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ABSTRACT 

The possible transition of large mass magnetic monopole solutions to monopole black 

hole solutions in Yang-Mills-Higgs theory with spontaneous symmetry breaking (SSB) 

coupled to the low energy theory of superstring with only dilatonic sector is studied. Our 

main motivation is to explore the effects of the dilaton field on the Inonopole black hole 

solutions. vVorking in the Einstein conformal gauge, it is explicitly shown, in terms of the 

Hawking evaporation of the monopole black hole, that the presence of the dilaton field 

appears to introduce a "lnass dependent extra attractive interaction" into the SYStCll1. 
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1. Introduction 

The interest in non-perturbative soliton solutions of classical nonlinear field theories 

coupled to gravity can be traced back as early as to mid-seventies. For instance, 't Hooft 

magnetic monopole solution in Yang-Mills-Higgs theory with spontaneous symmetry break-

ing (SSB) coupled to Einstein gravity had been studied by several authors [1,2]. It had been 

found that magnetic monopole solution of 't Hooft-Polyakov type [4] in curved spacetime 

exists with the exterior spacetime being represented by the Reissner-Nordstrom metric ( 

corresponding to a magnetic charge Q = lie) for "small mass" magnetic monopole. 

Recently, however, this curved spacetime magnetic monopoles have received revived at-

tention due to their possible transition to black hole solutions for "large mass" magnetic 

monopoles, namely "monopole black holes" [3,5]. 

Intuitively, the possibility of transition to the monopole black holes can be understood as 

follows; as the Higgs field vacuum expection value (VEV) v is "varied", the mass of the 

monopole, Mmon ,....., vie and size of the monopole, Rmon ,....., l/ev are also varied ( where e 

denotes the gauge coupling constant related to the magnetic charge by Q = 1 I e as men-

tioned earlier.) 

Then for large enough value of the Higgs field VEV, v( such as v ;::: /vIp I ), it would be 

possible to have 2G]VI mon/ Rmon ~ (;;,,) 2 2. 1 implying that the corresponding monopole 

solution should be a "black hole" since the Schwarzschild radius 2G Mmon becomes com-

parable to the monopole radius Rmon. 

On the other hand, there also has been a number of studies on the classical solutions to 

the low energy effective theory of superstring such as black hole solutions [5] and soliton 
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solutions [6], lately. Particularly, it has been pointed out [7] that the N = 4 super sym

metric low energy theory of superstring compactified down to (3 + 1) dimensions allows 

the magnetic monopole solution of 'BPS' type ( namely, Bogomol'nyi-Prasad-Sommerfield 

solution) with the metric solution being well-behaved everywhere, i.e. having no singulari

ties whatsoever. However, since the non-supersymmetric low energy theories of superstring 

are known to allow singular metric solutions, i.e. charged black hole solutions [5], it ap

pears that generally extremal supersymmetric solutions (classical) to low energy theory of 

superstring are better behaved then non-supersynunetric solutions. 

In the present work, we would like to study the "large mass" magnetic monopole solutions 

in the Yang-Mills-Higgs theory with SSB coupled to the (3 + 1) dimensional low energy 

theory of bosonic part of superstring [8] with all the bosonic degree of freedom except for 

the metric glAl.I and the dilaton field q. being set to zero. A theory like this might not look 

so compelling but our motivation is to compare the properties of classical solutions (in 

particular, black hole solution) of our theory with those of the Einstein-Yang-Mills-Higgs 

system [3] especially in order to explore the effects of the dilaton field on the proper

ties of classical solutions (In fact, ill a sence, the Einstein-Yang-Mills-Higgs theory is less 

compelling than our theory is since at very small length scales where matter fields have 

non-trivial quamtum behaviors, Einstein gravity reveals bad short-distance behaviors ( 

e.g. ultraviolet divergences, 'the graceful exit' problem in old inflation model and 'the 

large wormhole' problem).). 

vVe find that in the presence of dilaton field the Hawking temperature of the monopole 

black hole is generally lower and goes more rapidly to zero as they lose mass via Hawking 
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radiation than that of the monopole black hole in Einstein gravity. Therefore, it appears 

that the presence of dilaton field turns out to introduce a mass-dependent extra attractive 

intraction as we shall see. 

Finally, we end by pointing out an interesting possible cosmological implication of 

monopole black holes. One of the currently puzzling and unset tIed issues in cosmology is 

the identification of "cold dark matter" associated with the missing mass problem of the 

universe ( According to the inflationary Wliverse scenario, for instance, the mass density 

of the universe today should be almost equal to the "critical mass" Pc = !~l (where Ho 

is the present value of the Hubble parameter) for spatially-flat universe. This statement, 

when compared with the present cosmological observations, lead us to conclude that about 

90 to 99 percent of the universe mass density is "missing" which necessarily demands the 

existence of "dark matter".). If the transition of "large mass" magnetic monopoles to 

monopole black holes is indeed quite possible, then these non-Abelian nlonopole black 

holes could be a good candidate for a form of cold dark matter and· also it is no surprise 

that non-Abelian magnetic monopoles predicted to exist in unified particle theories [9] 

have never been seen thus far. 

