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Abstract 

We solve the Cauchy problem for the Whitham equations for smooth initial data, building analytic 

differentials on open hyperelliptic Riemann surface. 
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1 Introduction 

The Whitham equations is a collection of quasilinear hyperbolic systems of the form [1],[2],[3] 

~Ui ~Ui7ft + Ai(Ul, U2,···, U2g+d ox 0, x, t, Ui E lR, i =1, ... , 2g + 1, 9 =0,1,2, ... , (1.1) 

with the ordering Ul > U2 > ... > U2g+1. For a given 9 the system (1.1) is called g-phase Whitham 
equations. The zero-phase Whitham equation has the form 

OU OU 
(1.2)ot + 6u ox = 0. 

This equation is also called Burgers equation. 


For 9 > °the speeds Ai(Ul,U2, ... ,U2g+d, i = 1,2, ... ,2g + 1, depend on complete hyperelliptic 

•integrals of genus g. Because of this the g-phase system (1.1) will be also called the genus g-Whitham 


system. 


The initial value problem of the vv"hitham equations for a monotone smooth initial data x = f(u) 

consists of the following: 


1) for t ~ °the (x, t) plane is split into a number of domains D g , where 9 = 0,1, .... In each 

domain Dg we look for a solution Ul (x, t) > U2(X, t) > ... > U2g+1 (x, t) of the g-phase Whitham 

equations (1.1). For any t ~ °the functions Ul (x, t) > U2(X, t),'" > U2g+1 (x, t) can be plotted on 
the (x, u) plane as branches of a multivalued function. The solutions of the Whitham equations for 

different 9 must be glued together in order to produce a Cl-smooth curve in the (x, u) plane evolving 

smoothly with t. 
2) At the time t = °we have only the Do domain for any x. The correspondent zero-phase solution 

u(x, t) of equation (1.2) must satisfy the initial data x = f(u(x,O»). 
We will say that a solution of the initial value problem globally exists and it has genus at most go if 

it is defined for any t > °and the domain Dg are empty for 9 > go. 

The equations (1.1) were found by \v"hitham [1] in the single phase case 9 = 1 and more generally 
by Flaschka, Forest and McLaughlin [2] in the multiphase case. The Whitham equations were found 

also in [3] when studying the zero dispersion limit of the Korteweg de Vries equation. The hyperbolic 

nature of the equations was found by Levermore [4]. 

The investigation of the" initial value problem of the Whitham equations was initiated by Gurevich and 

Pitaevskii [5]. In the case 9 ~ 1 they solved the initial value problem of system (1.1) for step-like initial 

data and studied numerically the case of cubic initial data. The Cauchy problem for the Whitham 

equations has been extensively studied by Tian in the case 9 ~ 1 for generic monotone decreasing • 
initial data. 
Dubrovin and Novikov [6] found the geometric Hamiltonian structure of the equations (1.1). Based 
on this structure, Tsarev [7] showed that equations (1.1) can be integrated by a generalization of 

the method of characteristics. This result was put into an algebro-geometric setting by Krichever 
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[8]. In this frame he gave an algebra-geometric construction of particular self-similar solutions of the 

Whitham equations. 

Tsarev's result enabled F.R. Tian [9] to further transform the Cauchy problem for the Whitham 

equations (1.1) into a Cauchy problem for a linear over-determined system of Euler-Poisson-Darboux 
type. 

In this paper we consider the Cauchy problem for the Whitham equations in the algebro-geometric 

setting. For monotone analytic initial data, the solution of the Whitham equations is build in terms 
of some meromorphic differentials defined on hyperelliptic Riemann surfaces [8],[9]. In this paper we 
consider the Cauchy problem for the Whitham equations for monotone analytic initial data with 
a small smooth perturbation. Following a Krichever's idea, we build the solution of the Whitham 

equations for the smooth part of the initial data, in terms of a non analytic differential defined on 

some hyperelliptic Riemann surface. This differential has a prescribed jump on some contour of the 

Riemann surface and it is constructed solving a boundary value problem on the surface. 

Riemann surfaces and Abelian differentials: notations and 

definitions 

Let 

29+1]
fg:= P=(>",/-L):/-L2= f.I(r-uj) , (2.3)[ 

J=1 

be the hyperelliptic Riemann surface of genus 9 ~ O. We shall use standard representation of f 9 as a 
twa-sheets covering of Cpl with the cuts along the intervals 

[U2k, U2k+l], k =0, ... , g, Uo = -00. 

