BangyBang Property for Bolza Prob
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Consider the following Bolza problem:
i =F(z)+uG(z), [u<1,zeQCR

min / h(z,u)

z(0) =29, z(1) ==,

We show that, under suitable assumptions on F, G, h

mal trajectories are bang—bang.
The proof relies on a geometrical approach that works

smooth two—dimensional manifold.
As a corollary we obtain existence results for non—con

mization problems.
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1. Introduction.

The minimum time problem for control systems with control appearing linearly on a
two dimensional manifold were studied by Sussmann in [Sul,2,3]. In particular in [Sul]
there is a deep analysis of the structure of time optimal trajectories and conditions to
assure that every time optimal trajectory is bang-bang are given. In the same paper it is
shown that the bang—bang property is not generic even for the minimum time problem.

In this paper we consider the more general minimization problem:

¢ = F(z) + v G(z), z € R?, |u|<1
(P) z(0) = zy, z(1) =2,

min fo h(z(t),u(t)) dt

where F,G are C? vector fields, zy,z; € IR? and h(-,+1),h(-,—1) € C?(IR?,IR), and we
give conditions to guarantee that any optimal trajectory is bang-bang.

The proof of our result is based on the idea of ”bang-bang” variations. More precisely,
we use these variations as substitutes for those based on Liapunov’s Convexity Theorem
as is done in problems of the Calculus of Variations [CC] or of Linear Control Theory [R].

We consider an optimal trajectory 4 of our system. If v is ntt bang-bang in a neigh-
borhood of a point # we construct a new trajectory that is near the previous one, is
bang-bang in a neighborhood of z and achieves a lower cost. To assure that this new
trajectory satisfies the initial condition we use the fact that, undler suitable assumptions,
all time optimal trajectory are bang-bang.

Problem (P) has a particular dynamics with respect to the ulual problems of calculus

of variations but on the other hand the assumption on A are not too strict.
The tools used in this paper are geometric, so it is easy to Iow that the statements

hold also for a smooth two dimensional manifold.

As corollaries we prove existence results for nonconvex optimization problem.

Acknowledgements. We want to thank Prof. Arrigo Cellina for suggesting the
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2. Basic Definitions.

Throughout this paper we use the symbol IR" to denote the n-dimensional Euclidean
space.
With m(A) we denote the Lebesgue measure of the set A. We say that a point ¢ is a
Lebesgue point for the set 4 C IR if

1
Im — m(AN[t—¢,t+¢])=1.
e—0t+ ZE




It is well known [Ru] that if A is Lebesgue-measurable, then almost every point of 4 is a
Lebesgue point.

A curve in IR? is a continuous map v : I — IR?, where I = [a,b] C IR? is an interval.
We use the symbol [ to denote the restriction, e.g. v | [a, bo]-

A vector field X on IR? is an IR? —valued function. Every vector field X can be written
in the form:

where 8,,8, are the vector fields with components (1,0),(0,1), respectively, and «,f :
R? » R. If X admits the representation (2.1) we denote by J(X) the matrix:

0:a Oya
J(X):=1| 5 ol
= (55 &)
The Lie-bracket of two vector fields X,Y is the vector fields defined by:
(X, Y]|=J(X)- Y -J(Y)-X.

A control u is a measurable function u : [a,b] — IR and a trajectory for u is an
absolutely continuous curve 4 such that:

Y(t) = F(7(1)) +»(t)G(2(2))

for almost all t. .
Given a trajectory v : [a,b] — IR?, of a control u, and a cost function h we denote
T'(v) the time along v, i.e. b — a, and by I'y(y) the cost of 7 :

b
Ta(m) = [ b)) d.

We say that v is time optimal if T'(y) < T(y') for every trajectory v’ that steers v(a)
to 4(b). A bang-bang trajectory is a trajectory corresponding to a control u such that
|u(t)| = 1 for almost all ¢.