2. Formulation of the theory 

As mentioned earilier, we are interested in the magnetic monopole solutions in the 

Yang-IvIiIls-Higgs theory with SSB coupled to the low energy theory of superstring. 

Therefore, for the gravity sector of our theory, we take the gravity action obtained from 

the low energy effective theory of bosonic part of superstring compactified to 4-dimensions 
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(2.1) 

where k2 = 811"G, A is the cosmological constant which will be set to zero in the actual 

calculations later and q,( x) denotes the "dilatons" field. Here, also note that. we have set 

the remaining rank-two gauge field FI''' and rank-three antisymmetric tensor field HI'''>'' ( 

H = dB - wgy + wgL where w's are gauge and Lorentz Chern-Simons three-forms) to 

zero in order to explore the effects of dilaton field alone. 

And for the matter sector, we take the familiar Yang-Mills-Higgs theory with SSB which, 

in fiat space time, is known to admit the magnetic monopole solution of 't Hooft-Polyakov 

type [4J 

(2.2) 

where 

and a, b, c = 1,2,3. 

Note that we have added a "constant vacuum energy" tenn fv 4 to the Higgs field potential 

so that the energy vanishes in the broken-symmetry vacuum. Latin indices a, b, c refer to 

the internal SU(2) gauge group indices and as a consequence of SSB, a neutral Higgs field 

turns out to have the mass m H = .;xv. 
Now putting the gravity and matter sector together, our theory is represented by the total 
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action 

consider the "Weyl rescaling" of gravitational fields ( i.e. metric and dilaton field) 

(2.4) 
cp(x) = ~(x). 

the conformal weight of the dilaton field ~ is zero since ~(x) is "dimensionless" in the 

gravity action written in "sigma model" form.) 

Then under this Weyl rescaling the action transforms into the "Einstein conformal gauge" 

form 

s = J d4
xyg{ 16~G [R - 2(V'<I1 )2] 

- ~(F:,y - ~e2~(%)(DI.4)Q)2 - e4~(%) U( ,pQ,pQ)}. 
(2.5) 

where we dropped tilde. 

Note, first, that the dilaton field <f!( x), Which used to be a ghost field with negative definite 

norm, now takes the kinetic term of the canonical form and hence turns into a physical 

scalar field ( with positive definite nonn ) in this Einstein conformal gauge after the Weyl 

rescaling of metric and dilaton field. 

vVe will work in this "Einstein conformal gauge" in which the Einstein-Hilbert action rather 

than some multiple of it by a non-linear realization of the dilaton field appears, We choose 

this conformal gauge because physical interpretations such as the behavior of horizons and 

black hole thermodynamics are more conveniently discussed in this gauge. 

Now by varying the action with respect to the Higgs field </>, the Yang-Mills field A:, the 
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dilaton field ifI and the metric 9 "" respectively, we obtain the following field equations 

1 D [e2et Ingg""{D A..)41 _ e 2et aU( 4>44>4) = ° 
e2et ~" v Y. ,,'" a4>a.' 

_l_D [ tgF4 ""1 - e2ct[eEabciflb( D" 4> )cJ = 0, 
~ "VY' 

Difl - 41rGe2+[g""(D,,4»4(D,,4»a. + 4e2+U(4)°4>°)] = 0, 
(2.6) 

R"" = 2ap ifla" ifI 

+ 811'G[ {gP" F;pF:" - g,..,,( igQP gP" F;"F:;p)} 

where Dp denotes gauge covariant derivative as defined earlier and D = },ap[~gP" a,,]. 

3. Ansatz for the solutions 

a. Ansatz for matter field solutions. 

We look for static, spherically symmetric solutions to these field equations that are 

asymptotically flat. 

Thsthe metric can be written in the form 

(3.1) 

where dn~ is the metric on the tUlit two sphere and B( (0) = 1 for the normalization of t 

and A( (0) = 1 due to the asymptotic flatness condition. 

For the matter sector, in order to look for a spherically symmetric topological soliton 

solution, i.e., magnetic monopole solution in our theory, we take, as a starting point, the 

standard ansatz for scalar field solution and gauge field solution which are the same in 

form as the flat spacetime 't Hooft-Polyakov monopole solution ansatz. 
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Namely, we begin by assuming that the soliton solution is spherically symmetric in order 

to greatly simplify the task of finding an explicit solution. In a gauge theory, especilly 

in Yang-Mills theory with the gauge group SU(2) "'J SO(3), however, it is not sensible 

to demand more than spherical symmetry up to a gauge transformation. For example, 

the scalar field configuration <po. ( x) is said to be spherically symmetric if the effect of a 

spatial rotation of ifJ4 (x) can be compensated by a gauge transformation. Thus from the 

asymptotic flatness condition, we expect as in the case of flat spacetime that the asymptotic 

behavior of ifJ4 (x) and Ai ( x) is invariant under a simultaneous spatial rotation and global 

SU(2) gauge transformation. 

