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Abstract 

\Ve study the existence of a periodic orbit without collisions, with zero total angu­
lar momentum, in the planar Three-Body Problem by means of Lagrangian reduction, 
yariational methods and local analysis of the flow. 

In a preceeding paper [7] we described a class of compact set of trajectories where 
to find minima for the Action-functional of the Three-Body Problem. In this paper we 
find critical points perturbatively in the masses, these critical points are in slightly bigger 
compact sets. \Ve study a system composed of three bodies: two of them with small 
different masses compared with the mass of the third body. For the unperturbed prob­
lem we construct explicit solutions, which are regular critical points for the unperturbed 
Action-functional. These critical points can be continued for sufficiently small values of 
the masses. We prove the existence of periodic orbits without collisions. Nloreover for the 
full Three-Body Problem on the manifold J =,.0 we verify the existence of critical points 
at "infinity" composed of a Kepler-problem art~ an "escapIng'; 'body. : 
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1 Introduction 

In this paper we deal with the problem of the existence of periodic solutions in the New­

tonian Three-Body Problem. In particular we consider the problem under the constrain 

that the total angular momentum J be zero. 

For the Newtonian lV-body problem in three dimensions, K.Sundman in a very old 

paper [1] proved that J = 0 is a necessary condition for total collision solutions. This fact 

implies that collision orbits must live in the submariifold of the phase space identified by 

the condition J = O. Recently in [2] it is proved that in the N-body problem, under proper 

assumptions, collision orbits are not minima for the Action functional; (the assumptions 

are known to hold for lY ~ 4) so that non-collision periodic solutions exist. 

These facts led us to study the problem of the existence of periodic solutions and 

collision orbits by means of an Action functional reduced on the manifold of zero total 

angular momentum. Also in this case collision solutions are not minima and regular 

critical points, but now there is a lack of compactness and we cannot conclude immediately 

about the existence of regular critical points. In a preceeding paper [7] we studied the 

geometry of the reduced configuration manifold. Moreover by a weak Poincare inequality, 

we showed that the lack of compactness is concentrated in a suitable neighborhood of 

collinear orbits. In this paper we prove the existence of non-collision periodic orbits on 

J = 0 in the case in which the system is composed of one-large mass and two small 

different masses: the unperturbed system is essentially a small "Solar system" with two 

non-interacting small different "planets". For this system we exhibit a solution (o'(t) 

which is a Cl critical point for the unperturbed Action-functional, and it lies in one of 

the compact sets that \ve found using a result proved in [7]. By means of continuation 

argument of critical points for the perturbed functional (see ([5]), we prove the existence 

of a solution for sufficiently ~mall values of the masses. In the last section we study the 

behaviour of the Action functional on unbounded trajectories. Some of these trajectories 

describe the escape of one of the bodies. 
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2 Lagrangian reduction 

\Ve study a system composed of three point-like bodies whose masses are ml, m2, m3, 

interacting with a newtonian potential. We will study the manifold of trajectories with 

zero total angular momentum, the system lies in a plane since every mechanical system 

composed of three material points interacting thorough a potential depending on the 

relative distances, with zero total angular momentum-, has only planar motions. There is 

no loss of generality assuming that' the system has the configuration space 

In Q there are configurations on which the dynamics of our system is not defined. Those 

are the Collision configurations: 

Double collisions 

Triple (total) collision 

The dynamics of the system is described by the Lagrangian: 

L: TQ -+ R 

(1) 

where we denote with < .,. > 11.11 respectively the scalar product and the norm in R2. 

In order to simplify the notations we put: 

The Angular momentum J of the system is conserved. It is a scalar since we consider 

only rotation in the plane of the motion. We describe the motion for fixed values of J 

(in particular J = 0) with a reduced Lagrangian obtained by the procedure described by 

Routh. 

Definition 1.1 

A Mechanical System is a triple (1\:/, < .,. >M, V) where: 
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(!vI, < .,. >.ivt) is a Riemmanian Manifold of dimension n, and V : M -t R a function 

(the potential) which is smooth excluding only a finite number of compact sets. 

For this system we can construct a Lagrangian: 

L:TNI --+ R (2) 

where: 

TM : T M --+. 1\1/ (3) 

(m,vm ) --+ m 

Assume that on 1\1/ acts freely a Lie group G: 

~:1\I/xG --+ M (4) 

q,m --+ ~g(m) 

with lifted action on the tangent bundle T 1\1/: 

~T:TMxG --+ TM (5) 

(m,vm),g --+ (~g(m),T~g(vm)) 

We assume that G is a symmetry for the system, so that: 
.. 

Then Noether theorem implies the existence of integrals of the motion. 

