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Non-collision periodic orbits with zero total angular
momentum for the Newtonian Three-Body Problem
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Abstract

We study the existence of a periodic orbit without collisions, with zero total angu-
lar momentum, in the planar Three-Body Problem by means of Lagrangian reduction,
variational methods and local analysis of the flow.

In a preceeding paper [7] we described a class of compact set of trajectories where
to find minima for the Action-functional of the Three-Body Problem. In this paper we
find critical points perturbatively in the masses, these critical points are in slightly bigger
compact sets. We study a system composed of three bodies: two of them with small
different masses compared with the mass of the third body. For the unperturbed prob-
lem we construct explicit solutions, which are regular critical points for the unperturbed
Action-functional. These critical points can be continued for sufficiently small values of
the masses. We prove the existence of periodic orbits without collisions. Moreover for the
full Three-Body Problem on the manifold J =,0 we vemfy the existence of cr1t1cal points

-at ”infinity” composed of a Kepler-problem and an escapmg body
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1 Intfoduction

In this paper we deal with the problem of the existence of pefiodic solutions in the New-
tonian Three-Body Problem. In particular we consider the problem under the constrain
that the total angular momentum J be zero. )

For the Newtonian N-body problem in three dimensions, K.Sundman in a very old
paper [1] proved that J = 0 is a necessary condition for total collision solutions. This fact
implies that collision orbits must live in the submanifold of the phase space identified by
the condition J = 0. Recently in [2] it is proved that in the N-body problem, under proper
assumptions, collision orbits are not minima for the Action functional; (the assumptions
are known to hold for V' < 4) so that non-collision periodic solutions exist.

These facts led us to study the problem of the existence of periodic solutions and
collision orbits by means of an Action functional reduced on the manifold of zero total
angular momentum. Also in this case collision solutions are not minima and regular
critical points, but now there is a lack of compactness and we cannot conclude immediately
about the existence of regular critical points. In a preceeding paper [7] we studied the
geometry of the reduced configuration manifold. Moreover by a weak Poincaré inequality,
we showed that the lack of compactness is concentrated in a suitable neighborhood of
collinear orbits. In this paper we prove the existence of non-collision periodic orbits on
J = 0 in the case in which the system is composed of one large mass and two small
different masses: the unperturbed system is essentially a small ”Solar system” with two
non-interacting small different ”planets”. For this systém we exhibit a solution Co(?)
which is a C? critical point for the unperturbed Actibn-functional, and it lies in one of
the compact sets that we found using a result proved in [7]. By means of continuation
argument of critical points for the perturbed functional (see ([5]), we prove the existence
of a solution for sufficiently small values of the‘ma‘sses. In the last section we study the
behaviour of the Action funétiona] on unbounded tra,jectories; Some of these trajectories

describe the escape of one of the bodies.



2 Lagrangian reduction

We study a system composed of three point-like bodies whose masses are m;, my, m3,
interacting with a newtonian potential. We will study the manifold of trajectories with
zero total angular momentum, the system lies in a plane since every mechanical system
composed of three material points interacting thorough a potential depending on the
relative distances, with zero total angular momentum, has only planar motions. There is

no loss of generality assuming that the system has the configuration space
Q={geR*i=1,23}~R"°

In @ there are configurations on which the dynamics of our system is not defined. Those
are the Collision configurations:

Double collisions
Triple (total) collision

The dynamics of the system is described by the Lagrangian:

L:TQ—-R
3 m;m;
L= Flél+ > T (1)
=1 1,5,0%£7 qu qJH
where we denote with < .,. > ||.|| respectively the scalar product and the norm in R

In order to simplify the notations we put:

&=(¢.¢)=a

The Angular momentum J of the system is conserved. It is a scalar since we consider
only rotation in the plane of the motion. We describe the motion for fixed values of J
(in particular J = 0) with a reduced Lagrangian obtained by the procedure described by
Routh.

Definition 1.1

A Mechanical System is a triple (M, < .- >z, V) where:



(M, < .,.>u) is a Riemmanian Manifold of dimension n, and V : M — R a function
(the potential) which is smooth excluding only a finite number of compact sets.
For this system we can construct a Lagrangian:
L:TM — R (2)
(m,vn) — L(m,vm)

where:

L(m, o) = -

5 < VUmy Um >M +(V o] TM)(m,vm)

™m:TM — M (3)
(m,vy,) — m
Assume that on M acts freely a Lie group G:
O MxG — M (4)
gm — @y(m)
with lifted action on the tangent bundle T'M:
T :TMxG — TM (5)
(m,vm)s g — (@g(m), Ty(vm)) |
We assume that (G is a symmetry for the system, so that:
Lo ®l(m,v,) = L(m,vy)

Then Noether theorem implies the existence of integrals of the motion.
The Three Body Problem can be easily described in this context observing that we

can put:
3

M = Q, <.,.$QéZm;<.,.> »

f==1
and the whole symmetry group is given by the diagonal action on @ of:

‘Go = Tgr2 X 0(2)
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but for the Routh procedure we are interested in:
G = Tr2 x SO(2)

where we denote with Tg2 the translations group in the plane. G is an Abelian Lie group.
Remark 2.1 |

In the sequel, the presence of the planar reflections Sy in the whole symmetry group
Go of our system will play a crucial role in the study of the reduced configuration space
(see ([7]). Sa symmetry will survive the Lagrangian reduction.

If G is an Abelian symmetry group, one can find a complete set of cyclic coordinates,
there exists a system of coordinates on M such that the action of G on M can be written
additively:

meM m = (Ty...... TryOrgyeee.. 6.) = (Z,6)

with A€ R*x (8" a+b=n—r—1 (inour case n = 6,a = 2,b = 1).

Remark 2.2

The additivity of the action ® and the invariance condition Lo ®T(m,vm) = L(m,vm)
imply that

-~

L(m,vm) = L(Z,,0)

In the case of cyclic coordinates the Euler-Lagraian equations have the form:

d oL 0L 0i=1
—_—— =0 :=1..r
dtdz; Ozx;
d 0L .
a@éi =0 :1=r+1l.n
Therefore the Integrals of motion, we have the following coordinate representation:
)
Ji=—
06;

Due to the Abelian character of G these are independent integrals of the motion of the
system. Now we can recall the theorem which describe the reduction ”a la Routh”:
Theorem A



Let (M,< .,.>ar,V,G) be aMechanical System with Symmetry group G which is an

Abelian Lie group which acts freely and transitively. Assume that -

02
det [2=_) £0 6
© (aaiaaj) 7 | ©)

Define:

where é,- are computed inverting:

.
. -

vy = Ji(f, :I—J', )
Then R, isa Lagrangian which describe the motion constrained to

{(m,vm) €TM | J(m,vn)=v}

with configuration manifold

M= M/G

(the reduced configuration space).