We also assume that this invariance and the parity invariance 

hold for all x. Then we arrive at the "standard" ansatz (4] in terms of Cartesian coordinates 

Ao(x) = 0 (3.2) 

x b 

Aiex) = -fio.b-2 [1 - u(r)] 
er 

with the boundary conditions h(O) = 0, u(O) = 1 and h( CX) = 1, u( 00) = 0 for the non-

singular monopole solution at the origin and the asymptotic flatness ( or equivalently the 

finite energy solutions) condition respectively. 

In the following, then, we shall see that this ansatz for mat ter fields indeed provides an 

exact magnetic monopole solution which satisfies the above boundary condition. To this 

end, we first consider the classical field equations for the Higgs field and for the Yang-Mills 
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field in tenns of the spherically-symmetric ansatz in spherical-polar coordinates : 

(3.3) 

Note that an exact, albeit singular, solution of these matter field equations exist "inde-

pendently" of the gravitational fields (i.e. metric fields B( r), A( r) and dilaton field <p( r) 

)and it is 

h(r) = 1, u(r) = 0 (3.4) 

which corresponds to the asymptotic ( as r ~ 00 ) fonn of the 't Hooft-Polyakov magnetic 

monopole solution {4]. 

Note however that this asymptotic solution of the matter field equations actually satisfies 

the field equations everywhere like in the case of flat spacetime as was first observed by 

Bias and Russel, and by Cho and Freund (1). What is new here is that the magnetic 

monopole solution of 't Hooft-Polyakov type still exists even in the presence of the dilaton 

field arising in the low energy effective theory of superstring. 

h. Ansatz for the dilaton field. 

In this time, in order to find the dilaton solution, we substitute the ansatz for the 

Higgs field solution and the Yang-Mills field solution (which, as we have seen in the previous 

section, actually yields an exact monopole solution) into the classical field equation for 

the dilaton. And by using the asynlptotic behavior ( as r ~ 00 ) of this monopole solution 

and the asymptotic flatness of the metric, we would be able to determine the asymptotic 

behavior of the dilaton solution and further the ansatz for the dilaton field that is valid 
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for all r. Thus to this end, we consider the dilaton field equation in terms of the monopole 

solution ansatz in spherical-polar coordinates 

1 [r2 v'Jf.B()I(r) l' 
r 2VAB A 

_ 41rGe2.(r){[~v2(h')2 + 2 v2h
2
u

2
] + 4e2.(r)[~v4(h2 _ 1)2]} = O. 

A r2 4 

(3.5a) 

As mentioned, we begin by substituing the exact monopole solution into this dilaton field 

equation, i.e. inserting h( r) = 1, u( r) = 0 yields 

(3.5b) 

Since the exact monopole solution found actually represent asymptotic form (r --+ (0) of 

the monopole solution, one would obtain the asymptotic dilaton solution by further putting 

in the "asymptotic flatness" condition namely, B(r) --+ 1,A(r) --+ 1 as r --+ 00. Now one 

has 

as r --+ 00. Namely for large r, the dilaton field satisfies the "source-free" Poisson equation. 

TheIl by letting cp( r) = t/J Ir the above equation reduces to ~:r = 0 whose general solution 

is t/J( r) = a + br ( \vhere a, b are integral constants ). Thus we have <1>( r) = ; + <1>00' 

Note here that firstly we have set b = CPoo since the integration constant b should represent 

the "asymptotic constant" value of the dilaton field, CPoo. Secondly, since the dilaton field 

appears in the gravity action in non-linear sigma model form, it is dimensionless and hence 

the other integration constant a should have the mass dimension of -1. 

Here, we choose the arbitrary mass parameter associated with this integration ~onstant a to 

be the same as the arbitrary mass parameter that would arise in solving the Einstein field 
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equations as we shall see in the next section. This is because all the field equations (matter 

and gravitational) are coupled and hence, in principle, should be solved simultaneously 

( with the consistent choice of integration constants) and because the theory obviously 

should involve only one arbitrary mass parameter, i.e. the mass of the monopole solution, 

M. Therefore we take a = 1 1M ( note also that since there is no coupling between the 

Yang-Mills and the dilaton field in the action, the field eqation for the dilaton has the 

source tenn which has no dependence on the Yang-Mills field. Thus the dilaton solution 

should not have any explicit dependence on the magnetic charge lie. ). 

Further, one may wish to construct an ansatz for the dilaton field based on this asymptotic 

behavior . Namely, one may well take the ansatz of the dilaton solution as 

(3.6) 

with the boundary conditions w(r) ....... (CPo - cpoo).I.Vlr as r ....... 0 ( for non-singular dilaton 

solution ) and w( r) ....... 1 as r ....... 00. And here CPo is some constant which represents 

the correct value of the dilaton field near the origin. Now we have arrived .at the "self-

consistent" ansatz for all the fields present in our theory. 

