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Abstract 

The Noncommutative Index Theorem is used to prove that the Chern character 
of quantum Hopf line bundles over the standard Podles quantum sphere equals the 
winding number of the representations defining these bundles. This result gives an 
estimate of the positive cone of the algebraic Ko of the standard quantum sphere. 
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Introduction 

The goal of this paper is to compute the Chern character of quantum Hopf line bundles. We 
do it within the framework of the Hopf-Galois theory of extensions of rings and Chern-Connes 
pairing between the cyclic cohomology and K-theory. We view the quantum two-sphere as 
the base space of the quantum 'principal Hopf fibration described algebraically as a Hopf
Galois extension. 'Noncommutative line bundles over the quantum sphere are constructed as 
left and right projective bimodules over the coordinate ring of the quantum sphere. They 
are the bimodules of colinear mappings indexed by the winding number of one dimensional 
representations of U(l). The Chern character of the left projective module of such a quantum 
line bundle is proved to coincide with the winding number of the representation defining the 
bundle. The Chern character of the corresponding right projective modules is shown to be equal 
to the opposite of its left counterpart, whence it coincides with minus the winding number. 

In the following section, we recall a definition of a Hopf-Galois extension and general con
struction of the bimodule of an associated quantum vector bundle. We also recall the con
struction of SLq(2), quantum principal Hopf fibration, quantum Hopf line bundles and the 
cyclic cohomology classes of the quantum sphere that pair non-trivially with K-theory. In Sec
tion 2 we extend the relevant considerations in [HM98], and compute the pairing between the 
Chern cyclic cocycle of the quantum sphere and the left projector matrices of quantum Hopf 
line bundles for an arbitrary winding number. This computation relies on the integrality of 
the pairing, which is implied by the Noncommutative Index Theorem, and yields the winding 
number,as expected. Then we argue that the pairing with the right projector matrices equals 
minus the pairing with the corresponding left matrices. We conclude by noting that the image 
of the positive cone of the algebraic Ko of the quantum sphere under the pairing with cyclic 
cohomology contains N x Z. 

To focus attention and access straightforwardly the C*-algebraic framework, we work over C. 
We assume that q is a non-zero element in C that is not a root of 1. We tacitly assume the 
compact *-structure making SLq(2) into SUq(2). However, we do not write it out explicitly, as 
it is an additional structure whose existence is crucial but a concrete form not directly relevant 
to the considerations presented herein. For an introduction to quantum groups (comprehensive 
discussion of SLq(2) included) we refer to [K-Ch95]. For a concise and motivating treatment of 
the Hopf-Galois theory see [S-HJ94]. The Chern-Connes pairing and Noncommutative Index 
Theorem are elaborated upon in [C-A94, L-JL97], and [C-A88] contains a compact account of 
the matter. A brief note on classical Hopf line bundles within the general context of K-theory 
and Noncommutative Geometry can be found in [M-J95, p.lOl]. The generalisation to the non
standard Podles quantum spheres of the Chern-Connes pairing calculated in [HM98] is carried 
out in [BM98]. 

Preliminaries 

In this section we recall basic definitions and known results. used in the sequel. We begin with 
a definition of a Hopf-Galois extension. Hopf-Galois extensions describe quantum principal 
bundles the same way Hopf algebras describe quantum groups. Here a Hopf algebra H plays 
the role of the algebra of functions on the structure group, and the total space of a bundle is 
replaced by an H-comodule algebra P. 
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Definition 1.1 Let H be a Hopf algebra, P be a right H -comodule algebra with multiplication 
mp and coaction D..R, and B := pcoH := {p E P I D..R P = p ® I} the subalgebra of coinvariants. 
We say that P is an H -Galois extension of B iff the canonical left P -module right H -comodule 
map X := (mp ® id) 0 (id ®B D..R) : P ®B P --t P ® H is bijective. 