For interesting geometrical descriptions of this theorem one can see [3], [4].
Remark 2.3

If the Lagrangian L is a positive function then also Ry is positive. In fact one has:
Ro(%,%) = L(%,7,0(2, 7))
where 6—?,(:?, "'E) is the unique solution of
Ji(Z, :1;:', 67) =0 i=r+1l.n
Let us now apply the previous Theorem to the Three Body Problem.

M=Q

where:

Q={g€eR%i=1,23} ~R®



the metric:

s
<G D=y mi<.,. >
i=1

where < .,. > is the standard scalar product in R2; the potential:

Vs Y o

IRE |[q'; - é:]”

and the symmetry group turns out to be:
G = Tr2 x SO(2)

Now we find the cyelic coordinates for our system. This will be done in some steps. -

First step:
T:Q—Q

T1=¢g2—q1
T2=¢g3—q1 ‘ (8)
r3 = (m1q1 + maqz + mags)/(m1 + ma + m3)

by means of 7; after some algebraic manipulations (1) becomes:

3
Hyo.ong 1 ~ .. mqmy mims maoms
L ==|z + = ﬁ‘[;'<ft,',.’1,">+ 9
15l 5 2 My < s > H L I o o] ©)
where ||z|| =< &,z > and
Yy A:’[]l -—1‘112
M= : 10
( “My My . - 1o
3
My = ma(m + ms) My, = mS(mler e My, = mZmB p=d omi (1)
1=1
Now in the second step, we consider the following transformation:
T,:Q — Q (12)
(xlyﬁ:%mfi) — (plaola P2,92,$3) |
where:
z} = p;cosb; B
{ z? = p;sinb; (13)



By means of 7; one finds: -
Q ~R? x R} x [0,27] x [0,2n]

~ in this coordinates one find that the potential V' becomes:

mims mims . mams
V(p1, p2,01 — 62) = + (14)
p1 P2 [p%2 — 2p1p2 cos(6, — 62) + pf]l/2
hence the Lagrangian (9) becomes:
L = &)|as|]2 + 1 2o Mu(p? + pi267)+
—Mia(p1p2 + p1pzé1é2) cos(8y, — 02)+
—1}112(151552,02 — élplﬁz) sin(0; — ;) + V(p1, p2,61 — 62) (15)

we can rewrite it as:

P T I
L= g”ﬂfsllz-i-i > Mz‘jﬂiﬂj“i‘i > Lj0:6;—Ma(p162p2—01p1 ) sin(61—02)+V (p1, p2, 01—62)

1,7=1 i,j=1
(16)
where:
Cro . Mn '—Mlz cos(91 - 92)
M = ( —l‘/flg COS(»Q]_ - 02) M22 (17)
I My, p3 —Mi3p1p2 cos(6; — 6,) (18)
= 2
-—f‘/flgplpz COS(GI - 92) M22p2 .
We perform now the last transformation:
T3:Q—Q
@ = 61 - 92
{ Y= 01+6; (19)

So we obtain:

. 13— 1, . : N
L= Bl 43 3 Mg+ g (1ol + L +210,) — Agtb + A4 Vs, p1,) (20)
t,j=1
where:
I,= I +I12+I22)
I, = $(In—TLa+ 1) '
Iy = 3(In — I) (21)

Ay = &12'(/31/)2 — pap1)sing
Ay, = ZB(p1p2 + pap1)sing

7



hence the cyclic variables are: 1, z3. The Lagrangian (20) is invariant under the action
of G = TR_2 X 50(2):
$:QxG — Q
(p1,p2,23,0,¥) X (L,a) — (p1,p2,23 +1,00,% + @)

the associated integrals of the motion are:

Total Linear Momentum

3
P =Y mig; = pts = (pih, pil)

=1

Total Angular Momentum

3
J—":Zm,‘q,'/\éi=ﬂ$3/\5&3+1¢¢+]¢¢‘15—‘4¢

=1

Let us apply Theorem A to construct the reduced Lagrangian on the submanifold:
{P=p,J=5}CTQ
then we will put p* = 0,7~ = 0. Hence we have:
Rye (1, P2, 1 P2 9 2) = L(p1, p2s s Py 0, 61, 83) — Job — P - & (22)

where 9 and z3 are computed inverting the expressions of P = p* and J = j~, so one

gets:

Rpe jo = 5077 + 3 Tim12 Miip} + V(p1, p2, 0)+
+5-[ddet(T) + 3I%] /Iy + [((* — 23 A P7) + Au) yo/ Ty + Al 6+
—(" =23 AP )Ay/ Iy + (5" — 23 A p*)? /21y — AT /1y (23)
now we restrict (23) on {p* = 0,5* =0} C T'Q getting:
1 - . 5? ’ )
L0= Rog= 5 3 WitV (o, par o)+ 214 det(1) 4351 Lt Aulyo /Ty + Al 6= A3/,
1=1,2
(24)
moreover we have to notice that by means of Theorem A we have that the Lagrangian

(24) is constrained on

{P=0,J=0}

8



and describes the dynamics on the configuration manifold
Q =Q/G ~ Ry x[0,27]

We denote each point of @ with ¢ and we give it coordinates (p1, p2, %) € RZ x [0, 2r].
Remark 2.4

From Remark 2.3 one conclude that the reduced Lagrangian L° is a posi'tive function.

3 The Perturbation setting

Let us choose now:

mi=m My =1maje M3 = Mmae (25)

where € is a small parameter (0 < € < 1), a;,a, € (0,1) m will be chosen later on. From

(23) the entries of the "mass” matrix M are:

1
M = meal——+—a2§—
1 + ((11 + (12)6
14 aqe
My = meay—————
22 S (a1 + az)e
2 aiaz

M, = _—
12 m61+(a1+a2)e

The potential V(p1, p2, ) becomes:”

v m2a;e  m2age : 27712(11(1262 _ (26)
1 p2 [} + P} —201p2 cos ]V
We want to write the Lagrangian in the following form:
ma; m?a;|  maiaz(p1p29)?
L'=e [ ~pi® + ’]+ + Ve 27
‘ {;;1,2 2 P - P 23 =12 aip? ( )

where V; is of order O(e). This term include the contributions due to the gravitational
interaction between the the smaller bodies and also due to the kinetic energy.