The Three Body Problem can be easily described in this context observing that we 

can put: 
_ 3 

!vI -=- Q, < .,. >Q-=- Lmi < .,. > 
i=l 

and the whole symmetry group is given by the diagonal action on Q of: 
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but for the Routh procedure we are interested in: 

G ~ TR2 x 30(2) 

where we denote with TR2 the translations group in the plane. G is an Abelian Lie group. 

Remark 2.1 

In the sequel, the presence of the planar reflections 32 in the whole sY'mmetry group 

Go of our system will play a crucial role in the study of the reduced configuration .space 

(see ([7J). 32 symmetry will survive the Lagrangian reduction. 

If G is an Abelian symmetry group, one can find a complete set of cyclic coordinates, 

there exists a system of coordinates on Arf such that the action of G on lYf can be written 

additively: 

mE AI 

<I> 9 ( m) = <I>9 ( i, if) = (i, if+ X) 

with XE Ra X (31)b a + b n - r - 1 (in our case n 6, a 2, b 1). 

Remark 2.2 

T,he additivity of the action <P and the invariance condition Lo<I>;(m,vm) = L(m~vm) 
imply that 

L(m, vm ) = L(X, i, if) 

In the case of cyclic coordinates the Euler-Lagraian equations have the form: 

d aL aL . 
-d -a' - -a = 0 z = 1. ..rt Xi Xi 

r + 1. ..n 

Therefore the Integrals of motion, we have the following coordinate representation: 

Due to the Abelian character of G these are independent integrals of the motion of the 

system. Now we can recall the theorem which describe the reduction "a la Routh": 

Theorem A 
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Let (M, < _,. >1\[' V, G) be a Mechanical System with Symmetry group G which i~ an 

Abelian Lie group u:hich acts freely and transitively. Assume that-< 

(6) 

Define: 

(7) 

where ()i are co'mputtd inverting: 

Then Rl.I isa Lagrangian which describe the motion constrained to 

{(m,vm)ETM / J(m,vm)=v} 

with configuration rnanifold 

M=M/G 

(the reduced config'uration space). 

For interesting geometrical descriptions of this theorem one can see [3], [4]. 

Remark 2.3 

If the Lagrangian L is a positive function then also Ro is positive. In fact one has: 

Ro(x,£) -=- L(x,£,8(x,£)) 

where 8( x, £) is the unique solution of 

Let us now apply the previous Theorem to the Three Body Problem. 

where: 
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the metric: 
3 

< '" >Q~ Lmi < '" > 
i=l 

where < '" > is the standard scalar product in R2; the potentia} 

V(q) ~ L
3 

~im~ 
• "-J.' Ilqi - q)'11
1,),17"') 

and the symmetry group turns out to be: 

G ~ TR2 x 80(2) 

N ow we find the cyclic coordinates for our system. This will be done in some steps.. 

First step: 

(8) 

by means of Ti after some algebraic manipulations (1) becomes: 

Jl ' 2 1 ~ - .. mlm2 mlm3 m2 m 3 (9)L = "2ll x311 + 2t;;ti\l i j < Xi,Xj > + IlxI11 + ~ + IIX2 - xIII 

where Ilxll =< x, x > and 

£:1 ~ (Al11 -1'\;/12) (10)
-M12 1\;122 

-=- m3(ml + m2)M22 - (11) 
Jl 

Now in the second step, we consider the following transformation: 

T2:Q Q (12)--7 

where: 

(13) 
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By means of 72 one finds: 

in this coordinates one find that the potential V becomes: 

mlm 2 mlm3 m2m3 
V(Pl, P2, ()1 - ()2) = + + 1/2 (14)

PI P2 [p~ - 2PIP2 cos ( ()1 - ()2) + pi] 

hence the Lagrangian (9) becomes: 

L = ~lIi3112 + ~ L:~=O Mii(PT + Pi 2(;l)+ 

- kf12 (PIP2 + PIP2(;1 (;2) COS(()1 - ()2)+ 

-k!12(PI 82P2 - 81PIP2) sin(()l - ()2) + V(Pl, P2, ()1 - ()2) (15) 

''Ie can rewrite it as: 

where: 

I-=-( kfnpr 
- - N!12PIP2 cos( ()1 

(17) 

(18) 

\Ve perform now the last transformation: 

(19) 


So 'we obtain: 

L = ~lIi3112 + ~ .t JVliiPiPi +~(I",-.i? +I""ji +2I",,,,,fcp) - A",,f+ A",cp+ V(Pl, P2, 'P) (20) 
1 t)=1 

where: 

It/; = 
Itp = 
It/;tp = (21) 
At/; = 
Atp = 
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hence the cyclic variables are: "p, X3. The Lagrangian (20) is invariant under the action 

of G = TR2 x SO(2): 