We choose the basis {OJ, (3j g=1 of the group HI (f0) so that (3j lies fully on the upper sheet and 

encircles clockwise the interval [U2j, U2j+l], j = 1, ... , g, while OJ emerges on the upper sheet at the 
point U2j-b passes to the point U2j and return to the initial point U2j-l through the lower sheet. 
The one-forms that are analytic on the closed Riemann surface f 0' except for a finite number of points, 

are called Abelian differentials. 

We define on f 0 the following differentials [10]: 

1) The canonical basis of hoI om orphic one-forms or Abelian differentials of the first kind </>1, </>2." </>0: 

gr - 1l'f + ro-21'~ + ... + I'k 
</>k(r) = /-L(r) °dr, k=l, ... ,g. (2.4) 

The constants I'j are uniquely determined by the normalization conditions 

1. if>k = t5jk, i,j = 1, .. . g. (2.5) 
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2) The set O'k, k ~ 0, of abelian differentials of the second kind with a pole of order 2k + 2 at 

infinity, with asymptotic behaviour 

O'k(r) = ~ [rk-! +O(r-!)] dr, for large r (2.6) 

and normalized by the condition 

( O'k = 0, j 1, ... g. (2.7)
Jaj 

We use the notation 

O'o(r) =dp(r), 120'1(r) =dq(r). (2.8) 

In literature the differentials dp(r) and dq(r) are called quasi-momentum and quasi-energy respectively 

[6]. We have that 

Pg(r, it) ddp (2.9)2J.L r , 

2g+1 )Qg(r,it) d 
+1dq= r, Qg(r, it) = 12rg - 6 ~ Uk rg + {3g_1 rg -l + ... + (30 , (2.10)(J.L 

where it (Ul,U2, ... ,U2g+1) and the coefficients 0i = Oi(it), (3i = (3i(it)" i = O,I, ... ,g -1, are 
uniquely determined by (2.7). 

3) The abelian differential of the third kind Wq1q2 (r) with first order poles at the points r Ql, q'2 

with residues ±1 respectively. Its periods are normalized by the relation 

i. Wq,q, (Tl = 0, j = 1, ... , 9 . (2.11) 
'} 

The Riemann bilinear period relation is an important tool in the study of differentials. Let dl and 

dg be two closed differentials on the closed Riemann surface r g, having a finite number of singularities 

on rg' Cutting the surface rg along the cycles of the canonical homological basis {oj, {3j }1=1' we 

obtain the 4g-sided polygon f g with the sides 01, {31, -01, ~{31' ... , {3g. If all the residues of dl and 

dg are equal to zero, the integrals I and 9 are single-value on f g. If the differentials df or dg have 

nonzero residues, then the integrals I or 9 have corresponding logarithmic singularities. In order to 

provide their single-valuedness, it is necessary to cut the polygon f g along some curves connecting 

the singular points of the integral I and g. Denote the cut by s. Now consider the differential Idg. 
We have the relation 

/ (2.12) 
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Here s± are the sides of s and at9 is the boundary of t g. We define 

(2.13) 


Then we obtain the relation 

(2.14) 


where !.l.f is the difference of values of f on both sides of the cut s. This formula is known as the first 

lliemann bilinear period relation. 

Assuming df = WqqO and dg = £Pk in (2.14) we obtain 

{ WqqO = 21ri (q £Pk , k = 1, ... , g. (2.15)
J13/0 JqO 

Assuming df Wqqo(.A) and dg = wPPo in (2.14) we obtain 

{P WqqO = (q wPPo • (2.16)Jpo JqO 

Differentiating with respect to p and q the above expression we obtain the identity 

(2.17) 


From the expression (2.16) it follows that WqqO (.:\) is a many-value analytic function of the variable q 

with simple pole at q .:\. The many-value character of WqqO (.:\) as a function of q can be described 
by the equations 

k = 1, ... ,g, (2.18) 

where dq denotes differentiation with respect to q. 

Preliminaries on the theory of the Whitham equations 

The speeds ':\i(Ul,U2, ... ,u2g+d of the g-phase Whitham equations (1.1) are given by the ratio [1],[2]: 

\ . (-) _ Q9(Ui, it) _ dq I"'1 U - _ - , 1,2, ... , 2g + 1, (3.19)
Pg(Ui, u) dp r=Ui 

where it = (UI' U2,.'" U2g+I) and dp and dq have been defined in (2.8). In the case 9 = 0 

dr 12r - 6u 
dp(r) = ---=== dq(r) = rr::::u,dr,

2 r-u 
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so that one obtains the zero-phase Whitham equation (1.2). 

