy matrix A turns out to be block-diagonal (20], 

A::' = 	0, A;;'~n = A:;;'n [1 + 0 Cn1~:)J ' (30) 

~ [fm(O)fn(O) (In ~ + 0 (1)) 

+ / 
1 

[Jm (r)fn (r) - fm(O)fn(O)] a;] + 0 G2) , (31) 

herein we have displayed the leading terms only in the large-log approximation. The more 
detailed expression can be found in [20], [21]. 

3.3. 	 Quasilocal Two-Channel quark models and possibility of 
dynamical breaking of P-parity 

For the further investigation of composite Higgs extensions of the Standard Model let us 
consider the Quasilocal Two-Channel quark model in a tricritical point [20], [21]. We set 
m, n = 1,2 in (12)-(20) and retain only the lowest derivatives in the potential, with 11 = 1, 
12 = v'3(1-2T). The dynamical mass function is thereby, M(</» = ¢1 +¢2v'3(1-2T). As 
¢j are complex functions, M(</» is complex too. However, with the global chiral rotation 
M(</» --+ A1(</»eiw , w = const it is always possible to implement rm < lvIa ></>= 0 and 
we can choose the following parameterization: 

- . P (32)</>2 = </>2 - 'l v'3' 

The equations (21) for the Two-Channel model read: 

t::.1l 1/J1 + t::. 12 1/J2 - M5 In :;2 - 6..j3l/Ji1/J2 181/J11/J~ - 8..j31/J~,
o 

d11/J1 -	 d21/J2 2..j31/J1 (I/Ji + 3I/JD + 2p2 (~I/Jl - 21/J2), 

In In 2 2 4 2) 	 (33)p(v3.6.1l - .6.12) 2pv3(</>1 + </>2 + 3P , 

where 
(34) 

We analyze the equations (33) near a polycritical point, l.6.ij /rv /-L 2 « A2
, in the large-log 

approximation (In A~ » In In A~ ). It gives rise to a set of solutions. 
J.L JL 

For p 	 0 all the solutions are divided into the following classes: 
a) Gross-Neveu-like solutions </>?N are: 

d~ det .6. [ (1) ] 	 (35)
(..j3d1,+ d2)31n ~: 1 0 In ~: . ' 
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These solutions deliver minima to the potential when v'3d1 + d2 < 0: with one eicrenvalue 
of the matrix ~ being in the over-critical regime and the other one in the sub-critical. 

b) Abnormal solutions are: 

(36) 

they correspond to the suppression of the large log-terms in Eqs.(33) of motion and giYe 
minima to the potential, when v'3d1 + d2 > 0, v'3d1 - 2d2 i= 0 ( either both eigenvalues 
of ~ are positive, or one is positive and the other one is negative). 

c) On the planes v'3d1 + d2 0 and y3d1 - 2d2 0 there appear special solutions 
with different, peculiar asymptotics [20], [21]. 

d) In general, in the models with more than one channel complex solutions are allowed, 
and the imaginary parts of all the variables ¢j cannot be removed simultaneously by a 
global chiral rotation. However the complex solutions (p i= 0) minimize the effective 
action only (!) for the narrow domain in the vicinity of the plane y3d1 - 2d2 O. Their 
asymptotic expressions are: 

2 d1 + 4~12 
(37)<PI = 16v'3(ln ~: - 3) 

and the dynamical mass is m~ 4¢I. The axial part of the mass function looks as follows: 

2 d1v'3 
P = (38). 8 

In each of the phase space domains mentioned above one finds four common boson 
states two scalar and two pseudoscalar - for real ¢j, and, in general, for complex 
¢j, three states with mixed P-parity and the pseudoscalar one with zero mass, the latest 
is in accordance to the Goldstone theorem. 

The mass spectrum of related bosonic states (collective excitations) is determined 
by zero-modes of the matrix of second variations of the effective potential (25) and respec­
tively by Eqs. (26) - (31). Taking into account the conditions necessary for a minimum 
of the potential, we find the solutions at -m2 = p2 ::; 0, giving physical values of particle 
masses. 

In the case of p = 0: 
a) NJL-like mass spectrum: 

m 2m 2 "-' """"O 1(' "-' 0" """" 

(39) 

in this domain the radial excitation states are heavier than the lightest scalar meson by 
a factor of logarithm. 
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b) For the Abnormal solutions we have: 

m; =0, (40) 

2 "'-' 6 2m
0' "'-' man' 

When comparing (39) and (40) we find the scalar channel correlation length to be different 
for each phase, that corresponds to the tricritical point conditions. 

c) For the special real solutions the relations between scalar and pseudoscalar meson 
masses are different from (39),(40) (see [20],[21]). 

d) Mass Spectrum in the P-parity Breaking Phase ( pO). One can see from (37),(38) 
that in the large-log approximation the axial dynamical mass (the imaginary part of 
M (1))) dominates. It leads to appearance of a massless boson in the scalar channel in 
accordance to the Goldstone theorem. Conventionally, the massless boson is related to be 
a pseudoscalar meson corresponding to the generation of a real dynamical mass. In order 
to fit it we make a global chiral rotation of fermionic fields q ~ exp(i1'57r/ 4)q accompanied 
by corresponding rotation of the bosonic variables ¢j ~ i¢{ 

(41) 

The classification of states given by the P-parity quantum number is relevant only in the 
large-log approximation, when: 