The perturbation V; in the Lagrangian L° can be so defined:

Vo= 1m0 M867 — Ticyp B2+
[4det(I)+31%,] _ maiaz(p1p2)?| @2 m2ajage
+ [ Iye f.-m aip} ] 2t [p}+03~2p102 COS<P]1/2+
+me/(1+ (a1 + a2)€)[((Tyo/ Iy) (prp2 — pap1)+
+(p1p2 + p2p1))@sin @ — (p1p2 — p2p1)*(Mrz/Iy) sin® o] (28)

9



We give the expression of the first term in € of V,:

. 2 2
V; = me< — E.’(airi)z — ;alazplp?}? 5 %_{__
( i=1,2 4iPi)
2 .

m-ajaze€
et
1

+pZ—2p1 p2 cosp]1/2

a1p2—asp? , . . . . . -
+'§L‘_a_,.:?&(ﬂlpz — p2p1) + (Ple + P2P1))‘P S ‘P} + 0(6) (29)

In the preceding formulation of the perturbation term we have written explicitly the
perturbation parameter € only in the relevant place where it appear.

From the form of the Lagrangian one can easily deduce the Collisions set A.:

K. = {(p1, p2,0) € R? x [0.25] / (0,0,9) V (p,,0) V (0, p2,50) V (1.0, )} (3_0‘)

The first condition represents the triple collision and the other three conditions represent

the double collisions.
Vi(p1, p2, p1, P2, 0, @) is a smooth function out on T(Q\K.). Using (28) one can easily
~verify that:
limV, =0 V(€ Q\K.
Moreover all the derivatives of ¥} go to zero when € — 0.

We can now define the perturbation problem. Chosen T > 0, we consider as Action

functional for Three Body Problem reduced on Q:

Arlc.d= [ d(Io(C() + Vi(g(t)) (31)

which can be written as:

T a; . a; aﬁh(ﬂxﬂz@)z V '
Ar[¢, el =€ [ dt T Ty e T >
(¢, €] 6/0 {izzm [2 it pi] N 23 im1,2 4P} * )

Without loss of generality we have chosen m = 1. The Critical points of Ar[.,€]/e and
Ar|., €] are the same for € > 0; moreover Ar|., €]/€ has a limit when € goes to 0. Therefore-

perturbation theory can then be applied to A7[., €]/¢ to find the critical points of Ar[., €].

10



4 Geometry of the Reduced Phase Space and the
Action functional

We now introduce some results proved in [7] in order to describe the geometry of the
reduced Configuration space. In [7] we found a class of compact sets of orbits which are
good candidates to contain critical points of the full problem. Moreover it was prdved
that the Collision solutions are not minima for the Action functional reduced on J = 0
and on such trajectories the functional is not C'. We now describe the geometry of the
reduced Configuration space, then in the next paragraph we will construct a solution (g
for the unperturbed problem, then we we show that this critical point is regular and it
can be eztended to (. for € > 0 for the perturbed problem. Then we will show that both
the unperturbed critical point (o and the continued (, live in the class of compact sets. By
means of the properties of collision solutions turns out that the perturbed critical points,
is not a collision solution.

In the quoted paper we proved that if one uses the relative distances p; = ||¢; —
gx|l (eyclic pérmutatz’on of 1,7,k =1,2,3) as coordinates for the Configuration Space,

the reduction is described by the map:
B E Q — C ’ (33)
(91,92,93) — (p1,p2,p3) |
where :
C = {,5": (p1p2 p3) ERS [ pi+p; > pi and cy;lic permutations}

and
oC = {ff:: (p1 p2 p3) ERS /| pi+p; = pr and cyclic permutations}

Taking account of reflection symmetry the reduction turns out to be a double covering.

Hence in order to study global aspects of the motion one needs a new Configuration
“manifold which takes account of the nature of the double covering.

Our "new” reduced Configuration manifold is so defined:
Q — Q (34)
(91,92,93) — (p1,p2,p3,2) =¢

11



where:

Q=Cx{+1}UdCx{0}UC x {1}

Let (p1, p2, p3, 2) = (£, z). In the definitions two copies of C are glued along the boundary
9dC. The z coordinate takes account of the reflexion and parameterized the sheets of the
covering (z = +1,—1, z = 0 parameterizes the boundary 9C).

Remark 4.1

We denote with the same symbol Q the new reduced Configuration manifold since,
as we now show, there is a homeomorphism (which is a diffeomorphism out of collinear

trajectories) between the two systems of coordinates.

{(p1. p2,9)} {(p1, P2, p3, 2)}

In the first system of coordinates v is the angle between the two "planets”, measured by
the oriented line on which mass my and mass my stay. Hence the angle ¢ is oriented.
Ve have to stress that the choice of the oriented line is arbitrary since we are considering

lines up to rotations. Let us consider the map:

T:Q — @ (35)
(pl'.‘pz?(fa) — (p13p23p3:‘g)

pi = pi i:]-:?

ps = (0} + p3 — 2p1p; cos )/
+1 ifpe(0,x)

0 =07

-1 ifp € (7,2r)

This transformation is invertible, and fails to be a diffeomorphismonlyatz =0~ ¢ = 0,7

w
Il

(Collinear Configurations). The inverse is:

¢ = arccos|(pi+ p5 — p3)/(2p1p2)]

z=1= e (0,x)
z=0,p=pr+p1,pp=ps+p2=>p=0

z2=0, p=ptp=>p=7

12



z=—-1=¢ € (7,27)

~

In Q equipped with the "mutual distances” coordinates we can introduce an operation

— @ . (36)

O

o
(7,2

N—rt

- (ﬁv_’z)

o’ = idg, this operation represents the reflexion w.r.t. a generic line in the plane. In the

coordinates {(p1, p2, )} the action of o becomes:
0 — O (37)
(p1:p2:0) — (p1,p2,2m — )

On Q we defined the following function spaces:
| A7 = {¢(t) = (A1), 2(2)) [ ((t+T/2) = o((t)} (38)
Ay = {C(t) = (A(0),2(t)) [ C(t+T/2) = ((t)} | (39)
so the space of T-periodic, H-functions with values in Q
By = H'([0,T),Q)={(Fz) € Q / pi€ H'([0,T),Ry) i =1,2,3 z(t) € {+1,0.~1}}

can be decomposed into:
BézBéﬂA}@BéﬂA“T (40)
In the coordinates {(p1, p2, )} we can construct [\“T and f\f‘} by means of 7.