Finally we mention that in our theory, the additional gravitational degree of freedom, i.e. 

the dilaton field does not give rise to any new parameter associated with it ( namely the 

"dilaton charge" ) other than the mass parameter M and the magnetic charge 1/ e to 

characterize classical solutions of our theory. 

In order words, at spatial infinity, the dilaton field 1n our theory is given by cp( r) = 

~r + CPoo. This asymptotic behavior then allow us to compute the dilaton charge defined 
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by the Gauss' law as 

(3.7) 

Therefore, obviously the dilaton charge is not anew, free parameter since it is determined 

by the mass parameter. Note, however, that the dilaton charge is always "negative" and 

also that it is determined not by the magnetic charge but only by the mass parameter 

because there is no direct coupling between the dilaton and the Yang-Mills field whereas 

there is the coupling between the dilaton and the Higgs field in the action as stated ear-

lier. Here, for later convenience note particularly that the dilaton charge is negative and 

inversely proportional to M. Before closing this section, since we have constructed a self-

consistent ansatz for all the fields present, we write the "non-metric" sector ~f the action 

in terms of this ansatz in spherical-polar coordinates 

Snon-metric = -411" J dtdrr2.jAB[~ J(w,u,h) + V(w,u,h)] (3.8) 

where 

Note that I{ and V are positve-definite and do not have explicit dependence on the metric. 

4. Solution to Einstein equations. 

Since we have the self-consistent, static spherically-symmetric ansatz for fields, we 

now substitute it into the Einstein equations and attempt to solve them. 

Only two components of the Einstein field equations out of the three are truely indepen-

dent because the third component is satisfied automatically due to the energy-momentwn 
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conservation I';~" = o. Thus we consider the following two independent combinations 

convenient in solving the Einstein equations ; 

A~ (ARII + B Rrr) = 811"G( - Til + T"], 

1 1 lIt 
2{ B Ru + A Rrr) + r2 R88 = 81TG[-Tt ]· 

In terms of the ansatz, they become 

(AB)' ~ 
AB = 161TGrK (w, u, h), 

1 
A(r) - -~~o:-- [1 _ 2G~(r)] 

with M'(r) = 41Tr2 [-!rI«w,u,h) + V(w,u, h)]. 

(4.1) 

(4.2) 

Now, we would like to find the metric solution that describes the exterior spacetime of the 

monopole configuration. To do so we substitute the asymptotic behaviors (as r --+- (0) of 

the solutions of non-metric fields (dilaton, Higgs and Yang-Mills field) into the Einstein 

equations above, i.e. insert w(r) --+-l,h(r) --+-1, and u(r) --+- 0 as r --+- 00. 

Then from the first combination, we have 

(AB)' = 2 1 
AB M2 r3 

which is readily integrated to yield 

1 _ 
B(r) = exp[- M2r2JA l(r) 

where we set the irrelevant integration constant to zero. 

Next, from the second combination, we have 

, 1. 1 1 1 
lvl (r) + lvI2 r3 1\1(r) - 41T( 81TGM2 + 2e2 ) r2 = O. 
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Unfortunately, this differential equation cannot be readily integrated to give a simple form 

of M(r). 

However, since we are essentially interested in the "exterior metric solution" at large r we 

can approximate the metric solution systematically. Namely we may use the "iteration" 

method that allows us to find the corrections to the metric solution as one moves from 

spatial infinity inward. Obviously, then, the leading approximation would be the scheme 

in which one sets A(r) ~ 1 in the source term (i.e. the stress tensor term) on the right 

hand side of Einstein equations. This, in turn, is equivalent to neglecting the second tenn 

J.V/( r)/ M2 r3 in the differential equation for lvI( r) above. Thus we have, to leading order, 

1 1 1 1 
M(r) ~ lvI - 21r( - + )- + 0(-), 

e2 41rG M2 r r2 

A(r) ~ [1 _ 2GM + (41rG + _1_)~]_1 
r e2 M2 r2 

( 4.5) 

where we choose the integration constant for M(r) such that it is the same as that for the 

dilaton field, i.e. }vf as we have explained earlier in the previous section. Consequently, at 

large r the exterior spacetime of the magnetic monopole configuration is represented by 

the metric 
2Glvl (41t'G _1_)~]d 2 + 2 + ;\1,2 2 t r e .Lv.. r 

(4.6) 

where AI is an arbitrary mass parameter. 

Before leaving this section we comlnent on the exact, analytic solution of the second 

cOlnbination of Einstein equation at large distance, Eq.( 4.4). 

First, notice that the Einstein equation in Eq.( 4.4) can be recast into 

d -1 1 1 1 -1 

-(M(r)e~] = [41t'( + -)-]e~ 
dr 87rGM2 2e2 r2 

(4.7) 
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which, upon integration, becomes 

-1 1 1 l r 
1 -1 M(r)e 2A12 ,.2 -M(oo)=47r( +-) dr-e~. 