We consider monotone decreasing analytic initial data of the form 

x = f(u) Co + CIU + ... + CkU
k + ... , (3.20) 

where we assume that only a finite number of Ck is different from zero. 
The solution of the g-phase Whitham equations for the above initial data can be written in the 

algebro-geometric form [9, 8] 

(xdp - tdq + ds) Ir=ui= 0, i = 1,2 ... , 2g + 1, (3.21) 

where dp, dq have been defined in (2.8) and ds is the differential 

00 2kk! 
ds = 2: (2k _ l)!!ckuk . (3.22) 

k=O 

The differential Uk has been defined in (2.6). 

In the case 9 = 0 (3.21) becomes (with the notation Ul = u) 

~ [x t(12r - 6u) - f(u) dr -ir 
j'(8)d8 drll 0, 

..;r - u u..;r:-::::e r=u 

which is equivalent to the equation 

x 6tu + f(u) , (3.23) 

that solves (1.2) according to the method of characteristic. For higher genus, equations (3.21) are 
equivalent to the generalization of the characteristic equation (3.23) [7],[9] 

x = Ai(U) t + Wi(U) i = 1, ... ,2g + 1, (3.24) 

where Ai(U) have been defined in (3.19) and 

Wi (it) = ~sl ,i=1, ... 2g+1. (3.25) 
P r=Ui 

We need to consider what happens to the equations (3.24) when one of the UI coalesces with either Ul-l 

or UI+l' From [9] it can be checked that the abelian differentials of the second kind Uk = Uk (r, U, g) 
defined on r9 satisfy the relation 

(3.26) 

where i1* = (Ul,'" ,UI-l,Ul+2, ... ,u2g+d. 
From (3.26) the speeds Ai (it) satisfy the following equalities 

(3.27) 
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AI(U1, ... ,UI-1,U,U,UI+2,·.· ,u2g+d = AI+1(U1, ... ,UI-1,U,U,UI+2,··· ,u2g+d 

_ Qg-1 (u, 11*) (3.28) 
- ( .... ) 1= 1, ... , 2g .

Pg- 1 u,u· 

Analogous relation can be obtained for the Wi(it), i = 1, ... , 2g + 1 and this shows that the g-phase 

solution of the Whitham equations can be attached continuously to 9 -I-phase solution. The solution 

of the Whitham equations U1 > U2 > ... > U2g+1 is implicitly defined as a function of x and t by 

the equations (3.21) or (3.24). The solution is uniquely defined only for those x and t such that the 

functions Ui(X, t) are real and the partial derivatives axUi(X, t), i = 1, ... ,29 + 1, are not vanishing. 

We have the following important theorem of Tsarev. 

Theorem 3.1 [7J The solution U1 (x, t) > U2 (x, t) > ... > U2g+1 (x, t) of the equation (3.24) satis

fies the g-phase Whitham system if and only if Wi(U1, U2, .. . , U2g+1) solves the linear overdetermined 

system 

aWi _ Wi - Wi aAi 
i,j = 1,2 ... ,29 + 1, i:f. j. (3.29)

aUj - Ai - Ai aUi ' 

The linear overdetermined system (3.29) was transform by Tian [9] into the linear overdetermined 

system of Euler-Poisson-Darboux type 

2a q aq aq
2(Ui - ui) a a = -a - -a i, j = 1,2, ... , 2g + 1 

Ui Uj Ui Ui (3.30) 

q(u,u, ... ,u) = F(u). 

Tian then showed that the solution of the Whitham equations (1.1) can be obtained using sytem 

(3.30) with a suitable initial data F(u). 


In this work we obtain the solution of the Cauchy problem for the Whitham equations for smooth 


initial data building a non analytic differential on the hyperelliptic Riemann surface r g. 


Construction of the solution of the Whitham equations for 

smooth initial data 

We consider monotone decreasing initial data of the form 

x = f(u) + h(u) ( 4.31) 

where f(u) is analytic and given by the expression (3.20) and h(u) is a smooth function rapidly 

decreasing at infinity. In order to build the solution of the Whitham equations for such initial data, 

we follow an idea of Krichever. In [8] he suggests to build, for the smooth part of the initial data, 

a differential n with a given jump on a contour {, of the Riemann surface r g. The jump must not 
depend on the moduli of the surface. 
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Lemma 4.1 Let z(P) be a local coordinate on r 9 and let 1fJ(P) h(z)dz be a one form defined on the 

Lyapuno.,r contour £, erg. Suppose that h is H-continuous (Holder continuous) on £', namely 

Ih(z) - h(z')1 < Hlz - z'la 
, 0 < a ~ 1, H > O. 