In [7] it is proved that the Reduced Action functional for the full Three Body Problem

can be defined on H (13 and written as:

- T 3 T
Arlg) = [ at {z Bii(P)pii + 3 "‘1"}
1] 1,5,k

where § = (p1, p2,) and B is a matrix valued-function:

. "B:Q— M(3x3,R)

13



the entries are smooth functions out of Collision configurations, and moreover the followiﬁg
results hold:

Proposition 4.1

The matriz B(p) is symmetric and such that there ezist by, by € Ry such that for all
vectors V € R3:
v

w7 < (7, BOT) < bVIE @

where with (.,.) we denote the natural scalar product in R3.

(see [7])
In [7] we proved a sort of "weak Poincare inequalify”:

Proposition 4.2
Let be ((t) = (p(t), 2(t)) € A%. The following inequality holds:

[ @y Bt = [ aB@ 2 B sup min{(aie)+ i) - o} (2
o % ii\P)pip; = 0 (P)P, P) 2 T sé%é:f)T]ItI"l?l'IIcl pils pi(s pr(s 2)

This inequality allows to show that there are C°-compact sets. Let us now define the
following subsets (depending on k,):
My, = {C e Azn Bé-? such that: sup g(p(s)) > kz}
s€[0,T}
with k; > 0 and where:
1

9(7()) = gy min {(es) + pi(s) = pels))’}

1A(s)] = «} ém)z

We found [7] that for any k; , k2 > 0, the following sets
My g, = M, 0 {¢€A2NBY | Ar[(()] < ki)

are L*([0, T}, Q)-compact subsets of the sublevels of the Action functional. In the remark
below we show that the compactness is in C° topology.

The same result can be concluded for the set:

Mo, = {C € By /36 € 0,71/ oc(e) = (e +T/2), Al < hn, sup glc(0) > b

14



We have to stress that the proof of the compactness of My, x, depends only on the existence
at least of one time of antisymmetricity. This result will be very important in the next
sections.

Remark 4.2

Let us consider the following decomposition for the set My, 4,:
My, 4, = By, U Bf,

where
By, = {( € iy | sup )] < 3\/Tk.z/bx}
s€|0,

The set By, is trivially C°compact. On the other hand, for its complement, we can
consider the facts:
(1) by hipothesis sup, ¢[((s)] > k1

(ii) the following inequality holds:

sup 7)) =it 301 < [ | 10|

We prove the compacness for Bj,.

Using polar coordinates r = ||3]|, % = j/||3], it turns out that
_ T T T N5
ky > Ar[c] > a./ dtr? +b/ dir? + c/ dt(£, %)
0 0 0

With a,b,c> 0.
Now taking a sequence {r,(t), Sa(t) € S?} € Bg, with r4(t) = Fa(t) + 1 J§ ra(t) one
finds that there exist C,,C,, Cs > 0 such that:

T T .2 T R A
; A Fo< 2
fara<en, [aii<c . [ alSiP<c

then, the first term, the mean of r,(¢), gives a bounded sequence in R. Using standard
Sobolev inequality, the second term give that sup, r,(s)is bounded. Since £(t)-€ S? Vt €
[0, ] then sup, ||5(s)|| is bounded. hence we can extract a subsequence converging in the
C° topology. Therefore B, is C°-compact. @

In [2],[7] it is proved that collision solution are not minima for the Action functional

of the full Three Body Problem. Indeed the following Proposition‘ holds:

15



Proposition 4.3

In p coordinates the collision solutions are described, near the collision instant t., by:
pilt) = (e + 1))t —to)F i=1,2,3
with ¢; functions of the limit Central Configuration ([2]) and
)] =0 0<d<1 i=1,2,3
There exist continuous functions (g1(t), g2(t),93(t)) = g(t) and 6 small enough such that:
Ar(pe(t) + 6g(t)] — Ar[pe(t)] < C16° — Cp8'

with C1,Cy > 0 and 3 > 1/2.
Hence Collision solutions are neither minima nor regular critical points for the the
Action functional of the Three-Body Problem reduced on J = 0; thus regular critical

points are not collision orbits.

5 Critical manifold and its perturbation

In this section we construct an explicit solution for the unpertﬁrbed problem. This so-
lution turns out to be a smooth critical point for the Action-functional therefore we can
apply the perturbation theory to the full problem.

The full Action functional is denoted by :

Ar(C,e] = AT[C]+ AZ[C] - (43)
where:
As(q= [ aw,
T[C] - o €
with:
ling Az(c] = 0
uniformly out of the collisions, but if ( is a collision solution the limit holds.

The Lagrangian at e = 0, Ly, is given by:

. a; . a; axaz(P1P295)2
Ly = T e I i
o= 3 [3 4 2] + ed @

16



whose Action functional is given by:

T ' .
A5c1 = [ dtLo(¢(t)) (45)

The Lagrangian (44) describes a system formed by non-interacting masses a; a3, each of
which is attracted to the other by a Keplerian force, under the constrain that the total

angular momentum is zero.

We define A%[.] on the Hilbert space:

HY = {(p1(8), p2(t), 0(1) | € H'([0,T1,10,2x]) pi € H'([0,T],Ry) i = 1,2

with scalar product:

(¢ ¢ 2)1133 = (¢, @) m(o,1o,27) + Z (o}, P i o1 Ry)

1=1,2

where (.,.)y1 is the standard H'-scalar product.

The Euler-Lagrange equations of the system are:
fori=1,2;7 #1¢

a_d2pi a4 | mazpi(pp)? a1a2(P1P2¢)za.p.
H - [ ¥
dt2 pt2 21:1,2 afpl2 (2521,2 a{p?)z

and
a1a(p1p2)*@ _
21=1,2 a‘llo?
with ¢ € R. These equations can be written as:

[ aqp;
. eSS ik (46)
= aia2(p1p2)?

2, . . '
{ai"fﬂi‘: =% 4 Ly (=12

The system (46) admits circular solution (o : [0,T] — @ given by:

{ Rt = &a? i=1,2

)= ¢ (0)+wt 5w = (o] +ad)/() (47)

The solutions are parameterized by ¢ and ¢(0). We have now to specify ¢ and ¢(0) such
that (o be circular periodic orbit, antisymmetric in the sense defined in the preceding

section , i.e. reflected with respect to the line which connects two of the three masses.
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In order to seek for these condition one has to take account of the fact that @ is the
relative between the two bodies. ¢ is measured by this oriented line, therefore og(t) €
[0,27] has a a minimal period To = T/2 where with T we denote the period of the
trajectories in A%.