87rGM2 2e2 00 r2 
(4.8) 

The integral on the right hand side, if we set x = 1/ r, turns out to be the "error integral" 

which is related to the "incomplete gamma function". Namely the result is given by 

11M 1 1 1 

M(r) = [M - 27r( e2 + 47rGM2) y'2,(a = 2' 2M2r2 )]e~, 

A(r) = [1- {2GM _(47rG + _1_)~ M ,(a =~, 1 )}e 2M\,.2]-1 
r e2 M2 r y'2 2 2M2r2 

( 4.9) 

where we identified M = M ( 00) and ,(a, z) is the incomplete gamma function defined by 

00 zn 
- za "'( l)n __ 
- ~- n!(a+n) 

and related to the error integral by 

2 (Z l 

er f(z) = Vi Jo e- t 
dt 

1 1 2) = /-T(a= -,z . 
y7r 2 

Finally, note that at large distance the infinite series expansion form of ,(a, z) yields 

,(a = t, 2M\r'J) ~ fJ~· Therefore, keeping the forms of order O( ~), lvI(r) in Eq.( 4.9) 

coincides with that in Eq.( 4.5) as it should. 

5. Positive-definite monopole energy ("Bogomol'nyi bound") 

First, notice that the second combination of Einstein equations above, when inte-

grated, leads to the total mass (energy) of the curved spacetime magnetic monopole ( for 

reference see, for example, "Cla.uical Theory of Field.s" by Landau and Lifshitz), i.e., 

(5.1) 
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thus 

M = M( (0) = 100 

dr411"r2( -Tt
t ) 

where Pm(r) = (-T't) = [:tI( + V] denotes the mass (energy) density of the system (Le. 

Yang-Mills-Higgs system with dilaton field in cW'ved spacetime). 

This expression also shows that the "arbitrary mass parameter" M appearing in the ex

terior metric solution in Eq.( 4,6) and Eq.( 4.9) is clearly the total mass of our magnetic 

monopole in cW'ved spacetime as it should be. 

Now in this section, mainly following P. van Nieuwenhuizen et ale [2] and 1(. Lee et ale 

[3], we shall show that our curved spacetime magnetic monopole mass also turns out to be 

"positive-definite" even in the presence of the dilaton field. 

As was pointed out by P.van Nieuwenhuizen et al., unlike the case of YMH system in the 

flat spacetime admitting the 't Hooft-Polyakov monopole solution (where the Lagrangian 

of the system is negative-definite), for the curved spacetime case like oW's the Lagrangian 

of the non-metric sector Snon-me,ric in Eq.( 3.8) is not negative definite (of course the total 

Lagrangian SG + SM is not negative-definite either). 

In general, the Lagrangian is the negative of the energy for "static" systems like ours. 

However, Since the Lagrangian is not negative definite, we will not directly work with 

the Lagrangian Snon-metric to show that our curved spacetime magnetic monopole has a 

positive-definite minimum energy. Instead, we will work with the expression for the energy 

(mass) of our curved spaacetime Inonopole given by the second combination of Einstein 

equations in Eq.( 4.2), 

M'(r) = 47rr2[J{(r) + VCr)] - 87rGrM(r)K(r). 
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This equation can be cast into the fonn, 

~[M(r)e-l(r)l = {47rr2[[«r) + V(r)]}e-1(r) 
dr 

which, upon integration, yields 

(5.3) 

M(r) = {411' 1r 

dr'r'2[J(r') + V(r')]e-/(r') + M(O)e-/(O)}e/(r) (5.4) 

where 

l(r) = 1'>0 dr' 811'Gr' [(r'). 

Thus the total energy (mass) of our curved spacetime monopole is given by 

M = M(oo) = 411' 1"" drr2 [K(r) + V(r)]e-/(r) + M(O)e-/(O). (5.5) 

It is already clear that if M(O) 2: 0, then the total monopole energy M is positive-definite 

since K and V are positive-definite. Further M above satisfies the inequalities 

]vI 2: {41l' drr2 [[«(r) + V(r)] + M(0)}e-1(O) 2: _e-1(O) 100 47rV 

o e 
(5.6) 

where the first inequality is due to the positive-definiteness of [( whereas the second one 

follows from the Bogomol'nyi bound [10]. And for a non-singular monopole solution, 

lvI(O) = o. 

The Eq.(5.6) above shows that the curved spacetime monopole mass M has a positive-

definite lower bound. Note again that for "static" systems like ours, a solution of classical 

field equations which Inaximizes the Lagrangian would minimizes the energy of the system 

since the energy is the negative of the Lagrangian. Therefore, if exists (actually we asswne 

that it exists), a curved spacetime monopole solution (other than her) = 1, u(r) = 0 which 
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is singular at r = 0) is a "regular", localized soliton solution because its energy is finite 

and positive-definite. 

Finally, since a curved spacetime solutiom (w, u, h) of the classical field equations realizes 

the positive-definite minimum of M (which is the functional of w, u, and h), we have 

where (wo, uo, ho) is the fiat spacetime classical solution which of course is different from 

its curved spacetime counterpart (w, u, h) and At! fltd is the fiat spacetime monopole mass. 