(42) 

next-to-Ieading logarithmic effects are of no importance and one can neglect the mixing 
of states with different P-parity. Then the mass spectrum of mesons is: 

2 "'-' d1 + 4.6. 12 "'-' 2 _ 2mi =0, m2 "'-' j3 A2 "'-' 161>1 - 4mc ' 
3ln JL2 

2 4(d1 +.6.12 ) 
m4 ~ r;; A2' (43)

9v 3ln JL2 

The ratio of m2 and m4 does not depend on the logarithm, so both the masses are 
comparable. On the other hand, in the models with a finite momentum cut-off, when the 
effects of order of 1/ In A~ make sense, the dynamical P-parity breaking is induced, since 

J.L 
B 1rO' O. This phenomenon of dynamical P-parity breaking can be used in extensions of 
the Standard Model [11] where several Higgs bosons are composite ones. 

Thus we conclude that the models with polycritical (tricritical) points are drasti­
cally different from the local N JL models in the variety of the physical phenomena in the 
DCSB. Explorations of such QN JLM in extensions of the SM are pretty well motivated 
as the underlying dynamics responsible for the top quark condensate should most likely 
lead to a broad spectrum of excited states, just like the hadron dynamics with QCD as 
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an underlying force. Moreover the QNJLM may even be viewed as more natural than the 
extensions to more generations, more Higgses, or to SUSY in the S:'\1 since the particles 
involved in DCSB (with masses of order of the electroweak scale) belong in this context 
only to the ground state spectrum. In the following sections we shall present an extension 
of the SM with two-Higgs bosons of the QNJLM where one of the Higgses is a radial 
excitation of another one. 

4. Higgs Bosons as Radial Excitations - Model I 

4.1. Effective potential in Model I 

Let us construct now the two-flavor quark models with quasilocal interaction in \'vhich the 
t- and b-quarks are involved in the DCSB. In accordance with the SJvL the left components 
of both quarks form a doublet: 

(44) 

which transforms under SU(2)L group as a fundamental representation while the right 
components tR, bR are singlets. 

The Model I which satisfies the FCNC suppression has the following Lagrangian: 

9t,lit,l) .. (45) 

Here we have introduced the denotations for doublets of fermion currents: 

(46) 

and the tilde in it,k and ~,k marks charge conjugated quark currents: 

(47) 

The subscripts t, b indicate right components of t and b quarks in the currents, the index 
k enumerates the formfactors: 

ft,1 = 2 - 3 ( - ~:), ft,2 = -J3 ( - ~:) ,Al = 2 - 3 ( - ~:), fb,2 = -J3 ( - ~:) . 
(48) 

As the spinor indices are contracted to each other in (46), Jt,k transforms as a doublet 
under SU(2)L. 72 is a Pauli matrix in the adjoint representation of the group SU(2)L. 
Coupling constants of the four-fermion interaction are represented by 2 x 2 matrix akl and 
introduce also the Yukawa constants 9k,l' 9b,k 

The Lagrangian density of the Model 1 (45) to describe the dynamics of composite 
Higgs bosons can be obtained by means of introduction of auxiliary bosonic variables and 
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by integrating out fermionic degrees of freedom. According to this scheme, we define t\yO 

scalar SU(2)L-isodoublets: 

<PI ( <P11) , (49)<P12 

and their charge conjugates: 

(50) 

In terms of auxiliary fields, the Lagrangian (45) can be rewritten in the following way: 

NA2 2 2 
C "'" t -1 ."", [-t t]Lkin + 87r2 ~ <Pk(a hl<Pl + 't ~ gt,k<PkJt,k + gb,k<PkJb,k + h.c. (51) 

k,l=1 k=l 

The integrating out of fermionic degrees of freedom will produce the effective action for 
Higgs bosons of which we shall keep only the kinetic term and the effective potential 
consisting of two- and four-particles vertices. The omitted terms are supposedly small, 
being proportional to inverse powers of a large scale factor A. The effective potential for 
the Model I has the following form: 

(52) 

where the "mass" term is in general non-diagonal and represented by the real, symmetric 
2 x 2 matrix .6.kl . 

We assume the electric charge stability of vacuum or, in other words, that only neutral 
components of both Higgs doublets may have nonzero v.e.v. Hence, one can deal with 
only neutral components of the Higgs doublets in the effective action for studying DCSB. 
This part of the Higgs sector can be investigated separately as a model where two singlets 
(not doublets) appear as composite Higgs bosons. For this purpose, we use the Quasilocal 
Two-Channel model which we have already developed for the case of one-flavour[21J. 

Following the definitions made in [20], we relate the fields <PI, <P2 and p to the neutral 
components of Higgs doublets: 

(53) 
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The condition of minimum of the potential (52) with the charged components of Higgs 
doublets put to zero values: ¢h2 == 4>21 == 0, brings the mass-gap equations for them: 

2 
.6 rI, .6 rI, 3 31 A 159 rl,3 15V3 rl,2 I

llIP1 + 121P2 == 2¢1 n 4¢t TIPI - -2-IPI qJ2 + 

9 2 V3 3 p2 rr; 
+2¢1¢2 + T¢2 + 2(3¢1 V3¢2), (54) 

A 5V3 3 9 2 I 3/3 2
ti12¢1 + .622 ¢2 --2-¢1 + 2¢1 fJJ2 + -2-¢1¢2 + 

9 3 p2
+2¢2 2(V3¢1 + 9¢2), (55) 

°= p (3¢i + 2V3¢1¢2 + 9¢~ 9p2 - 2.622) (56) 

Let us consider the equations (54)-(56) for two cases: 1) p = °and 2) p 0. 
When p == 0, assuming that ¢l =1= °and ¢2 0, we rewrite the equations (54)-(56) 

in the following way: 

(57) 

.6.22 

(58) 

The solution of the mass-gap equation of Gross-Neveu-type is: 

(59) 

The solution of the mass-gap equation of the Abnormal-type is: 

(60) 

i..e. easy to see that in this case the solutions, in general, the same ones as in the Two­
Channel model . 

