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ABSTRACT 

The recent observation of four dimensional CP as a discrete gauge symmetry 

in 8k + 1, 8k + 2 and 8k + 3 Minkowski dimensions calls for a serious reconsid

eration of various solutions of the strong CP problem. In these possible higher 

dimensions, the relevant one is a ten dimensional string theory in which a possi

bility of light fermions exists. We point out that the model independent axion in 

the heterotic string theory solves the strong CP problem. We also point out that 

the wormhole effects to low energy global and discrete symmetries are negligible. 
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The recent observation of four dimensional CP as a discrete gauge symmetry 

in 8k +1, 8k +2 and 8k +3 Minkowski dimensions [1] calls for a new understand

ing on the weak CP violation and the strong CP invariance. Among the possible 

higher dimensions, the relevant one is 10 because there exists a phenomenologi

cally viable heterotic string theory [2]. The other extra dimensions not utilized 

by nature are only of academic interest. In the heterotic string theory, it has 

been known that the four dimensional CP must be a gauge symmetry since the 

theory does not have any discrete symmetry except Es +-+ E~ [3]. The discrete 

symmetry Es +-+ E~ cannot contain the four dimensional CP of light fermions 

and anti-fermions since they are singlets of E~. In string theories, therefore, the 

required weak CP violation must arise through spontaneous breaking [4]. The 

Kobayashi-Maskawa weak CP phase which looks like a hard CP violation at low 

energy may in fact have descended down from string scale physics through spon

taneous breaking mechanism [5]. Inflation after the spontaneous CP violation 

might have removed the dangerous domain walls from our observable universe. 

The 'calculability' solutions of the Nelson-Barr type [6] to the strong CP problem 

have a rationale (8QCD = 0) in higher dimensions due to CP as a discrete gauge 

symmetry of Lagrangian. 

However, there are two questions to be cleared regarding the strong CP prob

lem. Firstly, should we consider extra dimensions? Second, what is the effect 

of gravity on the four dimensional low energy symmetries? In this Letter, we 

consider both of these questions from Planck scale physics. 

Regarding the first question, an extension of spatial dimensions should not 

be in contradiction with low energy physics. Phenomenologically, there is no 

reason to extend the spatial dimensions. However, one may try to include more 

spatial dimensions to solve theoretical problems of the standard model. So in 

consideration of dis'crete and global symmetries in higher dimensions, at present 

the ten dimensional heterotic string is the only one to be considered. Thus, let 

us consider the (} parameter in the heterotic string theory in ten dimension. The 

heterotic string has a model-independent axion aMI [7] whose decay constant is 
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,...., 1015 GeV [8]. Even if CP may be a discrete gauge synunetry, the (J parameter 

problem should be tackled in this framework only. 

The Nelson-Barr mechanism introduces the weak CP phase before the com

pletion of the inflationary epoch (presumably at T '" 1014 GeV), not to intro

duce a cosmological domain wall problem. After completion of the inflation, 

(JqcD will remain at O. Even if Yukawa couplings obtain complex phases after 

inflation, (JqFD is not determined yet because quarks still remain massless until 

the electro weak symmetry breaking. After the electroweak synunetry breaking, 

the Nelson-Barr type mass matrix will render (JqFD 0 at tree level, leading 

to 8 ~ O. However, the model independent axion changes the above argument. 

After the inflation, one of the vacuum values of the model independent axion is 

chosen, (aMI) = BFa.. Thus, 8 must be 

8 = (JqCD + (JqFD + 8 (1) 

In low energy physics, (JqCD + 8has been called before (JqCD. There is no reason 

(not even an anthropic principle) that 8should be chosen at a narrow band 181 < 
10-10 • However, the axion field evolves in an expanding unverse and eventually 

will settle to zero. Then the basic mechanism for solving the strong CP problem 

is the model independent axion. But the details depend on the compactification 

schemes. 