Clearly this inequality refiects our general expectation that gravity tends to reduce the 

mass of a system because its overall effect is to bind the system. 

6. Transition to the monopole black hole. 

In order to see if our curved spacetime monopole solution can actually make a tran-

sition to the "monopole black hole" solution, we investigate under what circumstances the 

monopole configuration collapses and event ually event horizons form. Thus we begin by 

considering the radial Ilull geodesic. From the null condition ds2 = -dr2 = 0, one gets the 

null geodesic equation 

(6.1) 

The future event horizons would from if (:~) -+ 00 occurs or equivalently if gu has zeros. 

Readily one can realize that if our curved spacetime monopole is a "large mass" monopole 

solution namely, if the total mass of our lnonopole 1."\;1 is greater than the critical mass, 

VIZ., 

(6.2) 
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then two event horizons form at 

(6.3) 

where r± denotes, outer (+) and inner (-) event horizon respectively. 

Note that since the mass of the monopole solution is M ,-..; vIe, comparison with the critical 

mass above Mer ,-..; Mplle shows that if the Higgs field vaccum expectation value v (which 

is a free parameter of the theory) is comparable to or greater than the Planck mass, i.e., 

v 2: Mpl then the "large mass" monopole solution actually becomes a monopole black 

hole. 

That grr = A( r) indeed developes poles and thus event horizons form for large values 

of the dimensionless parameter 87rGv2 ,-..; (v I Mpl)2 has been illustrated numerically in the 

literature(3] recently for the case of Einstein gravity. And in our case when the dilaton field 

is present, the metric has exactly the same behavior (of course to leading order) except 

that in the presence of the dilaton field, the critical mass for the transition to the nlonopole 

black hole to occur turns out to be a bit greater than that in the case of Einstein gravity 

where !vIer = J ~:2 [3]. 

Now, since the large mass monopole solution does nlake a transition to the monopole black 

hole, it would be worth writing the exterior metric in terms of I{ruskal coordinates. To do 

so, we first rewrite the exterior metric in terms of "null coordinates" as an intermediate 

step, 

2 -~ 2GM 47rG 1 1 
ds = -e M" [1- -- + (-- + -)-]dudv 

r e2 M2 r2 (6.4) 

== -C(r)dudv 
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where 
u = t - r. = constant 

v = t + r. = constant 

denotes outgoing and incoming null coordinates repectively and 

is the generalized Regge-Wheeler tortoise coordinate written in terms of the outer (r+) 

and the inner (r _) event horizons defined earlier. (Here note that we keep only the leading 

terms in r in the expression for r. since we are dealing wi th the exterior spacetime at large 

r.) 

After following the usual procedure we arrive at the expression for the monopole black 

hole metric in tenns of the !(ruskal coordinates (T, .. Y, B, ¢J) 

where again, we keep only the leading terms in r. And the relations between the old 

coordinates (t, r) and the Kruskal coordinates (T, .Y) are given by 

(6.6) 

since the Kruskal coordinates are defined by 

(6.7) 

N ow several comments are in order concerning the properties of our monopole black hole 

and structure of its event horizons. 
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Above all, it turned out that in our theory where the dilaton field is present, the critical 

mass for the transition to the monopole black hole is somewhat (in fact only slightly) 

greater than that in the case of Einstein gravity. 

Now, just as the usual Reissner-Nordstrom metric In general relativity, our dilatonic 

monopole black hole metric has both inner and outer horizons (to leading order at large r). 

However, due to the presence of the dilaton field that leads to the slightly larger critical 

mass, these two horizons of our monopole black hole got a bit closer to each other than the 

usual Reissner-Nordstrom black hole horizons (namely, r~ur. > r~N, r+ur.t < r~N). And 

the spacetime geometry is not singular at either of these two event horizons as is obvious 

in the fonn of our monopole black hole metric expressed in tenns of Kruskal coordinates 

in Eq.( 6.5). 

Next, it may be worth noting that the inner horizon is unstable whereas the outer horizon 

is stable in that nonspherically synunetric (i.e. anisotropic) perturbations tend to blow up 

on the inner event horizon as is well-known in the case of usual Reissner-Nordstrom metric 

[11]. 

Finally, notice that the physical distance to the event horizon is infinite although it can 

be traversed in finite proper time for our monopole black hole, namely 

(6.8) 

di verges since ~ behaves as r / (r - r H) near the horizon. This fact, then, implies 

that all the non-trivial field configurations representing the 'entire' structure of our nOD-

Abelian monopole take place only \vithin the event horizon in accordance with the "no-

hair" theorems of black holes [12]. 
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Now we tum to the evolution of our dilatonic monopole black holes. 

The relationship between the old coordinates (t,r) and the I{ruskal coordinates (T,X) in 

Eq.(6.6) reveals that the spatial coordinate r actually is an implicit function of T which is 

a "global time" coordinate. Therefore just like the usual Reissner-Nordstrom metric, our 

dilatonic monopole black hole metric does have time dependence and hence the spacetime 

is not static globally. 