Now (o(t) belongs to set of trajectories defined by the following relations

{p,i(t+To/;z)-p,~(’t)= 0 i=1,2 Vte|0,Ty (48)

ot +To/2) —p(t) = —n VLE[0,Te]
In the next section we will prove that (o belongs to [\5‘«0 and the same for the continued
solution (..

Substituting the solution (o(¢) in (48) for ¢ one finds:

_ [To(a3 + ] |
c= [ - (49)
Remark 5.1 ‘
Using the Schwartz Inequality the second condition of (48) implies:
: (7)? )
”99”%? > Ty (50)

With this condition we have a circular Tp-periodic antisymmetric solutions for the un-
perturbed problem.

We described solution which lives in @, its image in Q, reduced the action of the
translations, is given by the couple (p,%). Using the condition that the total angular
momentum is zero and that we are considering the case ¢ = 0, one obtains:

7 = (To/2m)5(1 + a*)2F
# = (To/25P5(1 + 0

(1) =t +(0) N (51
$O(t) = —ZtE + p(0) ¥(0) € [0,27]

From the expression of 1 one gets the condition for the periodicity of the motion in Q:

(—) cQ | (52)

When this ratio is not a rational number then ¢°(t),°(¢) fill a two dimensional torus

[0,27] x [0,27] = T? in Q. From (52) one can write the trajectory in T? corresponding

18



to (o:

Z? T ad ’»bo( ) +¢°(t) = aj’ T a 31/)(0) + ¢(0) mod 27 (53)

If (52) holds the ¢ is a family of perlodlc orbits on T? parameterized by the r.h.s. of (53)
which we denote with.A(al, az,(0),(0)). Fixed Ty > 0, one has that %;—“j < 1. Let be
r=(a} - az)/(a1 +a®) € Q, hence dp,g € N / r = p/q, then using (51) the minimal
period for the motion in [0, 27] x [0, 27] is ¢7o.

Now we show that the circular antisymmetric solution (o(? ) living in @ is not a min-
imum for the Action functional (45). This trajectory lies in a manifold which is non-
degenerated in in a sense which will be defined below. This fact will allow us to prove
that when the perturbation is turned on the critical point (o(¢) is continued in the small
parameter. ’

Proposition 5.1
Let

Go(t) = (p}, p2,¢°(1)) ' (54)

o = (To/27)23(1 + a¥)23 % (35)

{ P = (To/2m)P/5(1 + a%)?/
(1) = %t + ¢(0) ¢(0) € [0,27]

be the circular solution of the unperturbed problem. For all ay/a; € Ry ( is a Critical

point for for the Action functional:

A1 = [ dLo(e(e)

Moreover the circular solution (y belongs to the non-degenerate manifold ¥ = U, (0)((¢; »(0))-
Proof

We start with a definition:

Definition 4.1 _

Given a C? functional F': H — R on H Hilbert sp’ace, ¥ C H compact and connected.
% is called non-degenerate critical manifold for F' iff:

(i) ¥ has no bouhdary

(ii) DF(z) =0forallz € &

(iii) ker D’F(z) =T, X forallz € ¥
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Obviously (o € X. Since ¥ ~ [0,27] mod 2~ (i) is verified, then we already know that
condition (ii) hold, we are left to verify -(iii).

We perform a rescaling in the Action functional, and we introduce the parameter:

. a
a= ;I—j eR,

Parameter a does not appear in the Proposition, and, in fact, the circular solutions are
critical points independently on the values of a, i.e. independently on the periodicity in
the unreduced éonﬁguration space Q.

The reduced Lagrangian becomes:

. 1. a . 1 a a(p1p2<,b)2
Lo=5p’ +5p + —+ —+ o5 —
O TP T T 0 T 2(p + apl)

and remember that {(t):

Where ¢ is obtained by the periodicity condition on ¢:

[T0(12: aB)]l/a

Firstly we compute the Hessian of the Lagrangian evaluated in {(¢), we get:

A O 0
Hess(L°) = 0 A, b
0 ¥ C

where with 0 is a 2 x 2 matrix with null entries. The nonvanishing blocks are given by:

(10
w=(o 1)

A, = 47?2 3 —a® 4d° |
2T TR+ o\ 4d®  (3a®—1)d7

= 2(2m)3 1
b = 5
T01/3(1 +a3)43 \ @
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and
(Te(1 +a®)°
(2,7)4/3

For the second variation of the Action functional and one gets:

C=

H2L0 . 2L0 H2Lo H2Lo
N 2 0 —_ - — .
< DA (55 >= [ dtz{a Il i+ 5

A(t)
(3
9(t)

and c is the function in a already defined.

where f;,g € Hé and:

Now by means of the periodicity conditions the following conditions hold:

{f,—(t) = fit +To/2) :=1,2 Vte€ [O,VTO]
g(t) = g(t+To/2) Vte[0,Ty] ‘

and thus we can represent the variation in term of their Fourier series:

fi(t) =1/2T, Zk[fzjk exp 2kiwt + f;’,f exp (—2kiwt)] j=1,2
9(t)  =1/To Y rlg2kkiw exp 2kiwt — gor* kiw exp (—2kiwt))

where w = 27 /T and .* is the complex conjugation. Hence inserting these expressions into
the second variations, using the Hessian of the Lagrangian and after some computations

one obtains:

< D2AS,(Q)5,7 >= Ty, 3AHRI + i)+
+ 3k (AL + 4w2k2Ajl)§(f2k fgk + )+
+ Xk X1 2biiw(kgar foi,” — kgar™ fix)+
+4w? T4 Clgae|*k? (56)

we can write:

< D* A%, (¢)v,7 >> Zv}:Hkvk + 53 Ast0 (57)

e
Up = _f 2
tkgax
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and -

wht 402%C

Firstly we note that when one considers constant variations in (57) one has:

H = ('A2+4w2k2,41 wb )

< D* A%, (¢)5,7 >= 9} Aatio

and one easily verifies that the matrix A, has a negative direction for all values of a, hence
the constant directions are negative directions of the Hessian, and thus (o(?) is not local
minimum for the Action functional.