For the case 2, p non zero, the mass-gap equations reads: 

2 A2 159 2 /3 ¢.611 32¢1 In 4¢r - T¢l - 5 3¢1 2 ~ (¢~ p2) , (61 ) 

.612 + 3¢1¢2 + 2v'3 (2¢2 + p2) , (62)
2 

3 2 V3 9 (¢2 2).62~ 2, ¢1 + 3¢1¢2 + 2, 2 + P (63) 
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The mass-gap equations (61)-(63) can be rewritten in an equivalent form: 

,\2 )3b.1l - 3b.22 + 9v3b.12 = 96</>i ( In ~</>r - 3 , (64) 

~22 - 3vi3~12 = 24¢i - 8vi3¢1¢2, (65) 

b.22 = ~</>i + v3</>1</>2 + ~ (</>~ + p2) . (66) 

From (64)-(66) it is clear that for fixed ~kl while A gro"\Ys large, the solution exists if ~kl 
parameters are chosen close to a particular plane in the parametric space. This plane is 
defined by the equation: 

~22 = 3vi3~12' (67) 

When ~kl satisfy the equation (67) exactly, the solution is found to be as follows (in the 
large-log approximation): 

¢2 _ ~ll [1 + 0 ( 1 ) ] (68)
1 - 32 In ~~ In ~~ , 

¢2 = vi3¢1, (69) 

(70)/ = ~b.22 [1 + 0 enl~: ) ] . 
4.2. Mass spectrum in Model I 

The lnass spectrum of related bosonic states is determined by the Eqs. (26)-(31) and 
taking into account the conditions necessary for a minimum of the potential (52,53). The 
solutions at -m2 = p2 < 0 one can obtain from the Eqs: 

(71) 

The "kinetic" matrix A as being proportional to p2 is derived in the soft-momentum ex­
pansion in powers of p2 and in a large-IogA approximation. Because the expressions for 
A and B are cumbersome we give explicit form ones in the Appendix A and B corres­
pondingly. After substituting expressions for the matrix A, B into (71) one can get the 
mass spectrum for the neutral Higgs bosons in Model 1. For the case, p zero, the n1ass 
spectrum resembling ones in Two-Channel model, in particular, the Gross-Neveu-type 
solution brings the spectrum for scalars: 

2 2~22 
m q , ~ --3-' (72) 

(73)
det~ 

( 2) = 4m~yn
2~221n ~2 

and for pseudoscalars: 

2 r"'oJm 7r' (74)_ r"'oJ 3 ' 
o. (75) 
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The Abnormal solution gives the mass spectrum for scalars: 

~ 4~22 
(76)3 ' 

"-I ~~~3 (3V3~12 - ~22)2/3 2 
(77)~ 	 32/ 3 In2/ 3 (~~) = 6mdyn 

and for pseudoscalars: 

~ 32/3(3V3~12 ~22)4/3
m1("2 

(78)
54~~~3 In1/3 (~~) 

o 	 (79) 

Remark that dynamical mass mdyn is in fact the mass of t quark in the Model-I, because 
the v.e.v. of ¢;11, which is parametrized as ¢;l =< ¢;ll >, gives the value of mass of 
t-quark. 

The mass spectrum in the P-parity Breaking Phase, for the p non-zero is: 

m2
1 	 0, (80) 

3~1l - ~22 
"-I 
"-Im2

2 ~ 16¢;f == 4m~yn' 	 (81)
961n 

42m3 ~ 3~22' (82) 

2 3~11 + 7~22 
"-I 
"-Im4 	 (83)

54 In A~ 
tL 

Thus, we have constructed the Model I where: 

a) Two composite Higgs doublets are created dynamically as a consequence of DCSB 
in two channels. 

b) In 2HQ Model I Higgs bosons are rather radial, ground and excited states in the 
scalar -pseudoscalar channels. 

c) 	 The appropriate fine tuning leads also to spontaneous breaking of P-parity and, 
therefore, of CP-parity in the Higgs sector. 

5. Top-Bottom Condensation for 2HQM Model- II 

5.1. Effective potential in Model II 

The Lagrangian density of the Model II to describe the dynamic of two composite 
Higgs bosons whic4 consist of bound states (condensates tt, bb) and satisfy the FCNC [16] 
can be written as: 

~ 	 . NcA2 
2 t 1 ~ ~ t 

£J 	= Lkin + 87r2 L <Pk(a- hl<Pl + iq(MPL + M PR)q + h.c., (84) 
k,l=l 
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where PL(R) = 1/2(1 1'5) - the left and right projectors, and M is the two-by-two flavour 
matrix: 

2 (¢m2 1t,m (~:) -¢ml 1t,m (~:) J
M (85) 

fl ¢;"l Am (~:) ¢;"2 1b,m (~:) , 

where we set for the Yukawa coupling constants gt,k, gb,k = 1 (two Yukawa constants due 
to the renormalization of Higgs fields and other we choose equal one). In this IvIodel 
II 4)1, 4)2 give masses to up-, down-type quarks. The structure of quark interaction is 
specified in four formfactors: 

82 
it,1 1 - Ct,1 A2' 

82 

it,2 A2' 
82 

ib,1 -Cb,1 A2' 

82 
ib,2 1 - Cb,2 A2 (86) 

When the chiral symmetry is broken, the v.e.v. of neutral.Higgs fields are non-zero 
and the true Yukawa vertices should be obtained by subtracting from M its v.e.v. 