This characteristic of the metric, then, leads to the black hole evaporation via the emission 

of the particles, namely the "Hawking radiation" [13J. And probably the quickest way to 

find out the Hawking telnperature TH would be to read it off from the periodicity in time 

coordinate of the Euclidean section. 

Here, however, we shall take the usual method to compute the Hawking temperature[14]. 

Namely, in terms of the "surface gravity" ](, the Hawking temperature is written as 

]{ 
TH =-· 

21r 
(6.9) 

Thus the task of finding out the Hawking temperature reduces to the calculation of surface 

gravity. 

And it is known [14] that the surface gravity ]( is related to the Inetric written in terms 

of the null coordinates as in Eq.(6.4), by 

(6.10) 

For our dilatonic monopole black holes with the exterior metric given by Eq.(6.4), the 

surface gravity is found to be 
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which then leads to the Hawking temperature 

(6.12) 

where Mer is as defined in Eq.(6.2). 

Now, as our monopole black hole loses its mass by emitting particles, its Hawking tem-

perature given above slowly increases, reaching a maximum temperature and then falls 

rapidly to zero as it approaches the extremal black hole solution (i.e. maximally charged 

hole) M --+ Mer. In other words, our magnetically charged dilatonic monopole black hole 

does not evaporate completely. This is, in the sense of "cosmic censorship hypothesis", 

fortunate because further evaporation after reaching !vI = Mer would lead to a naked 

singularity. Thus the extreme dilaton black hole solutions are stable end points of the 

Hawking radiation. 

These general features of the black hole evolution stated above are essentially the same 

as those in the case of monopole black holes in Einstein gravity. There is, however, an 

important difference; for our dilatonic monopole black holes, the Hawking temperature is 

generally lower (namely for a given M, Tj.t rlJ < T/iN) and goes more rapidly to zero than 

their Einstein gravity's counterpart as they lose the mass. The plot of Hawking tempera-

ture versus black hole mass for our dilatonic monopole black holes and for Einstein gravity 

monopole black hole is given in Fig.I. This behavior of our dilatonic monopole black holes 

seems to imply that the presence of the dilaton field introduces an extra at tractive inter-
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action. 

Earlier in this section, it is found that the critical mass for the transition "to monopole 

black holes is slightly greater than that in Einstein gravity case. 

Here, we need careful analysis regarding the nature of new interaction the dilaton seems 

to introduce. 

Namely, it is important to recognize that the two observed properties, i.e., the greater 

critical mass for the transition to monopole black holes and generally lower Hawking tem

perature which also falls rapidly to zero, should not be regarded as being inconsistent. 

In fact, whenever an additional field with canonical kinetic tenn and non-trivial asymptotic 

behavior (such as the Yang-Mills field or the dilaton field in our system) is introduced into 

the theory, its kinetic energy always makes an extra positive-definite cotribution to the 

energy density of the system Pm = - Ttt in Eq.( 4.1) and (4.2) regardless of the specifics of 

the field added (such as the dilaton charge). Now this increase in the energy density of the 

system, when translated into the solution of Einstein equations, leads to the greater critical 

mass for the transition to the monopole black holes for the case without the additional 

field as is manifest from Eq.( 3.8) and (4.2). Thus the greater critical mass in the presence 

of the dilaton field is a trivial, expected consequence which has little to do with the details 

of the nature of some new interaction the dilaton might introduce into the system. Rather, 

it is the features of the dilaton field such as its non-zero dilaton charge that would actually 

exhibit the nature of the new interaction introduced by the dilaton. 

And of course the subsequent evolution such as Hawking evaporation after the monopole 

became a black hole would reveal the effects of the new interaction. 
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Therefore, in terms of the characteristics of the dilaton charge found in the previous sec

tion, we shall explain the behavior of the Hawking temperature observed above. Then 

this analysis will allow us to identify the nature of the new interaction due to the dilaton. 

First, the fact that the dilaton equation of motion in Eq.(3.5b) is a source-free Poisson 

equation tells us that the dilaton field is essentially massless classically and hence intro

duces a long range force. Next, recall from Eq.(3.7) that the dilaton charge is "negative" 

and inversely proportional to the mass of the monopole, D = -11M. Obviously, the new 

interaction introduced by the dilaton field would be directly proportional to this "dilaton 

charge" D. Therefore interpreted in terms of the character of this dilaton charge D, the 

correct identification of the new interaction would be the "mass-dependent extra at tractive 

interaction" . 

That is, as the mass of the monopole black hole increases the extra attraction force in

troduced by the dilaton field decreases whereas as the mass decreases the extra attraction 

increases in magnitude. And indeed, the effect of this extra attractive force introduced by 

the dilaton field is exactly realized in the Hawking evaporation of our dilatonic monopole 

black holes as is manifest in the behavior of the Hawking temperature plotted ill Fig.I. 

In other words, as the lnonopole black hole loses its mass via the particle elnissioll (the 

extra attractive force introduced by the dilaton field grows and as a result) its Hawking 

temperature falls and hence the Hawking evaporaion termiuates faster than in the case of 

Einstein gravity. 