A natural next step is to consider associated quantum vector bundles. More precisely, what 
we need here is a replacement for the module of sections of an associated vector bundle. In 
the classical case such sections can be equivalently described as "functions of type 12" from the 
total space of a principal bundle to a vector space. We follow this construction in the quantum 
case by considering B-bimodules of colinear maps (linear maps that preserve the comodule 
structure) Homp(V, P) associated with an H-Galois extension B ~ P via a corepresentation 
p : V --+ V ® H (see [D-M96, D-M97]). Under certain reasonable assumptions, these bimodules 
are always left and right finitely generated projective. Thus we remain within the paradigm of 
the Serre-Swan theorem. 

Let us now exemplify the foregoing concepts. Recall first that A(SLq(2)) is a Hopf algebra 
over C generated by 1, a, b, e, d satisfying the following relations: 

ab = q-Iba, ae = q-Iea, bd = q-1db, be = eb, cd = q-Ide , 

ad - da = (q-I - q)be, ad - q-Ibe = da - qbe = 1 , (1.1) 

where q E C \ {O}. The comultiplication D.., counit €, and antipode S of A(SLq(2)) are defined 
by the following formulas: 

a® 1 b®l) (l®a l®b)~ (~ ~) ( e®l d®l l®e l®d ' 

€ (a (3) = (1 0) S(a b) = (~ -qb) . 
I t5 0 l' e d -q Ie a 

From here we can proceed to the construction of the standard quantum sphere of Podles and 
the quantum principal Hopf fibration. The standard quantum sphere is singled out among the 
principal series of Po dIes quantum spheres by the property that it can be constructed as a 
quantum quotient space [P-P87]. In algebraic terms it means that its coordinate ring can be 
obtained as the subalgebra of coinvariants of a comodule algebra. To carry out this construction, 
first we need the right coaction on A(SLq(2)) of the commutative and cocommutative Hopf 
algebra C[z, Z-I] generated by the grouplike element z and its inverse. This Hopf algebra can be 
obtained as the quotient of A(SLq(2)) by the Hopfideal generated by the off-diagonal generators 
band e. Identifying the image of a and d under the Hopf algebra surjection 1r : A(SLq(2)) --+ 
C[z, Z-I] with z and z-I respectively, we can describe the right coaction D..R := (id ® 1r) 0 ~ by 
the formula: 

~R (~ ~) = (~:; ~ : Z-l ) . 

We call the subalgebra of coinvariants defined by this coaction the coordinate ring of the 
(standard) quantum sphere, and denote it by A(S;). Using general tools of the Hopf-Galois 
theory (e.g., [S-HJ90, Theorem ID, it is straightforward to prove that A(S;) ~ A(SLq(2)) is 
a C[z, Z-I ]-Galois extension. We refer to the quantum principal bundle given by this Hopf
Galois extension as the quantum principal Hop! fibration. (An SOq(3) version of this quantum 
fibration was studied in [BM93].) 

Now we need to define quantum Hopf line bundles associated to the just described Hopf 
q-fibration and provide their projector matrices. 
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Definition 1.2 Let PJ.L : C[z, Z-l] -+ C0C[z, ], pJ.L(l) = 10z-J.L, J-l E Z, be a one-dimensional 
corepresentation ofC[z, Z-l]. We call the A(S~)-bimodule of colinear maps HompJ.4 (C, A(SLq(2))) 
the (bimodule of) quantum Hopf line bundle of winding number J-l. 

