
SISSA-ISAS 95/98/FM-EM 

Grassmannian Cohomology Rings and 

Fusion Rings from Algebraic Equations 

N oureddine Chair l 

Faculty of Art and Science) Physics Depa1'tment) 

Al al-Bayt University Mafraq) Jordan 


and 


SISSA/ISAS Via Beirut 2) 34014 

~--- Trieste) Italy 

V) 
r:c 
VJ 
!1, 

Abstract 

The potential that generates the cohomology ring of the Grassman­
nian is given in terms of the elementary symmetric functions using 
the Waring formula that computes the power sum of roots of an al­
gebraic equation in terms of its coefficients. As a consequence, the 
fusion potential for SU(N)K is obtained. This potential is the ex- , 
plicit Chebyshev polynomial in several variables of the first kind. We ' . 
also derive the fusion potential for Sp(N)K from a reciprocal algebraic 
equation. This potential is identified with another Chebyshev poly­
nomial in several variables. We display a connection .betw~en, these 
fusion potentials and generalized Fibonacci and Lucas numbers. In 
the case of SU(N)K the generating function for the generalize-d' Fi~'" 
bonacci numbers obtained are in agreement with A.Lascottx-ustng tll€,· 
theory of symmetric functions. For Sp(N)K, however, theg.e.n..~:r.;:Lli~e.cl _ 
Fibonacci numbers obtained form new sequences. 
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1 Introduction 

In the work of Gepner [1], the fusion potential for SU(N)K was obtained as a 
perturbation of the Landau-Ginzberg potential that generates the cohomol­
ogy ring of the Grassmannian. This implies that the fusion ring for su( N)K 
and the cohomology ring of the Grassmannin are connected. The connec­
tion of these two rings may be understood as follows: Lesieur [2] noticed 
that the rules of multiplying Schubert cycles [3] , which are the generators of 
the homology ring of the Grassmannian, formally coincide with the rules for 
multiplying Schur functions [4]. On the other hand, the characters of the 
irreducible representation of su(N) turn out to be given by the Schur func­
tions [5] with some constraint which is exactly the perturbation mentioned 
above. Therefore, we learn that the product of characters is the same as a 
product of Schur functions with this constraint which, in turn, implies the 
connection between the cohomology ring for the Grassmannian and fusion 
ring for SU(N)K. 

The potential that generates the cohomology ring of the Grassmannian 
turns out to be given by a power sum symmetric function in the Chern roots 
[6] that we identify with the roots of an algebraic equation, say of degree r, 
i.e., of the form 

(1) 

Geometrically, the degree r is the rank of the quotient bundle on the Grass­
mannian and the coefficients of the algebraic equation (elementary symmetric 
functions) correspond to the Chern classes of this bundle. With this inter­
pretation in mind, the algebraic equation (1) is nothing but the definition 
of the Chern classes of a vector bundle of rank r given by Grothendieck [7], 
where y is identified with the fundamental class of degree 2 on the associated 
projective bundle. 

In this paper, we use the Waring formula to express the power sum sym­
metric function in the Chern roots in terms of the elementary symmetric 
functions and hence obtain the cohomology potential for the Grassmannian 
and the fusion potentials for su(N)K and sp( N)K. The algebraic equation 
from which the su(N)K fusion potential is obtained is the one for which 
r = N and aN = 1, whereas, for Sp(N)K, it turns out to be a reciprocal 
algebraic equation [8] of order 2N, with the last coefficient equal to one and 
a2N-i = ai· 

2 




2 

In our formulation, the fusion potential written in terms of the elemen­
tary symmetric functions is the explicit generalization of the Chebyshev 
polynomial of one variable. Similarly, for the case of Sp(N)K' we obtain 
another Chebyshev polynomial in several variables. The one-variable Cheby­
shev polynomials of the first kind and second kind are known to be related 
to the ordinary Lucas numbers and Fibonacci numbers respectively. In this 
paper, we find a relation to the generalized Fibonacci and Lucas numbers for 
the cases studied here. 