If v, : [a,b] — IR?,v; : [b,c] — IR? are trajectories such that v, () = 72(5) then v *7;
is the trajectory:

1(1),
(v2 *71)(t) = {::28, te[b,c.

An admissible pair is a pair (y,u) such that u : [0,1] — [-1,+1] is a control and v is a
trajectory of u such that:

A0 =20 (1) =2
We say that (y,u) is optimal (or simply that 4 is optimal) if I'sy(y) < T'r(y') for all
admissible pair (v',u').
Given the problem (P) we define the function:
A 4 = det(F,G) t (2.3a)

2



Ap = det(G,[F,G])
Ac := det(F, [F,G])

(2.3b)
(2.3¢)

where “det” stands for determinant. Writing F, G, [F, G] as column vectors we can form

a 2 x 2 matrix having two of them as columns. The functions (2.3
in [Sul]. For simplicity we use the notations:

a,b) has been introduced

X=F-G Y:=F+G
Let us define:
(z) = h(:z:,—}-l);h(:c,—l) R +2—h(a:,—-1) (2.40)
Iz, ) := m(z)u + q(z) (2.4b)

i.e. I(z,u) is the linear interpolation between h(z,+1) and h(z, -
The assumptions on (P) will be:

(H.1) Ai(z) Ap(z)#0  Vze R?

(H.2) h(z,u) > l(z,u) Ve € IR?, Yu € [-1,1

In [Sul] was proved that under the assumption (H.1) all time opt;
bang.

Consider the two trajectories v : [a,b] — IR?, 72 : [b,c] — IR
and ;' * 71 is a simple closed curve oriented counterclockwis
backwards. From (H.1) it follows that F, G are independent at
can define the two 1-differential forms w, w; in the following way

(w(z), F(e)) =1

(wi(z), F(z)) = ()
Following [Sul] we have, by Stokes’ theorem:

(w(=),G(2)) =0

(wi(2), G(2)) =m(

w ::/ dw
;1*71 R

I‘z(*rx)"l“!('rz):/ wz=f dw
v tem R

T(v1) = T(72) = /

5.

where R is the region enclosed by 7, * * ;. Being F, G indepenc

[F,Gl(z) = f(2)F(z) + g(=)G(z)

3

1).

-
mal trajectory are bang-

2 such that v;(b) = 72(b)
e, where v, ' is 42 run
each point, and then we

(2.5a)

z). (2.5b)

(2.6a)

(2.6a)

lent we can write:




then from (2.3) one has:

Ap = det(G, fF + gG) = f=_%£ (2.7a)
A

Ac

A

We have:
(dw,F AG) = F(w,G) — G(w, F) — (w,[F,G])
dw = pdz Ady p:(dw,a,,/\ﬁy)-—:—[%—(dw,F/\G)
4

and the same for w;. With straightforward calculations from (2.4,5,6,7) we obtain:

T(m)—T(r) = L ¢ dz A dy (2.8a)
Li(71) = Tilr2) = / pi de A dy (2.85)

R

where:

Ap

¥ Zz: (2.9)
Vm-F-Vg-G gAp—mA,

Q1= A AR (2.10)

Given fi, fo : IR? — IR we define a vector field by:

(il f2](z) :== fi(=) V fo(2) — fo(z) VSfi(=). (2.11)

Define:
Sip :=sgn (AA AB) (2.12)
K(z):={veR?:Sspv-X(z)<0or Sypv -Y(z)>0} (2.13)

(note that from (H.1) S,p is independent of z). The last assumption for (P) is:

(H.3) D(z) := [plei](z) € K(=) Vz € IR?.