We have to study the kernel of D?A%, [¢]. By means of the expression for the second

variation, computed above, one can find the equations for the kernel:

820 . 52130 82I0
S{-i {50+ g} a0

J
920 .
__{8 }'0

for 7 = 1,2, with obviously the periodicity condition on the variations f;, fo.,¢. This

system can be rewritten as:
&f
dt2

E{CQ} =0

The second equation can be integrated one time:

A== = A f + bg

Cg=d deR
Then one gets: .
dﬁf 14 F d -1 -
T = AT AT
This system has an homogenous part given by:
ef
dt2 = Af
where
A 47?2 3—a® 4ad° ‘
T TPl +a3)3 | at (3¢®—1)a®.
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This matrix has eigenvalues with alternate sign since:
det(A) <0

for all @ € R. Using the form of matrix B, the allowed periddic solutions are given by:

-

f=0, d=0
and hence we conclude:

ker(D? A% (o)) = {(0,0,90) ; 9o € R}

which corresponds to the direction tangent to {o. @

Theorem 5.1

There ezists ¢ € R* and an H%-neighborhobd Ue of (o(t) such that for all 0 < € < €
the Action functional Ag,l.,€] has a critical point ((t) in U,.

Proof

From the definition of Hj it turns out that:

THY = {w = (fi(t), 1:(t),9(t) | fing € HE(R) fi(t) = fit+To/2) 1 =1,2 g(t) = g(t+To/2)}

we proved that:
ker(DzA(:Jro[Co]) = {(0)0390) y go (S R}
hence: |

e D A1) = { s [ dooto) =0}

by the symmetry of D2A%[(o] we have:
| (Ker(DA%, [C])* ~ rank(D* A%, (6]
Let Ee w € (ker(D?AZ, [(o]))*, we want to solve
| DAz [Go + w,d = 0 | (59)
for € small enough. Now the equa,tioh (58) can be rewritten as:
DAZ, [¢o] + D* AL, [Col(w) + R(Co, ew) = 0
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with lim._.o1/eR({o,we) = 0 for all w such that “w“Hé < co. D?Af [{o] is invertible
on (ker(D?AY, [¢o]))*, hence by the Implicit Function Theorem we can deduce that there
exists €g > 0 such that for all 0 < € < ¢y there exists a C* function w((o, €) such that

DATo [Cca 6] =0 (= Co + Ffw(CG’e)

Must be noted that . depends parametrically on a;, a; which appear in the Lagrangian.
The Lagrangian is smooth for a; # 0, ay # 0 hence also (. turns out to be smooth in the
parameters. ‘

We now prove the nondegenerancy of DAfg[..€] in (. Let v € THCIQ with v €
(ker(D? A%, [¢o]))* then:

102 Az, [Ce, €l (0)1| = [1D* AL [Col ()| = (1D Az, [Ce, €] (v) — D* AT, [Gol ()| > 0

by means of nondegenerancy of D?A%, [¢o] on (ker(D?A%,[¢o]))* and using the regularity
properties of Ar,|[., €] for € small enough.@ |
We want to find periodic solutions for the unreduced system the we give a convenient
functional description for the periodicity condition on the unreduced configuration space.
Let us define the following functional P defined on H é
P gopallesar, ) = [ ol dsﬁ*ab_—éﬂsﬁ = B sP(F B g) £ ar (50)

with r rational and r < 1, Tp > 0 and (. € U (o) Ve < eo.
From the definition follows that:

pr,Tg/2[Cc’ az, a2] == 'Qb(t + T0/27 al:a2) - w(tvala ag) -

Now if € = 0 one has:

ad—al
pr,To/‘Z[CO, ai,a;) = —Wa% e + 7r
‘this expression vanishes if we take:
’ ’ 1— 1/3
= [z ®
a; 1+r

and this value of the ratio of the masses corresponds to the periodicity condition for (o(¢)

in the unreduced configuration space.
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In the sequel will be useful to consider the following change of coordinates in the mass

parameters space:

{ a= ayfay

a= a+a;
so we can write Pr.1,/2[(, a1, a2] = Pr1y/2[(e; @, al.
Theorem 5.2 , ,
Given To > 0, r rationalr < 1 and o € R, there ezists € > 0 such that for all0 < e < €
there ezists a(€) continuous function of €, such that for ((t) € Uc(o)

PT,TOH[C:: a, a(ﬁ)] =0

holds, and (.(t) is a periodic solution in the unreduced configuration space Q.
Proof

We have already see that given T > 0 and a rational number r < 1 one has:
Pr,To/Q [Cc7 «@, a*] =0

for @ = [(1 — r)/(1 + r)]M/3.
We want to use the Implicit Function Theorem to find a continuous function a(€) such
that Ve < €, for some € > 0:
| PrtyjalCe,a(e)] = 0

with (. € U((o)-

In order to do that we have to take account that the constant €y appearing in Theorem
4.1 does not depend on the masses a1, a; and so on a. In fact the regularity properties of
Ar,[., €] as function of ¢ do not depend on ay, as.

In order to apply the Implicit Function Theorem we are left to prove that:

dPry/2,r /TO/“? dP . .
_— = ds—(p%, pt, 0°, of 0
T s (95 e) #
computed at € = 0 and a = a”.
- Now we have:

dPry/2r _ /To/2+t 5 JOPdF  OPdp 0P dpt  OP dgt
da t 0pt da  Qpr da  Op® da  O¢° da-




Taking into account that {(¢) (from Theorem 4.1) is C'! in a and ¢, we obtain:

3 2
flﬂgga/_z_’tlm. - —2%3%%%[@:“. = —1477*(-1;1——T3)2 £0 Va*#0
condition a* # 0 is equivalent to r < 1. »
Hence we can now apply the Implicit Function Theorem concluding that given Tp > 0,
r rational and less than 1, a € R there exists €(Tp,r, @) < € such that forall 0 < e < €

there exists a continuous function a(e€) such that:
pTo/g_,-[CE,O!, a(e)] =0

with (¢ € Ue(E) so pi(t + To/2) = p1(t) . p3(t + To/2) = pa(t) , ¢*(t + To/2) — @(t) = .
Let us observe that, considering r = p/¢ p,q € N we have:

@ (t +qTo/2) — o(t) = qr  $*(t + qTo/2) — P*(t) = pr

therefore the minimal period of (.(¢) in Q is ¢7,.@

6 . Non-collision solutions for the perturbed problem

In this section, collecting the preceding results we prove that, for small value of the two
masses, the Three-Body Problem reduced on J = 0 has non-collision periodic solutions
which live in an appropriate C° — compact set My, .

Now we prove:

1. Forsome ki, ky > 03X C NI;I . (where ]ff,ﬁl e denotes the set My, x, whose definition
contains Ar[., €] in the place of Az[.]).