Our paper is organized as follows: Section 2 gives a brief account of the 
cohomology ring in order to recall some facts and fix the notation. Section 
3 will be devoted to the cohon1.ology ring potential and its connection with 
the fusion ring for SU(N)K' The connection of the later with the generalized 
Chebyshev polynomial and the numbers of Fibonacci and Lucas will also be 
discussed. In section 4, we will consider the sp(N)J< fusion potential and its 
connection with the reciprocal algebraic equation. Here, we will find that 
the Chebyshev polynomial associated with Sp(N)K is different from the one 
for SU(N)K for N =1= 1. In this case, the Fibonacci and Lucas numbers are of 
degree 2N. Our conclusions are outlined in section 5. 

The Cohomology Ring 

In this section, we will recall briefly the definition of the cohomology ring 
of the grassmannian[9] and the coresponding Landau-Ginsburg formulation 
[6, 1], in order to fix our notation. The complex grassmannian manifold 
here denoted by Gr(Cn) is the space of r-planes in cn, its cohomology ring 
denoted by H*(Gr(Cn)) is a truncated polynomial ring in several variables 
given by 

(2) 

where Xi Ci( Q) (for 1 ~ i ~ r) are the chern classes of the quotient bundle 
Q of rank r, i.e., Xi E H2i(Gr(Cn)) and Yj Cj(S) (for 1 ~ j ~ n - r) are 
the chern classes of the universal bundle S of rank n - r. The ideal I in 
C[x!, .. . ,Xr, Yl,'" ,Yn-r] is given by 

(1 +Xl + X2 + ... + Xr )(1 +Yl +Y2 +... +Yn-r) = 1 , (3) 

which is the consequence of the tautological sequence on Gr(Cn) 

o---+ S ---+ V ---+ Q -+ 0 , 
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w here V = Gr (en) X en. By using equation (3), one may rewrite H* (Gr (en)) 
as 

(4) 

where Yj are expressed in terms of Xi, and Yj = 0 for n - r + 1 :::; j :::; n, 
and Xo = Yo = 1. The classes Yj can be written inductively as a function of 
X!," • , Xr VIa 

Yj = -XIYj-1 - ••. - Xj-IYl - Xj forj = 1"" ,n - r. (5) 

We will give later on an explicit formula for the yjs in terms of the x~s 
without the use of induction. 

In the Landau-Ginsburg formulation, the potential that generates the 
cohomolgy ring of the grassmannian as explained in [6, 1, 10], is given by 

r qi+1 
Wn+I(XI,"',X r ) = 2::-+1 , 

(6) 
i=l n 

where, Xi and qi are related by 

(7) 

Usually the description of the cohomology ring is given in terms of the qi 
variables, however, in the next section, we will write down the potential in 
terms of the xis, i.e., as a solution to the above system of equations. Note 
that, as was shown explicitly in [10], the cohomology ring of the grassmannian 
is given by 

aWn+1 ( )na = -1 Yn+l-i, for 1 :::; i :::; r , (8) 
Xi 

implying that di Wn+1 0, for i = 1" .. ,r. 

The Cohomology Ring Potential 

A formula for the Landau-Ginsburg potential Wn+1(Xl""'X r ) is given in 
terms of the generators of H*(Gr ( en)), and when we consider the potential 
Wn(XI,"" xr ) instead with n = N + k, r = Nand XN = 1 we obtain the 
fusion potential of the SU(N)K [1]. The fusion potential in this formulation 
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is the explicit generalized Chebyshev polynomial in several variables. The 
ordinary Fibonacci and the Lucas numbers are known to be connected to 
Chebyshev polynomial of the second kind and the first kind respectively[13]. 
Here we will find the connection between the fusion potential of the SU(N)K 
algebra and the kth order Fibonacci and the Lucas numbers. The following 
formulae for the potential, the classes yj in terms of the Xi classes and, in 
general, the connection between Segre classes of any vector bundle of rank 
n in termes of Chern classes are first proposed, then later proved using the 
theory of symmetric functions [11]. 

proposition 1 The potential W n+l (Xl, ... , x r ) that generates the cohomol­
ogy ring of the grassmannian H*(Gr(cn)) in terms of the generators Xi = 
Ci(Q) for 1 ::; i ::; r is given by the formula 

2:r-1 'k ),(n - j=1 J j. n+I-2k1 -···rkr _ 1 kl k -1 (9)-:--.-.:....-------:...----:-X x ••• X r •

(n +1 - 2:j=2 jkj - 1)! 1 2 
r 

The above formula reduces to the fusion potential of su(N)K algebra when 
we consider the potential Wn(XI, .. " x r ) instead, with n = N +kJ r = Nand 
xN 1 which in turn is the explicit multidimentional analogue of Chebyshev 
polynomial of the first kind. Finally the fusion potential and the multidimen­
tional analogue of the Chebyshev polynomial of the second kind are shown to 
be related the kth order Lucas and Fibonacci numbers respectively. 