M=M-M, (87) 

where M is the v.e.v. of M: 

(88) 


T A2 

The elements of the matrix (88) are the quark mass functions: 

(89) 
defined to be real and <PI =< <P12 >, <P2 =< <P22 >. The non-zero phase at mb, which is 
displayed explicitly in (88), may appear if the v.e.v. of <P22 acquires irremovable phase 
factor when the chiral symmetry is broken. 

As the vacuum charge stability is assumed, M is diagonal, so NI and Mt commute 
and can be placed in any order in products of themselves. 

The effective potential of composite two-Higgs model II in which the interaction 
of quarks and Higgs bosons is described by formfactors (86) reads: 
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= -f>114>~ 2f>124>14>2 cos 00 f>224>~ + ~4>t (In ~; + D+ 
2 

1 ,.,1,4 ( A 1) 1 4 3+2"\f'2 	 In <P~ + 2" + 2 (J1111 <PI + 4J1112 <Pl <P2 COS 50 + 

+2(Jl122 + J1221 + JI212cos250)<pi<p~ + 4JI222<Pl<P~cos50 + 

+J22224>~) + 0 U2) "' 	 (90) 

where v.e.v. of fields are: < <P12 >= cPl1 < <P22 >= <P2. (For the concrete choice of 
formfactors in Model II the view of the effective potential displayed in the Appendix C) 
Its minimum is described by solutions of the mass-gap equations (21), (22) which for the 
Model II are: 

2~11 <PI + 2~12<P2 cos 50 = 

= 24>nn (~;) + 211111 4>t + 6J l1124>f 4>2 cos 00 + 2J12224>~ cos 00 + 

+2 (Jl122 + J1221 + J1212 cos 250 ) <Pl<P~, 	 (91) 

2~12<Pl	<P2 sin 50 = 
2JUI2 <Pr<P2 sin 50 + 2JI212<pi<p~sin250 + JI222<pl<p~sin50, (92) 

2~22<P2 + 2~12<Pl cos 50 = 

= 24>~ In ( ~;) + 2J22224>~ + 6J12224>14>~ cos 00 + 2J11124>~ cos 00 + 

+2 (JU22 + J1221 + J1212 cos 250 ) <Pi<P2, 	 (93) 

where 	Jk1mn (k, l, m, n = 1,2) are the integrals: 

1 

Jk1mn = / (ft,k (r)!t,l (r)ft,m (r)ft,n(r)+ 
o 
+ fb,k( r)fb,l( r)fb,m( r)fb,n( r) 

+ ft,k( r)fb,l (r)fb,m( r)ft,n(r)­

- ft,k( r)ft,l( r)fb,m( r )fb,n( r)+ 

+ fb,k( r)fb,l(r)ft,m(r)ft,n(r) 

- fb,k( r)ft,l( r)ft,m( r)fb,n( r)­

- ft,k(O)ft,I(O)ft,m(O)ft,n(O)­

- fb,k(O) fb,l (0) fb,m (0) fb,n (0)­
- ft,k(O)fb,l(O)fb,m(O)ft,n(O)­

+ ft,k(O)ft,l(O)fb,m(O)fb,n(O)­

- fb,k (0) fb,l (0) ft,m (0) ft,n (0)­
dr (94)+ fb,k(O)ft.l (O)ft,m(O)fb,n(O)) -. 
r 

It is more convenient to solve the equations (91 )-(93) for the variables ~lm rather 
than <PI, <P2, 50' The variables <PI, <P2, 50 will be treated as input parameters while ~lm 
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as the unknowns. The reason for this is that we do not know D.lm from any global theory, 
we just fit them so that cP1, cP2, 80 conform to experiment. The equations (91)-(93) are 
linear for D.lm and can easily be solved; one just express D.lm via cP1, cP2, 80 and substitute 
them in every" place they appear. As usual two cases must be considered separately. 
l)For 80 = 0: 

2 (A2) 2D.1l cP1ln cPr + Jllll cP1 + 3J1l12 cP1cP2 + 

+ (J1122 + J 1221 + JJ2J2) 1~ + J 1222 :~ .6.12 :: ' (95) 

2 (A2)D.22 cP2ln cP§ + J2222 cP22 + 3J1222 cP1 cP2 + 

(96)+ (J1122 + J1221 + J1212 ) <pi + J 1112 :! -.6.12 :: ' 

where D. 12 , cP1, cP2 are treated as input parameters; 
2) and for 80 =I 0: 

1i In (~;) + J1111 <pi + 2JJJl2 <P1 <P2 cos 80 + 
(97)+ (J1l22 + J1221 - J1212 ) cP~, 

D.22 <p~ In ( ~;) + J2222 <p~ + 2J1222 <PI <P2 cos 80 + 
(98)+ (J1l22 + J1221 - J1212 ) cPi, 
(99)D.12 J 1l12cPi + J1222cP~ + 2J1212 cPlcP2 cos 80 ­

The mass spectrum of related bosonic states is determined by the matrices Aand 13 of 
the second variations of the effective potential ( 90) (see Appendix A, B). 