We deal here with one-dimensional corepresentations, so that we can identify colinear maps 
with their value at 1. We have 

as A(S~)-bimodules. With the help of the PBW basis akblcm , lfPcT dS 
, k, l, m,p, r, s E No, k > 0 

of A(SLq(2)), one can show that 

L-~ A(S2) a-J.L-kck = L-~ a-J.L-kck A(S2) for J-l ~ 0 
PJ.L = { "'~-o A(S~) bkdJ.L-k = ",J.L k-obkdJ.L-kA(S2) q

L...tk=O q L...tk=O q for J-l ~ 0, 

and A(SLq(2)) EI1J.LEZ PJ.L (cf. [MMNNU91, (1.10)]). Since the goal of this paper is to com
pute the Chern-Connes pairing [C-A94, p.224] between quantum Hopf line bundles and the 
cyclic cohomology of the standard quantum sphere, we need explicit formulas for the projector 
matrices of the former and generators of the latter. To this end recall first that if xuv = vu, 
then (u + v)n = ",n (n) ukvn- k whereL...tk=O k , 

x 

n) (x - 1) ... (xn - 1)
( k x - (x - l) ... (xk -l)(x - l) ... (xn-k 1) 

(1.2) 

(1.3) 

Then again, for any J-l E Z, fJ.L E MIJ.LI+I(A(S~)), f; = fJ.L' and fJ.LA(S~)IJ.LI+I is isomorphic to PJ.L 
as a right A(S;)-module [HM98]. 

To obtain the desired pairing, we need to evaluate appropriate even cyclic co cycles on 
the left and right projector matrices provided above. The positive even cyclic cohomology 
HC2n(A(~~)), n > 0, is the image of the periodicity operator applied to HCO(A(S~)). In 
degree zero it is given by two generators (cohomologically non-trivial cyclic cocycles) and the 
kernel of the periodicity operator [MNW91, p.174]. Since the pairing is compatible with the 
action of the periodicity operator, it is completely determined by the aforementioned two cyclic 
O-cocycles (traces). (Everything else either pairs with Ko(A(S~)) in the same way or trivially.) 
These traces are explicitly provided in [MNW91]. One of them, denoted by TO, is simply the 
restriction to A(S~) of the counit map of A(SLq(2)). It can be argued that this trace detects 
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the "rank" of our quantum vector bundles [HM98, Remark 3.4]. The other trace is given by 
the following adaptation of [MNW91, (4.4)] to our special case of the standard Podles quantum 
sphere: 

(1.4) 

where ( := -q-1bc. One can think of this cocycle as the "Chern cyclic cocycle," and the 
invariants it computes as the Chern numbers of quantum vector bundles. The fact that it 
is in degree zero is a quantum effect caused by the non-classical structure of HC*(A(S;)) 
(see [MNW91]). In the classical case the corresponding co cycle is in degree two, as it comes 
from the volume form of the two-sphere. 

The pairing ([r1], [e-l]) = -1, ([r1], [1]) = 0 can be used to conclude the non-cleft ness of the 
quantum principal Hopf fibration [HM98, Corollary 4.2]. Furthermore, taking advantage of the 
linearity of the pairing and the above equalities, we can also conclude that Z EB Z ~ Ko(A(S;)). 
On the other hand, one can directly check that the other cyclic cocycle r O pairs unitally with 
above projectors: 

(1.5) 

We can think ofro, r1 as a (possibly incomplete) coordinate system for Ko(A(S;)) determining 
the rank and Chern number respectively. The point of this paper is that for any J-L E Z there 
exists a rank one projector matrix (quantum line bundle) with its Chern number equal to J-L. 

2 Chern-Connes pairing for quantum Hopf line bundles 

We are to compute the pairing between the Chern cyclic cocycle rl and both left and right 
projector matrices of quantum Hopf line bundles Pw We refer to the thus obtained invariants 
as the left and right Chern numbers respectively. Since rl is a O-cyclic co cycle , the pairing 
is given by the formula ([rl], [P]) = (rIo Tr)(p), where p E Mn(A(S;)), p2 = p, and Tr : 
Mn(A(S;)) ~ A(S;) is the usual matrix trace. We have: 

Theorem 2.1 The left Chern number and the winding number of any quantum Hopf line bun
dle coincide: (rIo Tr) (elL) = J-L, J-L E Z. 