To prove the above formula, we use the fundamental theorem on symmet­
ric functions [4] , which states that any symmetric function can be written as 
a polynomial in the elementary symmetric functions. The potential for the 
cohomology ring of the grassmannian, H* (Gr (cn)) is generated by 

i.e., the power sum symmetric functions in the Chern roots 2,Qi. From [11], 
we learn that there is an explicit formula for the power sum in terms of the 

2qi are the formal variables satisfying I:~=o xiii = II=1 (1 + qii). 
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elementary symmetric functions. As a matter of fact, this formula was given 
by Waring [8, 12] in connection with the theory of algebraic equations in 
which he found a general expression for the power sum of the roots of an 
algebraic equation of order r in terms of its coefficients. This formula reads 

_ '" ( 1)n+11 +··+lr ([1 +... + lr - 1)! 11.,. lr (10) 
Sn - n L..t - h! .. . lr! Xl X r , 

where Sn denotes the power sum, the x~s are the elementary symmetric func­
tions, and the summation is taken over all positive integers or zero such that 
II + 212 + . , , + rlr n. 

It is clear from equation (10) that we obtain the formula for the cohomol­
ogy potential given by equation (9): Simply shift n to n +1 in equation (10), 
set it = n + 1 212 ... - rlr and now by making the change of variables 
l2 = k 1," • , lr kr - 1, the formula is obtained. To prove that the potential 
Wn+1(X1,'" ,xr ) generates the cohomology ring, we need thef'Ollowing for­
mula that relates the Chern classes of the universal bundle, Yi, to the Chern 
classes of the quotient bundle Xi 

[f] [~] (-1 )k1 +2k2 +"+(r-1)kr_ 1 
Yj = (-l)i L: ... L: x

k1!,·· kr - 1 !
kr-1=O 

( . _ ",r-Ilk)'
J L..,.l=l 1· j-2k1 -···rkr_1 kl kr-1 (11) 
'_",r lk ),x1 x 2 ,,,xr . 

( J L..,.1=2 1-1· 

Again we can use the theory of symmetric functions to prove the equation. 
This time however, we use the relation between the homogeneous product 
sum (also called the completely symmetric functions) and the elementary 
symmetric functions, The Segre classes, denoted by S i, of a vector bundle of 
rank n has an expression similar to that for the Chern classes of the universal 
bundle but with r = n and with j allowed to take the values 1,2,'" ,n. Now 
the proof that Wn+1 (Xl, ••• , X r ) generates the cohomology ring follows by 
diiferenting this potential with respect to Xi, 1 ~ i ~ r. Thus, we obtain 

aw, [n±i-i] [n±;-i] (_1)k1 +2k2 +"+(r-l)kr_ 1 
_n_+l = (_1)i-1 L: .. , L: x 

aXi kl=O kr-1=O kl! ... kr - 1 ! 

. _ ",r-l 'k-) I(n + 1 z L...-j=l J J' n+l-i-2kl-···rkr-1 kl kr-l 
Xl X ···X (12)

'k ) I 2 r(n + 1 z- J i-I . 
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From equation (11), we see that Yn+l-i is exactly the expression for a~;:l up 
to (_I)n which is zero for i = 1"", r, by definition of the cohomology ring. 
Therefore, a~;:l (_I)nYn+l_i implying that diVV = 0 for i = 1"", r. 
This shows the isomorphism between the usual definition of the cohomology 
ring of the grassmannian H*( Gr ( en)) and the Landau-Ginsburg formulation. 