Cf>:QxG ~ Q 

(pI, P2, X3, 'P, 'lj;) x (/, 0:) ~ (PI, P2, X3 + 1, <p,,,p + 0:) 

the associated integrals of the motion are: 

Total Linear Momentum 

Total Angular Momentum 

3 

J ~ miqi A qi J1X3 A X3 + 1?j;"p + 11jJ<pc.p - A?j; 
i=1 

Let us apply Theorem A to construct the reduced Lagrangian on the submanifold: 

{P=p"',J j*}CTQ 

then we will put p* 0, joe = O. Hence we have: 

where "p and i3 are computed inverting the expressions of P = p* and J j- ~ so one 

gets: 

Rp.,j. !pK2 +! Ei=I,2 Mijp; + V(PI,P2,<P)+ 

+ ~2 [4 det(1) + 31;21/11jJ + [((j* - X3 A p*) + A1jJ)11jJ<p/11jJ + A<p] <,b+ 

-(j* - X3 A pK)A1jJ/11jJ + (j* - X3 A p*)2 /211jJ - A~/1?j; (23) 

now we restrict (23) on {p* O,j* = O} c TQ getting: 

LO Ro,o = ~ .L Mijp~+V(Pl' P2,<p)+ ~2 [4 det(I)+31;2] I1",+ [A"J",,,,/I,,, + A",] <p-A~/I", 
~=1,2 

(24) 

moreover we have to notice that by means of Theorem A we have that the Lagrangian 

(24) is constrained on 

{P = O,J = O} 
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3 

and describes the dynamics on the configuration manifold 

\Ve denote each point of Cd with ( and we give it coordinates_ (PI, P2, <p) E R! x [0, 27r]. 

Remark 2.4 
Fro'm Remark 2.3 one conclude that the reduced Lagrangian LO is a positive function. 

The Perturbation setting 

Let us choose now: 

(25) 

where E is a small parameter (0 < E < 1), aI, a2 E (0,1) m will be chosen later on. Fron1 

(25) the entries of the "mass~' matrix Mare: 

1 + a2E 
jyfn = mEal ( ')

1 + al + a2 E 

1 + a2E 
jyI22 = mEa2 ( )

1 + al + a2 E 

2 al a2
M 12 = mE 

1+(aI+a2)E 

The potential V (PI, P2, <p) becomes:· 

m 2 a E m 2 a E m 2a a E2V= 1 + 2 + 12 (26)
PI P2 [p~ + p~ - 2PIP2 cos <pP/2 

\Ye want to write the Lagrangian in the following form: 

2 
L o _ {~ [mai ·2 m ai] mala2(PIP2c.j;)2 v.}

- E L.., --Pi + -- + 2 + e (27) 
·-1 2 2 . Pi 2 Ei=I 2 aiPi
1- , ' 

,vhere v:: is of order O(E). This term include the c~ntributions due to the gravitational 

interaction between the the smaller bodies and also due to the kinetic energy. 

The perturbation v:: in the Lagrangian LO can be so defined: 

V. - 1 " !VIij·2" rna' • 2+ 
e - 2' L.Ji=I,2 e Pi - L.Ji=I,2 2Pi 

+ [[4det(I)+3Jiz1 _ rnai a2(PIP2 2] ~ + rn2a1aze + 
I",e i=l,2 aiP~ 2 [p~+P~ -2Pl P2 cos cpP/2 

+mt/(l + (al+ a2)E)[((I""cp/I"")(PIP2 - P2pd+ 

+(PIP2 + P2pd)c.j; sin <p - (PIP2 - P2pd2(MI2 / I",,) sin2 <p] (28) 
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\Ve give the expression of the first term in t of ~: 

v. = mE {- Li(ai7\j2 
2+ m ala2( + 

[pi +P~ -2Pl P2 cos <p]1 12 

(29) 

In the preceding formulation of the perturbation term we have written explicitly the 

perturbation parameter t only in the relevant place where it appear. 

From the form of the Lagrangian one can easily deduce the Collisions set I<c: 

The first condition represents the triple collision and the other three conditions represent 

the double collisions. 

~(Pl,P2,Pl,P2'<.p,c,p) is a smooth function out on T(Q\I<C). Using (28) one can easily 

yerify that: 

lim ~~ = 0 'r/( E Q\I(c
(-0 

}Ioreover all the derivatives of ~.~ go to zero when t -7 O. 

vVe can now define the perturbation problem. Chosen T > 0, we consider as Action 

functional for Three Body Problem reduced on Q: 

(31) 

which can be written as: 

(32) 

\Vithout loss of generality we have chosen m = 1. T4e Critical points of AT [., tlJt and 

AT[., t] are the same for t > 0; moreover AT [., t]Jt has a limit when t goes to O. Therefore­

perturbation theory can then be applied to AT [., t]J t to find the critical points of A T [., t]. 