Proof. We need to consider two cases: J-L < 0 and J-L > O. (The case J-L = 0 is evident, as eo 1 
and r1 annihilates numbers.) 

Case J-L < 0: To simplify notation put n = - J-L. Let us first compute the trace of e_n 

(see (1.2)) as a polynomial in <: := -q-1bc: 

n

L (~) 2 (_q)kan-kckbkan-k 
k=O q 

n 
k= L (~) 2 (_q)kq-2k(n-k) (bc)kan-kdn-

k=O q 
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n 	 n-k-l 
= L (~)q2 q-2k(n-k-1)(k IT (1 - q-21(). 

k=O 1=0 

The last step follows from the quantum determinant formula ad = 1 + q-1bc 1 - ( (see (1.1)) 
and standard induction. (The expression rrz::o(' ..)is understood as 1.) To apply 7 1 to Tr(e_n ) 

we need to knQw more explicitly the coefficients of the above polynomiaL For this reason let 
us recall the definition of shifted binomials (cf. [MNW91, p.173]). Let k[t] denote a polynomial 
ring in one variable and x E k. For natural numbers °:s; 1 :s; 1/ we define the x-shifted binomial [~Lby the equality 

v v-I 
lL [~L t IT(1 + Xl t) 

l=O l=O 

Now we can use the above calculations and (1.4) to compute the Chern-Connes pairing between 
[71] and [e_ n ]: 

1([71], [e_n ]) = (7 0 Tr)(e_n ) 

= 71(t (~) 2q-2k(n-k-1)(k I: [n; k]-2 (_()I) 
k=O q 	 l=O q 

1 
= 7 (~ (~)q2 q-2k(n-k-1)(k ~ [::. =~L-, (_()m-k) 

= 7
1 (~(_elm ~ (~)q2q-2k(n-k-1)( _I)k [::. ~1.-,) 
n 	 m 

= L (1 - q2m)-1(_I)m L (~)q2q-2k(n-k-1) (_I)k [::. ~L-, . 
m=1 	 k=O 

The point is to prove that the just computed number equals -no To do so let us assume for 
the time being that q E (0,1), so that we can use the C*-algebraic framework. Recall that the 
O-cyclic co cycle 7

1 comes from a 1-summable Fredholm module over A(S;) [MNW91, p.175]. 
Hence, by the Noncommutative Index Theorem, the Chern-Connes pairing between [71] and 
any element of Ko(A(S;)) is necessarily an integer - the index of an appropriate Fredholm 
operator. (See, e.g., [C-A94, p.297],[C-A88, p.54],[L-JL97, Section 12.2.5].) Thus we have 

n 	 m 

0(71 Tr )(e_n) = "(1 - q2m)-I(-l)m " (~) q-2k(n-k-l) (-l)k [n k] E Z 
L...,; 	 L...,; q2 m k q-2 

m=1 	 k=O 

for any q E (0,1). Observe now that, since (71 0 Tr)(e_n ) is a rational function of q, it is 
continuous whence constant on (0,1), by the connectedness of (0,1) and the above integrality 
property. The only rational function on C\ {O, roots of I} which is constant on the open interval 
(0,1) is a constant function. Therefore (71 o Tr)(e_n ) is independent ofq E (1,00), and we 

1have (7 0 Tr)(e_n ) = limq_ HXJ (71 0 Tr)(e_ n ). Now it suffices to show that 
m 

lim (1- q2m)-I(_1)m" (n) q-2k(n-k-l}(_1)k[n-k] = -1, m, n> O. 
q-+oo 	 L...,; k 2 m - k - 2 


k=O q q 


To this end we need to analyse the asymptotic behaviour of the fractions 

Fn,m,k(q) := (~) q-2k(n-k-l)(_1)k[:_~]
q2 	 q-2 

_ (_I)k(q2_1) ... (q2n_l) (1 	 1) 
- q2k(n-k-l)(q2_1} ...(q2k_l)(q2_1) ...(q2(n-k)_1) q(m-k-l)(m-k) + ... + q(n-k+l)(n-k)-(n-m+l)(n-m) , 
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where the sum in parenthesis equals [: -=-~ t-2' The dominating term of Fn,m,k (q) if proportional 

to q to the power ofn(n+ 1) -k(k+1) - (n-k)(n-k+ 1) -2k(n- k-1) - (m-k-1)(m-k) = 
-k2 + k(l + 2m) + m m2