Then there exists a unique differential n on r 9 which satisfies the conditions: 

1) n is holomorphic outside £'; 
2) the limiting values n± on £, are H-continuous and satisfy the relation 

(4.32) 

:1) n is a normalized differential, namely 

0, j = 1,2,···,9· (4.33)1n 
aj 

The assertion in the Lemma is a standard one in the theory of boundary value problems [11]. 

The unique differential n satisfying the properties 1),2) and 3) of the Lemma is given by the 

Cauchy integral 

dr (
n(r) = J1:. A(r, z)h(z)dz (4.34) 

where A(r,z)dr is a meromorphic analogues of the Cauchy kernel [11]. In general A(r, z)dr is a mero

morphic function of z and a differential in r. In order to satisfy the properties 1),2) and 3) of Lemma 4.1, 

the kernel A(r, z)dr must be equal to the normalized abelian differential of the third kind wz(r) which 

has simple poles at the points p±(z) = (z, ±J..t(z)) with residue ±1 respectively, and J..t2 =n;!i1 (r-ui) 
define the hyperelliptic Riemann surface r g. As r -t z, it satisfies the relation 

A(r, z)dr = [_1_ + 0(1)] dr (4.35)
r-z 

which have the Cauchy and Sokhotskii formulas as consequence, namely 

{l'f(s) = ±~h(S)ds + ::i LA(s,z)h(z)dz, sEC. (4.36) 

Here the integral is taken in the sense of principal value. The differential A(r,z)dr = wz(r) is explicitly • 
gi ven by the expression 

( 4.37) 

Lyapunov contour is a contour whose tangent rotates Holder-continuously 
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where 4>k(Z), k = 1, ... ,g, is the normalized basis of hoi om orphic differentials. As a function of Z wz(r) 
is an abelian integral of the second kind with poles of the first order at the points (r, ±/.L(r)). The 
periods of this integral are obtained from (2.18) 

(4.38)Ld%[w%(r)] =0, 
J 

In order to build a solution of the g-phase Whitham equations for the smooth initial data x = JI(u) 
rapidly decreasing at infinity, we make the following choice for defining the differential n. 

As a contour we take e = '2:;=oi3j, where each i3j>o is the beta-cycle whose projection on the 
complex r-plane coincides with the segment [U2j-l, U2j] described twice and 130 is the close cycle 
whose projection on the r-plane coincides with the cut (-00, Ul] described clockwise. 

The "jump" differential is given by the real exact one form 

dh(t) = ~ [(t JI(y) dY] dt = [(t fHY) dY] dt, t E lR (4.39)at 1-00 vr=Y 1-00 vr=Y 
where fl(Y) is the smooth part initial data (4.31). 

We define the differential n = n(r,it,g) by the expression 

1
n(r,it,g) =-4. ( wz(r)dh(z) 

1T't le 
(4.40)

=f [d(r) ( /.L(z) dh(z) - t 4>k(r) ( Ck(Z)dh(Z)] 
1T't /.L r 1e r - Z k=l 1e 

where the Ck(z)'s have been defined in (4.37). In the following we sometimes omit the dependence of 

n on the branch points it = (Ul' U2, ... , U2g+1) and on the genus g. 

n(r) is holomorphic everywhere on r 9 outside e. We underly that the above differential is well defined 

even though wz(r) is a multivalued function of z. In fact as Z -t Z + {3j we have that 

fc w%(r)dh(z) %-::2/' hrw%(r) + 41rit/>j(r)]dh(x) = fc w%(r)dh(z) 

because Ie dh(z) =O. 

The following Sokhotskii formulae hold: 


A Ee, A f. Uj, j = 1,2, ... 2g + 1. (4.41) 

For 9 =0 we have /.L2 = r - U and n±(r) can be calculated explicitly 

n+(r) = -~dh(r) + _d__r_____ (J,(U) -Ju-r [ ~d8), r E (-oo,u) 

(4.42) 

dr (
n-(r) = 2vr==tL f1(U) -

{U l' (s) )Ju - r ir J~ _ r ds , r E (-oo,u), (4.43) 

( 4.44) 
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The following theorem enables one to construct the solution of the Whitham equations for the initial 

data (4.31). 