2. We use the Theorem 5.1 to continue in € the the Critical point (p into (. which
belongs to a neighborhood U, of (. Thus we prove the existence of critical points for the
functional Ar[., €] in jf!,ﬁhkz.

Proposition 6.1 ,

There exits €; > 0 such that for all 0 < € < €; the circular orbit (o(t) are such that
Co(t) € Mg, , with

ky < min 4o7
mi
P R 0 - i)
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= 3(%)2’3[ o(1+a*)]/°

Proof

We show that (o(t) € Mkl k, using transformation 7. Indeed, for a trajectory in zf'Ikl K2
one needs that there exists t* € [0, To/2] z(i*) = —z(t" + To/2) and p;(t*) = p:(t* + To/2).
for 1 = 1,2,3. Now let ©(0) be in [0, 7] so 2(0) = 1. Now there exists t* € [0,75/2] such
that ¢(¢*) = 7/2 so z(t*) = 1. For (o we have:

e(t+To/2) =p(t) +7
hence p(t* + To/2) € (7,27) and thus z(t* + To/2) = —1 and pi(t*) = pi(t™ + To/2) for
i =1,2,3 so we have (o(t) € My, 4,
The first estimation comes from the definition of the set M % k- Lhe term

- 1
sup g(p(s)) = sup r_mn pi(s) + pi(s) — pr(s
SG[U,To] ( )) SGOTO] ”p(s 1,7 {( ) J( ) ( ) }

Computing this expression on (g(t;¢(0)) = (p?, p3,«°t + ©(0)) one obtains a smooth
function on S! which can be minimized uniformly in € getting the first estimation.
The second estimation can be found evaluating Ar,[., €] on a generic element of X,

then one finds :
A, [Co, €] = -(QW)Q/S[ o(1 + a®)]/* + A5, [¢o]

by means of the properties of the term depending on € we can find €; such that for all

€< €
A, Go-€] < by = 320 RTH(L + o))

From this estimations one can also conclude that (o ¢ B.ﬁ,ﬁl,kz.@

Theorem 6.1 '

Let Ar,[., €] = A}, [.] + ASl.] the Action functional for the Three-Body Problem reduced
on J = 0 with two small masses m; =m Mo = TMai€ N3 = MaseE.

There exist ki, kg > 0 € > 0 such that for all 0 < € < € the set Mi,,kg contains a
neighborhood U, of (o (critical point for A3, [.]. It turns out that the Action functional
Ag,[., €] has a critical point (. in U.. This critical point gives a periodic non-collision

strong solution of the Lagrange equations in the unreduced Configuration space Q.
Proof
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In section 4 we proved that for A% (o is critical and non-degenerate. Moreover in
Proposition 5.1 we proved that for small values of € (say € < ¢;) there exists a neighbor-
hood of (, which contains one critical point (, of the Action functional. As it was recalled
in section 5, collision orbits are not regular critical points of the Action functional. There-
fore, since Ag,|., €] is of class C? on the continued critical point, {, is a non-collision critical
points the Action.

In Theorem 5.2 we proved that one can choose € so small that there exist continuous
functions a;(€),az(e) > 0 such that the continued solution (, is periodic of period ¢Tj
(¢ € N) in the unreduced configuration space Q.

In Proposition 6.1 we showed that there are k;,k; > 0 such that {, € M,’;il &, and
Co ¢ 8112',‘21,% for € < €5. Hence chosen ¢ < min{e;, €2} we can find U, a neighborhood of
(o such that:

Ue C Mf 4,
UeN oM, 4, =0
thus we can conclude that all the perturbed critical point (. of the Action functional

belong to M; k@

7 Behaviour of the Action functional on unbounded
trajectories

In this last section we study the behaviour of the full reduced Action functional on se-
quence of functions which converge to unbounded trajectory. Let us observe that the
Action functional Arl[., €] defined on Hj (with (48)), loses coercivity only on sequence of
trajectories (™ for which:

)3 / sup,p{”(t) € (0,00)

i) 7 ds(@(s))? < oo

This follows from the following inequality :

2 2
(e, d < ST 152 4 _2102(88Pe ) (SUPp2)” 2\ 6,
Tl < DAl + o p o) + aa(sup, pa2 121122 T O o1, 1/ p2)

then one finds:

lim Ar[¢, €] < oo
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We will therefore consider only configurations in which goes to infinity the relative distance
of one body with respect to the center of mass of the other two.

In order to do that we rewrite Ar[] using (24) as:

Ar[(] = AT[(] + AT°[C] (61)

Some modifications are needed in the transformation by which the Reduction "a la Routh”
was made. Since we want to consider the case when one of the three particles escapes to
infinity, it is natural to use a system of coordinates which contains, as a coordinate, the

distance of one particle from the center of the mass of the other two. Hence we substitute
7, and define 7/ : @ — Q as:

Vi =G —q ,
Y2 = g3 — (m1q1 + maga)/(m1 + m2) ) (62)
y3 = (ma1q1 + maqa + magz)/(m1 + ma + m3)

Remark 7.1
In this coordinates the third body (with mass m3) will be the ”leaving body” and in Hé
we will consider sequence of trajectories for which inf; ||yS”(¢)]| — oo when n — 0.

Then we apply transformation 7; with the substitutions:
T =y ri—p; 60— 0

Therefore the Lagrangian (1) becomes:

. 1& . :
L= 5”93”2 + 5 3 Mi(F] +108) + V(ri,, 01 — ©3) (63)
“ =0
where: ( ) s
. mamy . ma(my + my .
M= ——- = —_ =) m; 64
1 (my + ma) 2 p K Z; (64)

and in this coordinates one finds that the potential V becomes:

V(r1,72,01 — 02) = mymy/ri+

+myma[r} 4 2maorirs cos(01 — ©2)/(my + ma) + miri/(my + m2)* 2+

+maoma[r} — 2maryry cos(©1 — ©2)/(my + ma) + miri/(my + m2)2]1/2 (63)
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At this point we use the transformation T3 with 0, = ©;, ¢ - & ¢ — ¥ and the

Reduction "a la Routh” and therefore we obtain the reduced Lagrangian whose form is:

@ M1M27‘17‘2

1 2
= 1 ——— T
2 2; ”‘ o MRt Myrd V(ry,r2, @) (66)

We can now write explicitly the terms appearing in (61):

M mym
A= [ a{ S+ e+ T2
L M, _Mi(r{o)
AT [(] = A dt{ 5 Ty + V(T13T23¢) 222_:1,2 A/I{T?