Now, we come to the connection between the cohomology potential and 
fusion potential of su(N)J< algebra. We consider the potential Wn (Xl, ... , x r ) 

with n = N + k, r = N and set XN 1 in the expression of Wn(XI," " Xr) 
to obtain the following potential 

[NtK] 

WN+K(Xt"",XN = 1) = L 


k1=0 

(N + K - 1 - "f:l- l ·k.)!
L..J=1 J J' N+K-2k1 -···-NkN _ 1 k kN - 2

~(-----N--'--.".)...:..- XI 
1 (13)X2 ••• X N -1 , 

N + K - Lj=2Jkj- 1 ! 

this potential is no longer quasihomogeneous. The quasihomogeneous part 
of this potential is obtained by setting kN -1 = O. To see that this potential 
is the natural analogue of Chebyshev polynomial of the first kind in several 
variables, we specialize the potential to the case of SU(2)K and :find 

[ K±2] 

(2 + K) t (_~)I x (K + 1 -1)',xK +2-21 . (14) 
1=0 l. (K + 2 - 2l). 

By setting n = K + 2, one has 

[¥-](-:-I)1 (n-1-l)! n-21 
(15)nWn(x)=nt;-l!-x (n 2l)! x . 

This is exactly the Chebyshev polynomial of the first kind [13]. In this rep­
resentaion the Chebyshev polynomial is monic and with integer coefficients. 

It remains to be seen that .the analogue of the Chebyshev polynomial of 
the :first kind in several variables is the fusion ring of the su(N)K algebra. 
This is a simple consequence of the relation between our cohomology potential 
and the Chern classes of the universal bundle S. By using equation (12) in 
the su( N)K case, one has 

1)i+18WN+K-i £' • N 
YN+K-i = (- 8 lor 1 :s; ~ :s; - 1, (16) 

Xi 
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which is the ideal of the fusi~n ring for su(N)K[I]. Therefore the fusion ring 
for SU(N)K is R = C[Xl,'" xN-l]f(YK+l, YK+2," . ,YK+N-d. In terms of 
Young tableaux, this is equivalent to setting to zero all reduced tableaux (no 
columns with N boxes) for which the first row has length equal to I{ + 1­
this is the level truncation. The Giambeli-like formula [1] when applied to 
the completely symmetric representation, then the fusion ideal for SU(N)K 
reads 

[1", ·1] = det Xl+l- s , for 1 ~ l, s ~ j, K + 1 ~ j ~ N + I{ - 1. (17) 
~ 

j 

Therefore the completely symmetric function Yj given by (11) is the explicit 
expression for the Giambeli-like formula when restricted to [1"" 1] (with j 
entries), where K + 1 ~ j ~ N + K - 1. 

From Gepner [1] we learn that there are two ways to obtain the fusion 
potential for SU(N)K algebra. One way is to use the following expresion 

N K(_I)N+K d + ( N i i) I 
WN+K(Xl,"', XN = 1) = (N K)! dtN+K log ?=(-1) xit , (18) 
. + ~=O t=O 

with Xo = x N = 1. Alternatively, we use the recursion relation satisfied by 
the potential 

N

2::( _1)ixi(N + s - i)WN+s- i = O. (19) 
i=O 

Therefore, our expression for the fusion potential is simpler and more trans­
parent. It gives the integrability of the Chern classes Yj (completely sym­
metric functions) to a potential as a consequence of the cohomology of the 
Grassmannian. Furthermore, from our fusion potential which is the explicit 
Chebyshev polynomial of the first kind in several variables, one tan read off 
directly the SU(N)K fusion potential for any Nand K. 

Before we make the connection between the fusion potential of SU(N)K 
algebra and the Fibonacci numbers and Lucas numbers of kth order, we will 
first give the definition of these numbers. We will then recall the connection 
between the ordinary Fibonacci and Lucas numbers with the Chebyshev 
polynomial of one variable. 

definition 1 The kth order Fibonacci numbers Fn+l and Lucas numbers Ln 
are defined, respectively, by Fn+l = Fn + Fn- 1 + ... + Fn-k, Ln = L n- 1 + 
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Ln - 2 + ... Ln - k } with the initial conditions F- k+1 F-1 = 0 and 
similarly for the Ln 'so 

For k = 2, these are the definitions of the ordinary Fibonacci and Lucas 
numbers which are given by Fn+1 = Fn + Fn- 1 and Ln = Ln- 1 + Ln- 2 , i.e., 
any number is the sum of the previous two. The Chebyshev polynomial of the 
second kind U(~) is known to be related to the ordinary Fibonacci numbers, 
and The Chebyshev polynomial of the of the first kind T(~) is known to be 
related to the Lucas numbers [13] via the following specializations: 

n = 0,1··· ,(i2 = -1), (20) 

where, 

(21) 

and 

n = 0,1···, (22) 

where, 
[¥-] 