5.2. Mass spectrum in Model II 

After substituting explicit forms for the A,B into (71), one can obtain the mass-spectrum 


for the composite neutral Higgses in Model II. 

1) For 80 = 0: 


.-...J 

.-...Jmu 2mt, 

m1f 0, 

2D.12 - 2mrJ 1l12 
.-...J 
.-...Jmu' r 

(100)m1f1 ~ mu' , 

where 
(101) 
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if the ratio: 

0(1) (A-too), 

(102) 

than one gets: 

m(J"1 2mb, 

2(m; + m~) 

mtmb ln Sm t 

• ( ~12 - mlJ1112 - 2mt mb Jl212 - m~J1222). (103) 

2) For 60 -::f. 0: 

(104) 

(105) 

J1212 
m3 ~ 2mt -1A2 (106)

n=:2mt 

m4 ~ 2rmbl sin 601/J1212 . (107) 

For the case of 60 -::f. 0, the model predicts low mass m4. 
If one considers (that may take place for the fourth generation): 

mbt"V1 (A-too), (108) 

the mass-spectrum turns out to be as follows: 

ml - 0 (109) 

m2 ~ 2mt (110) 

m3 "" 2mb (111)"" 

(112) 


We notice that when 60 -::f. 0 we have not scalars and pseudoscalars any longer because the 
particles which are eigenstates of the energy operator, are mixed of both P-even parity 
and P-odd parity fields, hence the former classification by party does not hold for this 
particular case. 

Thus in the Model II the Quasilocal Yukawa interaction with Higgs doublets reduces 
at low energies to a conventional local one where each Higgs doublet couples to a definite 
charge current and its v.e.v. brings the mass either to up- or to down- components of 
fermion doublets. Based on the FCNC suppression, the Model II leads to the relation 
mt > > mb and so to an enhanced coupling of the light scalar (pseudoscalar) boson to 
the down-type quarks while suppressing the coupling to the ,up-type quarks. The Model 
II has a broad spectrum of excited bound states which can be parametrized the data, in 
particular, obtained from the Next Linear Collider. 
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6. Summary 

In our paper we have proposed a set of Quasilocal NJL-type quark model (QNJL1\T) which 
lead to a larger spectrum of ground and excited states in the polycritical regime. Fronl the 
viewpoint of the SM, these models are considered as more natural than common extensions 
of the SM, since they do not enlarge the number of elementary particles in fermionic sector 
and preserve the symmetries of the SM. For the toy Two-Channel Quasilocal quark model, 
near tricritical point we have found three major phases: a symmetrical one and two phases 
with DCSB, different in correlation lengths in scalar channels. On a particular plane in 
the space of coupling constants we discovered the special P-parity breaking phase. It 
means that in such a phase there exist heavy scalar states which can decay into t\yO or 
three pseudoscalars. This phenomenon of dynamical P-parity breaking can be used in the 
extensions of the SM where several Higgs bosons are composite ones. In the framework of 
the QNJLM we have presented two Models which provide at low energies two composite 
Higgs doublets, as minimal extensions of the Top-Mode Standard Model [111,[14]. In the 
2HQ Model I Higgs bosons are rather radial, ground and excited states in the scalar ­
pseudoscalar channels. In the 2HQ Model II, which consistent with the requirement of 
natural flavour conservation [16], strong forces lead to the formation of top and bottom 
bound states (and corresponding condensates) and generate masses of t,b-quarks. In 
Model II we have concentrated on the scenario where each of the neutral components of 
the two doublets ¢1,2 (with v.e.v. VI,2) couple respectively to the 13 = fermion fields 
The FCNC suppression leads to the relation mt » mb and to an enhanced coupling of 
the light scalar (pseudoscalar) boson to the down-type quarks and the charged leptons 
while suppressing the coupling to the up-type quarks. The existence of light neutral 
Higgs (pseudo )scalar bosons in the framework of 2HD:NI is not excluded by existing data 
« 40Gev). The chance that it can be seen at the Next Linear Collider in the ....If processes 
has been pointed out in [22],[23]. As a result of complexity of two v.e.v.'s for two composite 
Higgs doublets the dynamical CP-violation may appear in the Higgs sector. At high 
energies these channels are strongly coupled and one could say that two-composite Higgs 
doublets partially represent the mixture with excited states. If such excited states exist 
then they will modify the Higgs mass predictions. In addition, we remark that low values 
for the Higgs masses of the additional excited states could actually change the window for 
MH since the excited states could give a significant contribution to the p-parameter [24]. 
From our consideration we have seen that the appearance of dynamical C P-violation in 
the Higgs sector imposes strong bounds on Higgs masses, in particular, one light scalar 
Higgs boson is unavoidable. The experimental implications of such effects are expected 
to be rather small in the fermion sector of the 8M [1], [22]. These effects are observable 
in decays of heavy Higgs particles (namely, pseudoscalar Higgses may decay into scalar 
ones, scalar Higgs may decay into pseudoscalar ones) and in decays of Higgses particles 
into two vector bosons where CP-even and CP-odd amplitudes appear. At high energies 
the appearance of the appreciable C P-violation could be important both as a source 
of electron and neutron electric dipole moments [25] and as a mechanism for EW scale 
baryogenesis[26], [27]. Besides one expect also that modifications of the 8M Lagrangian 
(the Higgs and Top interactions) by higher dimensional vertices may enhance the Higgs 
production at hadron colliders [28]. 