If the compactification gives only one confining group SU(3)c below the com

pactification scale, the model independent axion is the usual invisible axion solv

ing the strong CP problem but with the axion decay constant problem [8]. If 

we disregard the axion decay constant problem, there is no need for the quark 

mass matrix to take a specific form because the model independent axion solves 

the strong CP problem any way. On the other hand, if a hidden sector confining 

group survives below the compactification scale, the model independent axion 

settles one (J to zero. This works as follows. Suppose two confining groups, quan

tum chromo dynamics SU(3)c and hidden sector confining group SU(N)h. We 
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can write the FF terms as 

1 ([(J + a~I]F:IIFa.~1I + [(J' + a~I]F;!F'h~lI) (2) 

where F and F' are field strengths of QCD and hidden sector gluons, respec

tively. The vacuum expectation value of a' == aMI + (J' Fa. settles at zero at the 

hidden sector scale, but then the coefficient of F F, (J - (J' +a'/ Fa., becomes (J (J' • 

If CP is a discrete gauge symmetry, (J = (J' = O. However, weak interactions 

introduce (JqFD at the electroweak scale and in this regard the Nelson-Barr type 

mass matrix is required to give a sufficiently small 8. Due to possible CP vio

lations at the hidden sector scale, (J' (i. e. (JQFD) will be generated and it must 

be proven for each compactification scheme (JI is also sufficiently small or more 

generally I(J - (J'I is sufficiently small, < 10-10 • The easiest scenario is that the 

hidden sector is CP invariant and the observable sector introduces the weak CP 

violation a la Nelson and Barr. But this scenario seems to be too contrived and 

a better compactification scheme is the one leading to a QCD invisible axion as 

successfully introduced in Ref. 

The second question on the effect of gravity at low energy is a difficult one 

because of our ignorance of quantum gravity at present. From the beginning of 

the axion solution to the strong CP problem, it has been assumed that gravity 

respects the Peccei-Quinn (PQ) synunetry [10]. The classical Einstein-Hilbert 

action does not break the PQ symmetry, and hence it is not expected that grav

ity breaks the global synunetry perturbatively. Thus the recent surge of interest 

[11] on the gravitational effects to low energy symmetries has a root to nonper

turbative effects such as gravitational instantons, wormholes, etc. Let the global 

transformation be 

'If ~ eaq'lf (3) 

where 'If is a collection of complex fields and Q is the global charge operator. If 

gravity breaks the global symmetry, one may expect a nontrivial a dependence of 
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free energy after integrating out 9P.II and fermion fields. However, the fundamental 

difference between QeD and gravity on the confinement and chiral symmetry 

breaking invalidates the comparison. 

This leaves the wormhole [12J physics as the best known nonperturbative 

gravitational effects to low energy symmetries. The effect of wormhole on the 

breaking of the PQ symmetry has been considered before [13J. The argument 

is the following. A baby universe separating out from the parent one through a 

wormhole is a closed universe. The closed baby universe cannot carry a gauge 

charge, but is not forbidden from carrying global or discrete charges. In par

ticular, if the classical wormhole solution is an axionic one, it must carry a PQ 

charge. Then the parent universe will not carry a vanishing PQ charge, and 

the effect of separating out the baby universes will appear to an observer in the 

parent universe as an apparent violation of the PQ symmetry [13J, 

00 

bwC = M! 2: [wnane-ina./F" Yn +H.c.] . 
n=l 

where an lanl exp(i6n) is a dimensionless complex variable. The operators 

Yn are PQ singlets.. The mass parameter Mw is the wormhole scale, Wn ('" the 

probability amplitude for n units of PQ charge to be drained) is '" e-nSo , where 

So is a half of wormhole action, in the dilute gas approximation, and an depends 

on the degree of violation of the PQ symmetry in the parent universe. Since 

we are interested in the axion mass, we set Yn 1. For large n's the relative 

probability to drain n units of PQ charge compared to drain one unit of PQ 

charge is extremely small. 

Even if the above symmetry argument predicts the violation of the PQ sym

metry, but the symmetry argument alone does not give any information on the 

magnitude of an, and we will argue below that an's are sufficiently suppressed 

in our universe. 

For ease of discussion, let us consider a U(I) gauge symmetry first. We have 

the global symmetry in mind, but the magnitude of symmetry breaking in terms 
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of a gauge boson mass is better to tackle, and hence let us proceed to discuss the 

gauge symmetry first. The classical gauge field equation is 

Op.FP.1I =jll (5) 

where j p. is the conserved current. The total charge carried by the closed universe 

vanishes 

Q Jj°tfx = JojFi°tfx = J~. £fa = 0 (6) 

I: 

because the boundary l: vanishes in a closed universe. We, however, argue that 

the condition (5) is an unnecessarily strong constraint in an evolving universe. 