Theorem 4.2 Define 

(4.45)V'(Ul, U2,···, U29+1) i = 1,2, ... , 2g + 1.~~;) Ir=ui' 
Then Vi(U1, U2,"" u2g+d satisfies the overdetermined system 

8Vi Vi - Vi 8Vi
-8 = , i,j = 1,2 ... , 2g + 1, i -=I j.

Uj Ai - Aj 8ui 

Proof: Part 1) 

The differential 

80. 8dp
--v-
8ui ) 8uj 

is identically zero. Indeed it is holomorphic: the differentials 8ui n(A) and 8Ui dp are abelian differentials 

with a second order pole at A = ui; since the differential (0. - Vj dp) has a first order zero at r = ui, 

the differential [8Ui (n - vjdp) + dpOuiVj] is regular at r = ui' Furthermore by the normalization 

conditions (2.7) and (4.33) 

o OUi { (0. - vi dp) = { (OUin - vjoujdp) , k 1, ... ,g. ( 4.46) 
JQk JQk 

Hence (OUjn - vjoujdp) is a holomorphic differential having all the a-periods equal to zero, conse

quently it is identically zero (cfr [10]) and the following identity holds 

ou·n 
(4.47)Vj = 0 'd .Uj p 

R(r, 11)
We write nCr) in the form nCr) dr where 

2J.L (r ) 

R(r, 11) = 21 . [( J.L(z) dh(z) - t t rfrl ( Ck(Z)dh(Z)] , (4.48) 

1il Jc r - Z k=1 l=1 Jc 


rf and Ck have been defined in (2.4) and (4.37) respectively. Form (4.47) and (4.48) (2.9) we obtain 

oR oPg _ 1 R - VjPg . _ -a -Vj-a --- , J-l,2, ... ,2g+1. (4.49)
Uj Uj 2 r - Uj 
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Part 2) 

8Vi(U) =~ R(Ui' i1J, i i= j 

8uj 8uj Pg(Ui,U) 


8uj R(Ui, u) - vj 8uj Pg(Ui, u) ( ) 8u ; Pg( Ui, i1) 

....) + Vj - Vi P ( ....)
P9(Ui, U 9 Ui, U 

(4.50) 
=(V' _V.)8Uj P9(Ui,U) _ ~R(Ui'U) -VjPg(Ui,U) 


J ' Pg(Ui, u) 2 (Ui - Uj)Pg(Ui, u) 


=(Vj _ Vi) 8U;P9(Ui~U) _ 1 Vi 
Pg(Ui,U) Ui Uj 


which shows that 

8u;Pg (Ui, u) 1 1 
---= (4.51)
Vi - Vj 8Uj Pg(Ui, i1) 2 Ui - Uj 

In particular the above argument also applied for dq(r) and Ai defined in (2.8) and (3.19) respectively, 

therefore we also have 

8u ; Pg(Ui, 11) 1 1 
Pg (ui,11) 2 Ui - Uj 

which when combined with (4.51) proves the Theorem 4.2. 

Finally we combine Theorem 3.1 and Theorem 4.2 to construct the transform 

x =Ai(u)t + Wi(U) + Vi(i1) , i = 1, ... , 2g + 1 

q (4.52) 
- [d t + ds + ~ll 
- dp dp dp r=Ui 

where dq and ds have been defined in (2.8) and (3.22) respectively. The above system solves the 

g-phase Whitham equations for the initial data (4.31). 
We need to consider what happens to the equations (4.52) when one of the Ul coalesces with either 

Ul-l or Ul+l. From [12] it can be checked that 

1, .. . 2g, (4.53) 

where iI* = (UI,"" Ul-I, UI+2,' .. , u2g+d. 

For 9 =0 we have 

~ dr jU.;z::::udh(z)n(r,u,g = 0) (4.54)
47r~ Jr - U -00 r z 

so that 

n(r,u,g = 0) I ft(u) . ( 4.55) 
dp(r) r=u 
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Hence the zero-phase solution of (4.52) coincides with the characteristic equation 

x =6tu + f(u) + fl(U). 

Conclusions We have built the solution of the Cauchy problem for the Whitham equations for a 

monotone initial data that is the sum of analytic function and a smooth function rapidly decreasing 
at infinity. The work of our further investigations is to consider smooth initial data with more general 

boundary conditions. 

Acknowledgments. I am indebted with Professor Boris Dubrovin who posed me the problem of 

this work and gave me many hints to reach the solution. 
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