2kCn{x) = 2T (:.) = :L{_l)k_n_(n - k)xn- . (23) 
2 k=O n - k k 

By applying a similar procedure, the analogue of the Chebyshev polynomial 
of the second kind in several variables and the fusion potential reduce to the 
following two sequences of numbers, respectively: 

(24) 

[¥-] [~] 1 (n-1~Lj:ijlj)I 
Ln = n I: .. , I: I' k '( k') (25) 

11=0 lk_1=0 1···· k-1· n - Lj=2 Jlj-1 ! 

One can see that these numbers are indeed those given in the definition above, 
for example, for k = 2 they are the ordinary Fibonacci and Lucas nurnbers 
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4 

respectively. For k = 3 we have the third order Fibonacci and Lucas numbers 
and we have computed the first few of them as given below 

F (3) 
n +1 = 1, 1, 2, 4, 7, 13, 24, 44, 81, ... , (26) 

L~3) = 1, 3, 7, 11, 21, 39, 71, 131, .... (27) 

In terms of the level 1{, and for a fixed value of N in the su(N)K, one can 
see that the first term in the Fibonacci sequence will start at n = N +K +1, 
whereas that of the Lucas sequence will start at n = N + K, and N is 
identified with the order of these two series. 

The formula given above corresponding to kth order Fibonacci numbers 
is in a full agreement with that obtained by Lascoux [14] in which he showed 
by using the theory of symmetric functions that kth order Fibonacci numbers 
are given by the following multinomial . 

(28) 

where the summation is taken over all partitions 1 1m12m2 ••• of weight n = 
ml +2m2+" ·+kmk and £(1) is the length of the partition ml +m2+" ·+mk. 

The equivalence of our formula for the kth order Fibonacci numbers and 
those given by Lascoux follows by expanding the multinomial (28), and fixing 
ml as ml = n - 2m2 ... - kmk and then changing the variables as we did 
before to obtain the cohomology potential. 

Although the expression for the kth order Lucas number were not given 
in [14], we can see however that the equivalent formula for these numbers is 

(29) 

Sp(N)1{ Fusion Potential and the Reciprocal 
Algebraic Equation 

We recall from the last section that the Waring formula computes the power 
sum of roots of an algebraic equation in terms of it coefficients. These coef­
ficients are identified with the elementary symmetric functions, in terms of 
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the Chern roots they are given by Xi = LI911""Zi:::;r qZl q l2 ••• qlj' The alge­
braic equation from which one computes the cohomology ring potential has 
the form 

(30) 

where the coefficients ai are identified with the elementary symmetric func­
tions, and the roots of this algebraic equation are qi for i = 1, ... , r. 

The fusion potential for the SU(N)K algebra may be obtained from the 
following algebraic equation 

(31) 

The last coefficient is set equal to 1 due to the constraints X N ql q2 .•• qN = 
1, which in turn corresponds to the fact that the determinant of the maximal 
torus of SU(N) group is the identity. The diagonal elements of this torus are 
qi = ei (8i-8i-I) for i = 1, ... ,N with the convention eo = eN = 1. With this 
motivation in mind, one would like to know whether one can write down an 
algebraic equation corresponding to groups other than SU(N), in particular, 
the unitary symplectic group Sp(N). Having written down such an algebraic 
equation, the fusion potential for the sp(N)K algebra is obtained using the 
Wearing formula. This turns out to be true as we will shortly see. 