Quantum wormholes are not required to satisfy the classical equation of motion. 

Then baby universes may not be forbidden from carrying gauge charges. This 

possibility arises at the quantum level for gauge charges. Of course, then Eq. 

(6) implies that we cannot use Eq. (5) and gauge symmetry must be broken 

in the baby universe as well as in the parent universe [14]. The strong belief 

that wormholes do not carry gauge charges is based on requiring Eq. (5). Thus 

violating Eq. (5) with baby universes carrying gauge charges seems to be a logical 

possibility. For global charges, even the classical wormholes can carry them. If 

baby universes take out gauge charges, one effect of the gauge symmetry breaking 

in the parent universe can be parametrized in terms of the gauge boson mass. The 

effect of the nonvanishing charge on the gauge boson mass in a closed universe 

has been given before [14J 
JOJo 

m
2 = 8n:G R- 2A (7) 

where G is Newton's constant, JO is the charge density, R is the Ricci scalar and 

A is the cosmological constant. We present our discussion for a large and closed 

A = 0 universe because for a closed universe Eq. (7) is derived. For A 0, the 

gauge boson mass in the baby universe of size I carrying one unit of charge is of 

order I/MpI2. Thus the Planck scale baby universe carrying one unit of gauge 
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charge will render the gauge boson a Planck scale mass but a large parent universe 

gives a negligible mass. This makes sense because the size of universe must play 

a role to see how bad the effect of the symmetry violation. The vanishing gauge 

boson mass is a manifestation of unbroken gauge symmetry. For a nonlinearly 

realized global symmetry, the vanishing Goldstone boson mass is a manifestation 

of the global symmetry. Therefore, we propose, for the PQ symmetry breaking 

also, that the degree of the symmetry breaking due to the effect of the wormhole 

can be parametrized by the following axion mass, 

m2 _ 8 JOJo 
a - 7rG - (8)

R 

where JO is the PQ charge density. The axionic wormhole whose size is 

V1/MpvPQ will give an axion in the baby universe a mass of order VPQ. How

ever, the size of parent universe is enormous, and drainage of one unit of PQ 

charge from the parent universe result in a negligible axion mass in the parent 

universe. In the parent universe, the PQ symmetry looks like almost unbroken 

by the axionic wormhole. If a large number of PQ charges are drained out to the 

baby universes, the explicit PQ symmetry breaking by wormholes will be more 

noticeable. But the probability for this to happen is exponentially suppressed, 
nSo'" e-

Eq. (4) has a correct form (taking out the probability factor wn ) to account 

(JO)2 factor in Eq. (8). Thus, comparing Eq. (8) with Eq. (4) without this 

probability factor, we obtain 

9GF; 
(9)lanl '" 47rM!R16 

1012 1016As a guide, we take R '" 1-2 ,1 '" 1011 lys, Fa '" GeV, and Mw '" 

GeV, and obtain lanl '" 10-249 
• For this wormhole contribution to the axion 

mass to match the QCD contribution, the drained PQ charge must be enormous, 

n ,...., 1090, but in this large n region Wn is extremely small, Wn '" exp(-1090 So). 
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Thus, we can practically neglect the effect of the drained global charges on the 

axion mass in our universe. Similarly, the effect of wormholes on the discrete 

symmetry breaking can be neglected in our universe. 

In conclusion, we observed that the strong CP solution a la Nelson and Barr 

in the heterotic string theory makes sense if there survives an extra confining 

gauge group. But possible CP violations at the hidden sector scale must be 

taken into account to solve the strong CP problem. The invisible axion type 

solution of the strong CP problem through compactification scheme discussed in 

Ref. [9] seems to be simpler and nicer. More importantly, we observe that the 

wormhole effects on the violation of low energy global and discrete symmetries 

are negligible in our universe. Thus, the strong CP solution in D = 4 through 

the invisible axion remains as a good solution of the strong CP problem. 
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