3. The Main Result.

In this section we will prove the main result; the ke"y role is played by the following
lemma. ‘



Lemma 3.1. Let (v,u) be an admissible pair of
¢ = F(z) +u G(z)
and let
E:={te]0,1] : |[u(t)| <1}

Suppose that there exists a Lebesgue point 7 for E of differentiab
hold and D(Z) € K(Z), T := v(7), then there exist ¢ > 0, o >
(%,%) such that:

F(t) = (1)
[a(d)l =1

fort & [r—e€,7 + o]

fort e [r—e¢, 7+ 0]

[ Wy > [ aGo.a) @

Proof. Now we will construct a pair of admissible traject

(3.1)

ility for 4. If (H.1)-(H.2)
0 and an admissible pair

ories 4%, that are bang-

bang in a neighborhood of 7, and correspond to controls u* that
this neighborhood. This is possible thanks to (H.1); by (H.2-3)
these trajectories achieves a better performance with respect to

Fix 0 < € < min(7,1 — 7). If € is sufficiently small, the

of = oif(e,p) € [,1], of = o (e, n) € [r,1] such that:
Ti(r—e)=7(r—¢)
Tt (75) = (1)
Y (07) = (0%)
ui(s) = +1, for s € [t —e,0) U (,0

ut(s)=F1, forse o,y

Let A%, Bf be the regions enclosed respectively by ('yf [ 7 -
and (vF | [t%,05]))"! *v | [r,0f]. Define the functions % () :=

T(vE)]. By (2.8) we have:

() = sgn (As) - UM‘““‘/B

"

Infact if Ay > 0 we have det(X,Y) > 0, and the regions 4
by curves oriented counterclockwise, while A~ and B™ are enc

1.

clockwise; the opposite happens if A < 0.

rE exist o
% > ¢, depending on €, two one—parameter families of pair

ib()‘oai:z:

change sign two times in
we will show that one of

f:Z'r—e and

(viesui), w o€ [7%,1],

g =

L E,Ti‘])'"l x| [r— €, 7|
tsgn (A4-AB)T(y) -

(3.2)

| IO |

{* and B~ are enclosed
osed by curves oriented




Moreover %*(7%) > 0, 9% is decreasing, and for ¢ sufficiently small there exists
p*E € [t%,1] such that ¥ (u*) = 0. Define the admissible pairs (y%,u*) as follows:

() = {731, if t € I := [1 — ¢, 05 (uF)]
v(t), ifte [071]\\Ii

£ +
u‘t(t) ;—_~{uu*’ iftel
u(t), iftel*

Define B* := Bfi; writing ¢(z) = ¢(T) + Ve(Z) - (¢ — T) + o]z — T|) we obtain:

0= [ wda— [ odo=[m(a%) = m(B)] -4(@) + Vo@) - dF +o(e') (33
A% B

where d* = d¥(e) := m(A%)b(A%) —m(B*)b(B%) and b(2) := ;’;(IT) Jo(z —T) dz denotes
the baricentre of ) relative to Z. Expanding ¢; we obtain in the same way:

§% :=Ty(y) - Tu(y*) = £sgn (A4) - {[m(4F) — m(BF)] ¢1(Z) + Veu(7) - 4} + 0(?2-)4)
By (3.3) and multiplying (3.4) by (%) one has:
0(Z)5* = sgn (A4) lelel](T) - d* + ofc®)
where [-|] is defined in (2.11). Define the cone:
Clv,w) = {w + pw | A >0, p > 0}

For ¢ sufficiently small, we have that d* € C(—X(z), —Y (Z)); moreover sgn [det(dt,d™)] =
sgn (A4), and then :
{veR*| Sapv-dE <0}nK(E) =0

Being sgn (Ap) = sgn (), it follows that either §* > 0 or §~ > 0. Suppose, for example,
that §7 > 0. Then, from (H.2) and (2.4), one has:

Lh(m,u)2[yl(m,u)>[y+ l(a:,u)z/;+ h(z,w)

From this lemma one obtains immediately the following:

Q.E.D.

Theorem 3.2. If (H) holds, then all optimal trajectories of (P) are bang-bang.

Proof. Let (v,u) be an optimal pair for (P), and suppose that m(E) > 0. Almost
every 7 € E is a Lebesgue point for F and a point of differentiability for «; if 7 is such a
point, all the assumptions of Lemma 3.1 are satisfied, am;i then v is not optimal.