To conclude, the presence itself of the dilaton field automatically leads to the (slightly) 

greater critical mass for the transition to monopole black holes, but the real nature of the 
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new interaction the dilaton introduces is essentially detennined by the dilaton charge and 

it turns out to be the "mass-dependent extra attractive interaction" . 

7.Conclusions 

Now we summarize our results. 

We have studied the possible transition of "large mass" magnetic monopole solution to 

the monopole black hole solution in the Yang-Mills-Higgs theory with SSB coupled to the 

4-dimensionallow energy theory of the superstring with only dilatonic sector. Our main 

interest was in studying the effects of the dilaton field on the nature of classical black hole 

solutions of our theory. For the metric solution of Einstein equations describing the exte

rior spacetime of the monopole black hole, first the critical mass for the dilatonic monopole 

black hole is found to be slightly greater than that for the monopole black hole in Einstein 

gravity. Second, it has been found that as the monopole black hole loses 'its mass via 

Hawking radiation and thus moves toward the "extremal" black hole (i.e. Al -.... Mer) the 

Hawking temperature of our dilatonic monopole black holes is generally lower and falls 

more rapidly to zero than in the case of Einstein gravity. As analyzed ill detail earlier, 

these properties of the dilatonic nlonopole black hole solutions lead us to conclude that 

the presense of the diiatoll field appears to introduce an additional attractive force which 

is inversely proportional to the mass of the monopole black hole. 

This observation concerning the effects of the presense of the dilaton field on the monopole 

black hole solution is in accordance with the known properties of the charged black hole 

solutions in low energy string theory that in string theory the dilaton contributes an extra 

attractive force to the magnetically charged black hole solution [5]. 
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Now we comment on one more aspect of the system we considered. It is straightforward to 

see that an exact, albeit singular, monopole solution of Wu-Yang type exists again indepen

dently of the gravitational fields (metric field and dilaton field) in the absence of the Higgs 

scalar field in our theory. And then it follows that for this Wu-Yang monopole solution in 

curved spacetime, tha dilaton solution and the metric solution (at large distances) remain 

the same as in the case of 't Hooft-Polyakov monopole solution in curved spacetime. Thus 

the exterior spacetime of the Wu-Yang monopole configuration is described· by the met

ric of almost Reissner-Nordstrom type given in Eq.( 4.6). However, the transition of this 

Wu-Yallg monopole solution to a black hole solution ,is unclear (in fact, unlikely) because 

there is no such free parameter in the theory as the Higgs field vacuum expectation value 

v by which the transition to black holes can be probed. 

Next, we stress the possible cosmological implications of the non-Abelian monopole black 

holes in general. As mentioned earlier in the introduction, non-Abelian monopole black 

holes like the one explored in the present work Inay help explain away two cosmological 

puzzles at a single stroke. 

Namely, if "large mass" magnetic monopoles do make transitions to monopole black holes 

as they form, it is indeed no suprise that non-Abelian monopoles have never been seen 

(although the inflationary universe scenario provides yet another explanation for this puz

zle). 

This is because, as we have observed earlier in this work, all the non-trivial field configu

rations such as the non-vanishing SU(2)-magnetic field strength by which an asymptotic 

observer can identify them with non-Abelian monopoles are completely trapped within 
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the event horizon. Thus there would be simply no way for an asymptotic observer to 

identify these black holes with non-Abelian monopoles he might have been searching for. 

(Of course this behavior of monopole black hole is connected to the "no-hair" theorems 

according to which a static black hole does not reveal any non-trivial field configurations 

outside the event horizon.) 

Secondly, since in principle arbitrary number of non-Abelian magnetic monopoles can be 

produced in known unified particle theories[9] and since they are quite 'heavy' (Mmon "" 

vie "" (~)Mp' "" (~)10-5g where e «: 1 in the weak gauge coupling limit as is usually the 

case) and of course completely 'dark' after they become monopole black holes, non-Abelian 

monopole black holes may be a dominating component of "cold dark matter" which is be

lieved to exist to reconcile with the missing mass problem of the universe. 

Aside from these significant roles played by the non-Abelian monopole black holes in re

solving two major cosnlological puzzles, they also may exibit SOine interesting features. 

For instance, these non-Abelian Inonopole black holes are "nliniblack holes" and essen

tially would look like elementary particles since their size is as sinall as Rmon ,...., 1/ ev ,...., 

~lpl "" (~)lO-33cm. (It lnay seem rather contradictory that their size is finite and this 

small while the physical horizon radius is infinite as pointed out before. This is because 

the coordinate distance is what we lueasure and the physical distance is what it feels like.) 

This size is, in the limit of weak guage coupling, e «: 1, small enough to view them as 

'ntities more like elementary perticles than extended objects but still much larger than 

he Planck length lpl justfying the neglect of quantum gravity effects. 

Jter all, non-Abelian monopole black holes seem to deserve further careful iilvestigations 
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not only for their interesting theoritical aspects but also for the significant cosmological 

implications thay may have. 
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