From [15] we learn that any n x n unitary symplectic matrix (with n = 
2m) can be diagonalizedwith diagonal elements of the form qi and q;l for 
i == 1, ... , m, and with determinant equal to 1. Therefore the algebraic 
equation that we are looking for is the one for which both qi and qi l are 
roots and where the last coefficient is equal to one. Such algebraic equations 
are called reciprocal equations of the first class [8]. In our case, this algebraic 
equation has the form 

where ai = a2m-i. Note that in this case, the elementary symmetric functions 
are functions of both qi and qil that we denote by Ei • Now, the natural power 
sum to consider for the reciprocal algebraic equation has the form 
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as both qi and q;l are roots of equation (32). This is exactly the form pro­
posed by [16] . Therefore, by applying the Waring formula to this expression, 
one obtains 

where g(n, m) == n - 2kl - ... - (2m 2)k2m-2 - 2mk2m- 1 • In obtaining 
the above equation, we have used the condition II + 212 + ... + 2ml2m == n, 
and the change of variables l2 == kl' ... ,l2m == k2m- 1 • 

In the following we will briefly recall the classical tensor ring for sp(N) 
and the modified fusion ring [18, 17], namely, the Sp(N)K algebra and hence 
write explicitly the fusion potential for the latter. The classical tensor ring for 
sp(N) is the finite ring, R == C[Xl,' .. ,XN]/Ie, where Xj are the characters 
of the fundamental representation corresponding to a single column of length 
j. These characters are related to the elementary symmetric function Ej [19) 
by 

(34) 


The classical ideal Ie is obtained by using this equation with the property 
that Ej == E2N_j and Eo == E2N == 13 

, which follows from its generating 
function [19] 

00 j N 
E(t) ~ Ejt == II(1 + qit )(1 + q;lt). (35) 

j=o i=l 

Therefore, the classical ideal Ie is given by 

XN+l 0, 

XN+2 + XN - 0, 

Xi +X2N+2-j O. 

is exactly the condition that follows from a reciprocal algebraic equation of degree 
2N, with the last coefficient a2N = 1. 
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The sp( N)K fusion ring is obtained by a further modification of the clas­
sical sp(N) tensor ring in which tableaux with more than I{ columns are 
eliminated. This is equivalent to writing the sp(N)K-fusion ring as R = 
C[Xl " .. , XN]/ If, where the ideal If is given by 

JK+l - 0, 

JK+2+JK 0, 

o. (36) 


Jj represents the character of the single row tableaux of length j which is a 
completely symmetric function whose generating function is [19], 

00 
j


J(t) = L Jjt
 (37) 
j=O 

Since E(t)J( -t) = 1, the completely symmetric functions can be written 
in terms of the elementary symmetric functions as will be given explicitly 
below. 

The truncation given by eq.(36) can be written as the ideal generated 
by setting to zero the derivative of the potential Wn (33), for certain values 
of nand m. This means that the fusion ring for Sp(N)K can be written as 
R = C[XI ,'" , XN]/dWn . To see this we differentiate the potential Wn with 
respect to finding, 

for 1 ::; i ::; n - 1 
(38) 

for i = m , 

where Jj is given explicitly by 

[f] [:r!n] (_1)kl+2k2+···+(2m-l)k2m-l 

Jj = (-1)1 I: ... I: X 
kl=O k2m-l=0 k1 !···k2m- 1 ! 


( . - L:2m- 1 lk )! .

J 1=1 1 EJ-2kl-···-(2m-2)k2m-2-2mk2m-l Ekl +k2m-3 ... Ekm-l . (39) 
. 2m lk ) I 12m 

( J - Ll=2 1-1· 
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From eq.(38): we see that the critical points of the potential Wn , aa~; 0 
do indeed correspond to the fusion ideal If provided n = N + I{ + 1 and 
m=N. 

The fusion potential for Sp(N)K algebra is obtained by using the relation 
Xj = Ej - Ej- 2. Setting Xl = x and X2 = y, the fusion potentials for sp(l)K 
and Sp(2)K are 

[ K±2) 

(2 + K)W.2+K(X) (2 + I{) ~ (-1/ (K + 1 -l)! K+2-21 (40) 
~ l! (K +2 2l)!x , 

and 

(41) 

From equation (40) we see that this is the Chebyshev polynomial of the 
first kind for SU(2)K as it should be, since sp(l) su(2). For levels I{ = 1 
and K = 2, equation (41) gives the following potentials 4W4 = X4 - 4x2 y + 
2y2 +4y - 2 and 5 W5 = x5- 5x3y +5xy2 +5xy - 5x. These were the potentials 
obtained in [16) using the recursion relations. 