Remark 7.2
A rapid inspection to the two coordinates systems (p1, p2, @) and (r1,72, ®) shows that

the passage between the two is give by:

y1=T1 :
{ y2 = T3 — maz1 /(M1 + my) ' (67)
Yz = T3

this transformation implies correspondence the periodicity conditions: (ry,rs, ®) have the
same periodicity condition of (p1, p2.); therefore we consider again the space Hé whose
elements will be denoted with ( = (1,72, ®).

We study Ar[.] on Hj with the usual condition (48), in the sequel we often use the
canonical embedding of H! into C°. , '

Firstly we study the behaviour of the Action on a particular set of unbounded sequence.

Proposition 7.1

Let {¢M(t)}2, € Hé be a sequence of continuous functions satisfying (48) for all k,

and such that:
(k)

khmmfr =c0 t1=1,2
then:

Jim Ar(¢W(0)] = +oo
Proof

All the terms in:

T
= [ dtLo(c(t)
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are positive, hence we have:

>/T o2 M, Myrir
2 M;r? + Myrk

Now since: .
Ti(t) Z ll’tlf T';(t) A2}
implies: h
M, Mz M, M,
? r? = (inf; rp)? + (infyry)?
Therefore:

M, M, 17
—5 el (nf ) (inf; r1)?

Now we have only to remember that by means of (48) for ® one can prove that:

AT[C] jxflMg

472
o2, > —_
812 > =%

Now evaluating the estimation found for the Action on the sequence prescribed by hy-
pothesis, the Proposition is proved. @ '
In the next Proposition we will use the decomposition (61).

Proposition 7.2

Let {¢B(t)}2, € H1 be a sequence of continuous functions satzsfymg (48) for all k,
and such that:

lim inf rgk) = 0
k—oo 1

lim [|7{)|2 = 0
k—o0

while uniformly in k:

M < G0 17PN < €

and

”é(k)nl,z < 03

with Cy,Cq,C3 > 0, then:

Jim | A7[c®)] — AF[CH)] = 0
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and
lim | < DA7[(®],5> — < DAR[¢(P], 7> | =0
for all variations T = (f1(t), fo(t), w(t)) in Hclj.
Proof

By means of (61) in order to prove the thesis we have to prove:

Jim A7 (@] =0 (63)
and
Jlim | < DAz [, 7> ]=0 (69)

(68) comes from the following estimations

[ a2 = 22y,

f PP (r1® < M (lirallool|@1l22)

23 0= =1,2 M" 2 21‘:1,2 Mi(inft 7":')2
and using that az? + yb® & crycosp > az® + yb®* — czy  z,y,a,b,c > 0 one has:
2myinf, ryinf,ry  m3(inf,rp)? -1z
(my + m2) (my + m2)?

T
/ dtV(Tl,TQ,q)) S_ T(m1m3 -+ mzmg) [(Htlf 7’2)2 -_
o .

all these terms go to zero when evaluated on the sequence defined in the hypothesis.
For (69) we have:

|< DAres[C(k)] U > | < fg dtu‘/IZTZf?l'{'
+ JT di] w4+, Zf’fz

+JT dt%@wH
My ($)?

+ I dtllwﬁl)-’;%lrlfz —-rafal (70)

Now using the following relations

Sup; T2

2
242 4 ™ 2 2 R 2 2 infg T 2
(3 Mir2)? = o4 | My (-T—) £ M| > (infro)rd | My + M,
i 2
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| . 2 2
(O Mir?)? 2 (inf r2)’rs [Ml (mft n ) + Mz}

sup, 2
and the usual estimations, one has:
| < DAF[CP), 7 > | < My a2l foll 22+
+ 1| ol + 2|3 o N fill e+

ore

‘,13 2 . .
g Bl e o+
-2

. . . 2
MM ool B3 s e inera)? (M (12520)" 4 05|+

sup, 72

M| ol 812 a2t ) [ My (52) + 0| (™

Sup, 72

now, evaluating this estimation on sequences defined in the hypothesis one get the thesis.@

Let us call = the the set of trajectories in Hé, satisfying (48), which fulfil the
hypothesis of the previous Proposition. Now we show that this kind of trajectories lives
out of any L?-compact NIkhkg for all k5 > 0.

Proposition 7.3

There exist ky > 0 such that:

=N Ji[kl,kg =0

for all kx > 0.

Proof

The constant k; is computed, by means of the preceding Proposition, using A% eval-
uated on the Kepler System which remain in the finite part of the configuration space.

Given a sequence of continuous function in =%, in (p1, p2, ) coordinates, we are left
to prove that:
i (M 4 oY — My
ey 3¢, (mMy2y172
"y R (X (e )Y
where obviously: ps = \/ pi + p3 — 2p1p2 cos .

It is easy to see that if inf, rg — 0O [Ir1]lec £ Ci then, infips — 00 ||p1llee < Ch.

(72)

Now since p{™ and p{™ have a divergent sup-norm and p{™ is bounded, one has that

(P 4 plm — pim)y?
sup min

oty Bk (SR
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this is equal to: :
sup (1™ + 5" — p5™)?
C (S

Using the expression for p; one finds that the last term is equal to:

sup,epo.rf(Pt”)2((L + (1017 /87 — 2cos ™) /(1 + (L + (o™ /p57)? = 2(p" /5™ cos p()1/2)]2
1o (1 + (o7 /57)2 = 2001 /57 cos o) 1/2)]}
| (73)

but pgn)/ pgn) < sup;, p§”)/ inf, p(gn) and sup, pgn) < () one can see that the last term goes
to zero as O(1/ inf, p(gn)). @

34



References

[1] K.F.Sundman Acta. Sci. Fenn. 35, 9, 1909

[2] G.F.Dell’Antonio Finding non-collisional periodic solutions to a perturbed N-body
Kepler problem Preprint SISSA (1993) ’

[3] J.E.Marsden Lecture on Mechanics Cémbridge University Press 1992
[4] V.I.Arnol’d Dynamical System vol. III Springer Verlag 1988

[5] Kung-ching Chang Infinite dimensional Morse Theory and multiple solution problems
Birkauser 1991 '

[6] M.S.Berger Nonlinearity and Functional Analysis Academic Press 1977

[7] L. Sbano On the lack of coercivity of the reduced Action-functional for zero total an-

gular momentum in the planar Newtonian three-body problem Preprint SISSA/ISAS
ref: 185/94/FM

35