22 



The theory of two con1posite Higgs bosons which we have discussed in our paper 
should be regarded as a viable alternative to other approaches to the BSM and perhaps the 
rnajor progress in the alternative approaches will come when the first direct experimental 
results associated with the origin of EWSB begin to appear. 

The purpose of this paper has been to elaborate the very design of quasilocal N JL­
quark models with two-composite Higgs bosons. A more comprehensive analysis of low­
energy particle characteristics in these models is postponed to the next paper in this series 
of. The numerical computation of bounds on mass spectra, Yukawa coupling constants 
and decay widths with taking into account the renormalization-group corrections will be 
presented elsewhere. 
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Appendix A: Kinetic matrix Afor composite two-Higgs 
bosons 

In this appendix we calculate the kinetic term for cornposite Two-Higgs Quasilocal 
Quark Models which is obtained by calculation of the one-loop diagram: 

70k+~ 
12k 
2 

Figure 1: One-loop diagram for calculation of kinetic term. 

Here p is an incoming momentum, and k is a momentum running around the loop. 
The loop diagram (Fig.l) gives the following expression: 

1-~ J (g;~4Tr [(iMPL + iMtPR) n- ( (k + ~r) 
Ikl<A .. 

x (iMh + iMtPR) n-1((k _~)2)]. (113) 

Here the coefficient 1/2 is due to symmetry of the diagram (Fig.l). The full expression 
within the square brackets in (113) is an element of a direct product of three spaces:. 
color, flavor and spinor so the trace operation is to be fulfilled for all them. We define the 

vertex: 

and the fermion propagator: 

< 	 = n-1(q) = (q + iMPL + iMtpR)-l = 
(q - iMPL - iMtPR)D,.(q2) 

where ~ is a matrix function: 

1 o 

(114)
1 o 
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First, we calculate the trace of the sum of all the products of galnma-matrices displayed 
in the expression (113). After that we come to the following expression: 

~C'kL (:;~4 {2tr[M~ ((k +~r) Mt~ ((k - ~r)] (e - ~) ­

tr[MtM~((k+~r)MtM~((k-~r)] + (115) 

+2tr[Mt~((k+~r)M~((k ~r)] (e- p
:)­

tr [MMt~ ( ( k +~) 2) MMt~ ( ( k _ ~) 2)] } 
In this formula and further on the trace is calculated only for the flavour two-by-two 
matrices. 

The kinetic term is derived as being proportional to p2 in the soft-momentum expan­
sion of (115) in powers of p2. We obtain this term by means of calculating the second 
derivative of (115) at zero external momentum p. First, let us rewrite the expression (115) 
in a form: 

3~;4 J(i(x, y) - tr [M~(k2)Mt~(k2)]) d4k, 	 (.116) 

Ikl<A 

where 

(117)x (k+~f 
. with the function f defined as: 

f(x,y) 	 4tr[M~(x)Mt~(y)] k 2 

2tr[MMt ll(x)MNIt ll(y)] ­

2tr[MtM~(x)MtM~(y)] 	 (118) 

Let us expand the expression (118) in series of p and extract the term proportional to p2: 

2 
2 

N Cp2 JA / ~ 8 I f(x, y) - tr[Mll(k2)Mtll(k2)]) k2dk2, (119) 
321f2 

0 \ 2 8po8po p=o 

where the angular brackets stand for angular average in 4-dimensional Euclidean space. 
The second derivative of the function f reads: 

(120) 
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The subscripts in fxx) fxy, f yy ) fx, fy stand for partial derivatives by variables x and y. 
The derivatives are calculated at Xo Yo = k2 (see (117)). The function .6., defined in 
(114), is a flavour matrix: 

1 
0 

x+m; (~:)
.6. (x) == (121)1

0 

x + m~ (.~:) 
Using (85), (87), (88), (118) and (121), one gets f(x, y): 

2 {[ ( ftll (~ ) ft,m (~) 
f(x,y) !'~l 4 (x +mt(k2jA2))(y + mbWjA2)) + 

fb,! (f,) Am (f,) +) k 2 + 
+ 	 (x + mb(k2j A2))(y + mt(k2j A2)) 

iJo 
+ 	 2mt (~:) mb (~:) (ft'l (~:) fb,m (~:) e- + 

iJO+ Al (~:) ft,m (~:) e ) X 

X ex + mt(P jA2))1(y +mb(P j A2)) 

+ 	 (x + mb(Pj A2))1(y + m,(P jA2))) ] ¢tdJml 

2 [ fb,l (~) fb,m (fz) 
+ 	 4k (x +mb(k2jA2))(y+ mb(k2jA2)) 

ft,l (~) ft,m (~ ) ] * 
+ 	 (x + mt(k2jA2))(y+mt(k2jA2)) ¢l2¢m2 

2i60fb,l (~) fb,m (5:) m~ (¥a) e­

2 [(x + mb(k2j A2))(y + mb(k2j A2)) 


ft,l (5:) ft,m (5:) m; (~~) ] 