The generalized Chebyshev polynomial in several variables for sp( N)K is 
obtained from the power sum Wn given in equation (33) with n = N +K +1 
and m = N, 

[N±f±l] +2k2 +··+(2N-1)k2 N-l 
W(E1, .. ·,EN ) = I: ----------x 

(N+K-E2N- 1 lk)'1=1 I· Ef(N,K)Ek1 +k2N-l E kN- 1 
~-=-------2-N---'---:-- 1 2 ... N , (42)
(N + K +1 - El=21kl-1)! 

where f(N, K) = N +K + 1 - 2kl - ... - (2N - 2)k2N- 2 - 2Nk2N- 1• This 
is different from the generalized Chebyshev polynomial in several variables 
for SU(N)K for N =f. 1. The above results can be stated by the following 
proposition, 
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proposition 2 The fusion potential for the Sp(N)K algebra is obtained from 
the power sum of the roots of a reciprocal algebraic equation of degree 2N, 
the last .coefficient of which is 1. The associated generalized Chebyshev poly­
nomial of the first kind in terms of the elementary symmetric functions is 
given by the equation (42). 

From the expression for the Chebyshev polynomial in several variables 
(42), one notes that the Lucas numbers are of order 2N. Therefore these 
sequences are the same as those associated with su( N)K with N even. The 
difference however, is that in the latter the sequence starts at n == 2N + K, 
whereas that associated with Sp(N)K starts at n == N + K + 1. The point 
that is interesting to note is that the Fibonacci numbers associated to sp( N)K 
are combinations of two Fibonacci numbers. One can see this from (38) by 
considering the analogue of the Chebyshev polynomial that is associated with 
Sp(N)K of the second kind. These numbers follow from 8WN+K+l/8E1 == 
JK+N + JK-N+2, N =I- 1, to give the following Fibonacci type sequences of 
order 2N. 

(43) 

where, 

[f] [iN] 1 (j-E;~-llkl)!
Fj == L ... I: (44) 

kl=O k2N-l=O kd ... k2N- 1 (j - Er;-;lkl-l) 1. 

As an example we have computed the Fibonacci numbers associated with 
Sp(2)K using equation 43. The first few numbers are given below, 

3, 5, 10, 19, 37, 71, 137, ... (45) 

where the first term in this sequence corresponds to formally to I{ == O. We 
see that this sequence is a fourth order sequence and is different from the 
one obtained for SU(4)K. In fact the sequence given by equation 45 is a new 
sequence [20] and therefore the higher order sequences form new sequences 
given by equation 43. 

Conclusions 

In this paper we have seen that the cohomology potential that generates 
the cohomology ring of the Grassmannian Gr ( cn), the fusion potentials for 
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SU(N)K and that for Sp(N)K are obtained from suitable algebraic equations 
using the Waring formula (10) that computes the power sum of roots in terms 
of the elementary symmetric functions. The roots of these algebraic equations 
are in one to one correspondence with the elements of the diagonalized form 
of the unitary matrix groups U(N), SU(N) and Sp(N). 

In this algebraic formulation we see clearly that the isomorphism of Lie 
algebras should be translated into the identification of the corresponding 
algebraic equations. For example su(2) and sp(l) have the same algebraic 
equations which follow from eq.(31) and eq.(32). As sp(2) = so(5) the fusion 
potential for SO(5)K should be given by eq. (41) and hence the corresponding 
algebraic equation is 

(46) 

indeed this is the case [21], where Xl is replaced by the spin character B = 
(qi/2+ q~I/2)(q~/2 q:;1/2) and X2 is replaced by e1 q1 ql1+ q2 + qi1+ l. 
Therefore algebraic equations could be used for classifying fusion rings. 

In this paper we also obtained an explicit connection between the fusion 
potentials and the Chebyshev polynomial in several variables for su( N)K, 
which would be difficult to see in the formulation of [1] and [16]. These poly­
nomials were shown to be related to the Fibonacci and the Lucas numbers. 
In the case of Sp(N)K the Fibonacci numbers are of order 2N and appear to 
be new as they are different from those of SU(N)K of the same order, however 
the Lucas numbers in both cases have the same order and belong to the same 
sequence. 

We will see in our paper [22] we showed that the ordinary Fibonacci num­
bers arise as intersections numbers on the moduli space of the holomorphic 
map from the sphere Cp1 into the Grassmannian G2 (C5). 
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