• Thinking of this expression as a function of k, we see that it is 
biggest for k = m. Hence the dominating term in 2:;=0 Fn,m,k (q) is proportional to q2m. All 
other terms are proportional to q to some power strictly less than 2m, and will be vanished by 
(1 q2m) -1. Therefore 

m 

lim (1 - q2m)-I( -l)m L Fn,m,k(q) 
q-+oo 

k=O 
( 2m)-I( l)m (_1)m(q2 - 1) ... (q2n - 1) 

= J~~ 1 q - q2m(n-m-l)(q2 1) ... (q2m _ 1)(q2 - 1) ... (q2(n-m) - 1) 

(q2 1) ... (q2n - 1)
=- lim ~------~----~------~----~----~~~--~~ 

q-+oo (q2m 1)q2m(n-m-l) (q2 - 1) ... (q2m 1) (q2 1) ... (q2(n-m) - 1) 
-1. 

This proves that (71
0 Tr) (e_n ) = 2:~=1 (-1) = -n, as needed. 

Case J.l > 0: The reasoning is similar to that of the previous case, though the calculation 
of the limit is more straightforward. Put n = J.l. First we compute: 

n 

Tr(en) = L (~) 2 (_q)-kbkdn-kan-kck 
k=O q 

n n-k-l 
=L (~)/:k II (1 q-2(l+1)() 

k=O l=O 
n n-k 

= L (~) 2 (k L [n 7k] 2 (_q2()l 
k=O q l=O q 

n n 

=L (~)/:k L [:.~ ~lq2 (_q2()m-k 
k=O m=k 

=L
n 

(m L
m 

(~)q2 (_1)m-k q2(m-k) [:.~~L· 
m=O k=O 

Using the Noncommutative Index Theorem the same way as before, we can again conclude 
that (71

0 Tr)(en ) E Z for q E (0,1). Also by the same argument as before, the integrality of 
1(7 0 Tr)(en) entails that it is independent of q E (0, 1). We can therefore compute it by taking 

the limit: 

n m 

= L L(-l)m-kOkm = n. 
m=1 k=O 

o 
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Remark 2.2 It follows from a direct calculation that (,1 oTr)(e-2) = (-1-q-2) + (-1 +q-2) = 
-2, where the first and the second term correspond to m 1 and m 2 respectively in the 
general sum. Similarly, (,1 0 Tr) (e2) (1 + q2) + (1 - q2) = 2. 0 

As for the right projective structure of Pfl.' one can infer directly from formulas (1.2), (1.3) and 
Theorem 2.1 that 

Hence we have: 

Corollary 2.3 The right Chern number oj any quantum HopJ line bundle equals the opposite 
oj its winding number, i. e., (,1 0 Tr)(Jfl.) = - fl, fl E Z. 

Let us now consider further consequences of Theorem 2.1. Note first that due to the direct 
sum decomposition A(SLq(2)) = EBfl.EZ Pfl.' one can say that the coordinate ring of SLq(2) 
decomposes into mutually Ko-non-equivalent left and right projective finitely generated A(S;)
bimodules. As for the structure of Ko(A(S~)), Theorem 2.1 provides us with an estimate of its 
positive cone. Indeed, combining (1.5) with Theorem 2.1 yields: 

Corollary 2.4 The image oJ the positive cone oJKo(A(S;).) under (,0,,1): Ko(A(S~))-t 
Z x Z contains N x Z. 
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