+ (x + mt(k2jA2))(y + mt(k2jA2)) ¢l2¢m2 + 


fb,l (~) fb,m 	(~) m~ (~~) e2i60 
- 2 _~::..-L_----':~:'-----!.--!..--:---:-:-

[(x + mb(k2j A2))(y + mb(k2j A2)) 

ftll (~) ft,m 	(~) m; (¥a) ]¢* ¢* } (122) 
+ (x + mt(k2j A2))(y + mt(k2j A2)) l2 m2 

After applying the derivative procedure displayed in (120) to the function f, one gets the 
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kinetic term in the following form: 

-1~2 1'~1 (II;:! (al'4>71)(al'4>ml) + I/;; (al'4>72) (al'4>m2) + 

+Ii;; (al' 4>12) (al'4>m2) Ii:! (al'4>t2)(al'4>~2) ) . (123) 

lle;;: contributes to the kinetic term for charged components of higgs doublets, ll~ ~ ll~ and 
ll~ do the same for the neutral components. The expressions for them are cumbersome 
and we have divided the total expression in three parts. For the charged components one 
has: 

1 jA2[( m;(k2/A2)k2 
20 (k2+ mr(k2/A2))3(k2+ m~(k2/A2)) + 

m~(k2 / A2)k2 

(k2+ m;(k2 / A2))(k2+ m~(k2 / A2))3 + 
k4 

+ (k2+ mr(k2/ A2))2(k2+ m~(k2 / A2))2 

(k2 + m;(k2/ A2))1(F + m~(F/ A 2))) x 

X (It'l (~:) lt,m (~) lb,l (~:) Am (~:) ) + 

( m:(k2/ A2)mb(k2 / A2) 
+ (k2+ mr(k2/ A2))3(k2+ m~(k2 / A2)) + 

mf(k2/ A2)mt (k
2/ A2) 

+ (k2+ mr(k2/ A2))(k2 + mg(k2/ A2))3 

mt (k
2/A2)mb(k2/A2)k2 ) X 

+ (k2 mr(k2/A2))2(k2+m~(k2/A2))2 
i60 

X (It'l (~:) Am (~:) e- + 

i60 2 2 (124)+ lb,l (~:) lt,m (~:) e dk) ] k , 

for the neutral ones: 
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(125) 


and 

(126) 

(127) 

The next task to do is to calculate the integrals for the large value of A, ignoring all 
contributions which disappear in the A ---+ 00 limit. Thus one obtains: 

(128) 

(129) 
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\ 

(130) 

(131 ) 

Herein and further on mt and mb stand for quark masses. 
As we know from experiment, the mass of the top quark is much greater than that of 

the bottom quark. Regarding m t » m b , for the choice of formfactors (86) one gets: 

1(1) 
A2 1 1 2 2 

"-' In­11 
"-' 4 + 2Ct,1 + 2 (Ct ,1 + Cb,I)' (132)

mz 
11(1) "-' 

"-'12 Ct,2 + Cb,1 + "2(Ct,I Ct,2 + Cb,I Cb,2), (133) 

A2 1 1 2 2/(1) "-' 
"-J22 In m 2 - 4 + 2Cb,2 + "2 (Ct ,2 + Cb,2), (134) 

b 

1(2) 
11 

"-' 
"-' In 

A2 13 1 2 2 
- 12 + 2Ct,1 + 2 (Ct ,1 + Cb,I)' (135) 

1(2)
12 

"-' 
"-' 

1 
Ct,2 + Cb,1 + 2 (Ct,I Ct,2 + Cb,I Cb,2) , (136) 

/(2)
22 

"-J 
"-J 

A2 
In-

m 2 
b 

13 1 2 
12 + 2Cb,2 + 2" (C t ,2 C~,2)' (137) 

1(3) 
11 

"-' 
"-' 

1 
3' 

(138) 

1(3)
12 

"-' 
"-' 0, (139) 

1(3)
22 

"-' 
"-' 

_ ~e-2iOO 
3 

(140) 

1(4) 
11 

"-' 
"-' 

1 
3' 

(141) 

1(4)
12 

"-J 
"-J 0, (142) 

/(4)
22 

"-J 
"-' 

_~e2ioo 
3 

(143) 

Next, we shall change variables and rewrite the total expression for kinetic term. For the 
neutral components we choose non-linear parameterization: 

"'2 ei(a+o) A-. 
~ ,+,22, (144) 

Let us substitute (144) into (123) and expand it with derivatives, leaving only quadratic 
terms and omitting the rest of the expression. As the v.e.v. of <PI and cP2 provide quarks 
with dynamical masses, we replace them with mt and mb respectively. The variable cP is 
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regarded as a Goldstone boson, which is absent in the effective potential; it appears only 
in higher-derivative terms. The other phase, 6 , is associated with the relative phase. The 
variables ¢h and <P2 parameterize radial excitations. For the fields <p and 6 we use different 
notations 

(145) 

so that one can rewrite the kinetic term for the neutral components of Higgs doublets 
uniformly: 

where A is four-by-four matrix: 

1(2) _ ~ 
11 ~ 

(2)
112 cos 60 

1(2) <p . 612 2SIn 0 

1(2) <p . 612 2sin 0 

(2)
112 cos 60 

:l1(2)
22 

~ 

0 

1(2) <p . 612 1SIn 0 

1(2) <p . 6- 12 2sIn 0 

0 

(1(2)+:l) 212 "3 mb 

(2) 6
112 mbmt cos 0+ 

+ (1(2) + ~ )m2 
22 3 b 

(146) 