Q.E.D.



4. Examples and Applications.

In this section we give two examples of minimization problems without the bang-bang

property and some applications of the main result.

Example 1. Consider the following problem in {2 := {(ml, z2) € R? |25 < 0}:

Ty =-—z5—T2+u

1
min/ u
0

(P1) {x.l -,

i.e. problem (P) with

)

F(z):(_m;izz), G(@:(‘l’), h(z,u) = u

There is a unique optimal pair (vy,u),

w0 = (-5-3): w=-7 teb

with a cost I'(y) = —;lg. By a straightforward calculation we have that A4 = z,, Ap =1,

Ac=1%, S4p=—1,m(z) =1, ¢(z) = 0.

Conditions (H.1) and (H.2) are satisfied in 2. We now check that (H.3) does not hold.

Recalling (2.9,10) it is easy to verify that:

Y =3, w1 =—1, D:(__

3)
2
z3

2

_ s _ z,
Xﬁ(—x%-z2-1>’ Y_(—:cg—:cz—%—l)
2 1 z2 -1
SABD.X:_Q_"B?L‘;EL’ SABD.YZ_z.Ea__%__
2 2

Being Sip D(«(t)) - X(7(t)) > 0 and Sap D(y(¢)) - Y(7(t)) < 0 for every t € [0,1], we

have that D(vy(t)) € K(v(t)) for every t € [0,1].

Let us rewrite problem (P;) in Mayer form, introducing the new variable z3 such that

Z3 = u, and consider the two—dimensional system:

" [ st -m

:c'3='u,

4
H




Being this system independent of z;, we have that every optimal trajectory of (P;) gives

a time-optimal trajectory of (P2). The time-optimal trajectory associated to 4 in the

(22,23)-plane is §(t) = (—1,—%). Using the same terminology of [Sul], ¥ is a turnpike;

in the same paper it was shown that, under generic conditions, these are the only cases of
not bang-bang time—optimal trajectories.

Example 2. Consider now the problem in Q := {(z;,22) € R? | z; < 0}:
:51 = T2
Ty = 322 +u T2

1
min/ z3 + 2
0

- o) (43

F@):(f;z), G(:c):(o), h(z,u) = o2 + 25

2 Z2

i.e. problem (P) with

In this case Ay = 23, Agp = z3, A¢c = %zg, Sip=1,m(z) =0, g(z) = 2% + 23, p = ;lz,
i ="1v

' 0
p=(-3)s *=(3a) v=(i2)
: z3 —3%2 5T2

3

1
SapD-X=—, S4pD-Y=~-—
T2 T2

"As in Example 1 we have that D(y(t)) & K(v(t)) for every t € [0,1].
Passing to Mayer form as in the previous example, we obtain the system:

: 1
i) =-2-;c2+ua:2
T3 = 25 + T

We have Ap = —22(2z2 + 1) = 0 on the time-optimal trajectory ¥(t) = (—1,-1),ie. ¥
is a turnpike.

Application. We show an example of non—convex minimization problem, and give
conditions depending only on the dynamics for the existence of an optimal solution:

= F(z) +u G(z), zeQ, |u=1

(P min /: h(u), h:{-1,1} +— R

8



z(0) = zo, z(1) =2

Definem = (h*—h7)/2,q = (h*+h™)/2, where h* := h(%£1), an
problem (|u| < 1) with cost h(u) = m u-+q. It is not restrictive to

we can add a constant to h); in this case we obtain

If m = 0, that is if At = h™, then every admissible trajector
show that there exists a bang-bang optimal trajectory following

If m % 0 we have that D = {+ D, with:
A

D:=—

The following proposition is a direct application of Theorem 3.2:

Proposition. Consider the problem (P'). Suppose that A

K(z) for every = € Q. If there exists an admissible pair for the
(P') has a solution.
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