1(2) <p . 6- 12 2sIn 0 

1(2) <p . 612 1SIn 0 

(1(2) + ~ )m2+22 3 b 
(2) (147)+ 112 mbmt cos 60 

(1(2) + ~ )m2+ 
11 3 t 

(2)
+ 2112 mtmb cos 60+ 

+(1(2) + ~)m222 3 b 

"­

Appendix B: Momentum independent matrix B 

Let us define the matrix of second variations of the effective potential for the Model I in 
the following way: 

(l,m=I,2). (148) 

For the case, when p = 0, the Bft matrix for scalars and Bkt matrix for pseudoscalars 
are represented: 

B(f(f 
11 1284>i In ~2 - 4464>i - 15J34>14>2 + (-J34>~ + 2~12) :2 (149)

4 1 1 
B(f(f

12 - -15V3<Pi + 18<Pl ¢2 + 3v3<p~ 2~12 (150) 

B(f(f
22 3J34>14>2 + 184>~ + (5J34>i + 2~12) :: (151) 

B7r7r 
11 5J34>14>2 - 64>~ + ( -J34>~ + 2~12) :: (152) 

B7r7r12 -5V3<pf + 6<Pl <P2 + v3<p~ + 2~12 (153) 

B7r7r22 -64>i - J34>d)2 + (5J34>i + 2~12) :: (154) 

B(f7r o·, m, n = (1,2) (155)mn 
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For the case, P non-zero, the corresponding matrix of second variations of the effective 
potential is a 4 x 4 matrix. One can arrange the neutral Higgses in a vector-column with 
4 components: 

where Ok - scalar fields, 7rk - pseudoscalar. 
Let us display the non-vanishing components of the matrix of second variations: cal­

culated in the minimum of the potential, in the following form: 

128cPi In A;2 - 446cPi - 20V3cPl cP2 + 6cP~ (156)
41f'1 

B12 -10V3cPi 12cPl cP2 + 2V3cP~ (157) 

B 13 -10V3cPIP + 6cP2P (158) 

B14 6cPIP + 2V3cP2P (159) 

B22 6cPi + 4V3cPl cP2 + 18cP~ (160) 

B 23 6cPIP + 2V3cP2P (161) 

B24 2V3cPIP 18cP2P (162) 

B33 6p2 (163) 

B34 2V3p2 (164) 

B44 18p2. (165) 

(the common factor Nc/87r 2 is implied). 

The matrix B for the effective potential in the Model II is: 

Bll -2~1l + 6¢i In (~;) 4¢i + 6JUl1¢i + 

+ 12J1112 cPl cP2 cos 80 + 2 (J1122 + J 1221 + J 1212 cos 2(0) cP~, (166) 

B12 -2~12 cos 80 + 6J1112cPr cos 80 + 6J1222cP~ cos 80 + 
+4 (J1122 + J 1221 + J 1212 cos 280 ) cPlcP2, (167) 

B 13 - cP2 sin 80 (2~12 - 6J1112cPr - 8J1212 cP1 cP2 cos 80 - 2J1222cP~) , (168) 

B14 0, (169) 

B21 B 12 , (170) 

B22 -2~22 + 6¢~ In (~;) 4¢~ 12J1222¢1¢2 cos 00 + 

+6J2222cP~ 2 (JU22 + J 1221 + J 1212 cos 280 ) cPr, (171) 

B23 cPl sin 80 (2~12 - 6J1222cP~ 8J1212 cPlcP2 cos 80 2J1112cPi), (172) 

B24 0, (173) 
B31 B 13 (174) 
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'. 

B32 B 23 , (175) 

B33 - 2<P1<P2(~12 cos 60 - J 1112 <pi cos 60 2J1212 <P1 <P2 cos 260 ­

-J1222<P~ cos (0), (176) 

B41 0, (177) 

B42 0, (178) 

B43 0, (179) 

B44 O. (180) 

Appendix C: The effective potential of Model II for 
the special choice of formfactors 

For purposes of further calculations of realistic mass spectra, Yukawa coupling constants 
and decay widths with taking into account the renormalization-group corrections we pre­
sent in this appendix the effective potential of Model II for the following set of formfactors: 

ft,1 2 37; ft,2 = V37; 

fb,1 = -V37; fb,2 2 - 37; (181) 


the constants Jklmn are evaluat~d to definite numbers. Seven of then are defined as follows: 

(182) 

J 1112 J 1222 -V3, (183) 

3 81 
(184)J1212 == 2' 2 

The rest of them is found from their symmetry property: 

With (182)-(184) the potential for the Model II reads: 

Veil = ;~ { - ktl (HkHI)L::.kl + V+~O) (In V~20) + ~) + 

+1/_(0) (In ~+~) 75 (HiHd2 _ 75 (HJH2)2­
2 lJ_(O) 2 4 4 

75 t t 81 t (t )-2(H1 H1 )(H2H2) + 2(H1 H2 ) H2Hl + 


+~(HtH2)2 + ~(HJHl? - V3(Hi Hd[(HiH2) + (HJH1)] ­
4 4 

-v'3(HJH2)[(HtH2) + (HJHdJ} + 0 ('~~) , (185) 
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, ' "'" 

where we adopt the definition for v±(O): 

v±(O) 2(HiHl) + 2(HJH2) 

2 [(Hi Hd 2 + (HJH2 )2 + 2(HiHd (HJH2 ) 4(Hi H2 ) (HJHd ]1/2 (186) 
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