10 



4 Geometry of the Reduced Phase Space and the 
Action functional 

\Ve now introduce some results proved in [7] in order to describe the geometry of the 

reduced Configuration space. In [7] we found a class of compact sets of orbits which are 

good candidates to contain critical points of the full problem. Moreover it was proved 

that the Collision solutions are not minima for the Action functional reduced on J = 0 

and on such trajectories the functional is not C I . We now describe the geometry of the 

reduced Configuration space, then in the next paragraph we will construct a solution (0 

for the unperturbed problem, then we we show that this critical point is regular and it 

can be extended to (e for € > 0 for the perturbed problem. Then we will show that both 

the unperturbed critical point (0 and the continued (e live in the class of compact sets. By 

means of the properties of collision solutions turns out that the perturbed critical points, 

is not a collision solution. 

In the quoted paper we proved that if one uses the relative distances Pi = Ilqi ­
qkll (cyclic permutation of i,j,k = 1,2,3) as coordinates for the Configuration Space, 

the reduction is described by the map: 

p:Q ~ C (33) 

(ql,q2,q3) ~ (PI,P2,P3) 

where: 

C== {,o = (PI P; P3) E Rt / Pi +Pi 2: Pk and cyclic permutations} 

and 

ac . {,o (PI P2 P3) E Rt / Pi + Pi = Pk and cyclic permutations} 

Taking account of reflection symmetry the reduction turns out to be a double covering. 

Hence in order to study global aspects of the motion one needs a new Configuration 

manifold which takes account of the nature of the double covering. 

Our" new" reduced Configuration manifold is so defined: 

(34) 
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,vhere: 

Q~ C x {+1} U BC x {O} U C x{-I} 

Let (PI, P2, P3, z) -=- (p, z). In the definitions two copies of C are glued along the boundary 

BC. The z coordinate takes account of the reflexion and parameterized the sheets of the 

covering (z = +1, 1~ z 0 parameterizes the boundary BC). 

Remark 4.1 

We denote with the same symbol Q the new reduced Configuration manifold since, 

as we now show, there is a homeomorphism (which is a diffeomorphism out of collinear 

trajectories) between the two systems of coordinates. 

In the first system of coordinates y is the angle between the two "planets':, measured by 

the oriented line on which mass ml and mass m2 stay. Hence the angle y is oriented. 

IFe have to stress that the choice of the oriented line is arbitrary since we are consider'ing 

lines up to rotations. Let us consider the map: 

T:Q ~ Q (35) 

(Pl~P2,~) ~ (Pl,P2,P3,Z) 

Pi = Pi i = 1,2 
P3 (pi + p~ 2PIP2 cos ~)1/2 

+1 i! ~ E (0, IT ) 

Z = 0 if <p = 0, IT{ 
1 if <p E (IT, 2IT ) 

This transformation is invertible, and fails to be a diffeomorphism only at z = 0 rv 'P = 0, IT 

(Collinear Configurations). The inverse is: 

Pi i 1,2 
= arccos[(pi + p~ p~) / (2PI P2 ) ] 

z = 1 =? cp E (0, IT) 

z = 0 , P3 = P2 + PI , PI = P3 + P2 =? ~ = 0 

z = 0 , P2 = P3 PI =? ~ IT 
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z = -1 =}cp E (11'",211'") 

In Qequipped with the "mutual distances" coordinates we can introduce an operation 

(J': 

(J':Q ~ Q (36) 

(p,z) ~ (p,-z) 

(J'2 = idQ, this operation represents the reflexion w.r.t. a generic line in the plane. In the 

coordinates {(PI, P2, cp)} the action of (J' becomes: 

(J':Q ~ Q (37) 

(PI,P2,CP) ~ (PI,P2,211'"-cp) 

On Qwe defined the following function spaces: 

AT = {((t) = (p(t),z(t)) / ((t +T/2) = (J'((t)} (38) 

AT = {( ( t) = (p( t), z (t) ) / ((t + T / 2) ((t) } (39) 

so the space of T-periodic, HI-functions with values in Q 

can be decomposed into: 

(40) 

In the coordinates {(PI, P2, cp)} ,ye can construct AT and AT by means of T. 

In [7] it is proved that the Reduced Action functional for the full Three Body Problem 

can be defined on Hb and written as: 

where p == (PI, P2, cp) and B is a matrix valued-func~ion: 

B : Q-t M(3 x 3, R) 
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the entries are smooth functions out of Collision configurations, and moreover the following 

results hold: 

Proposition 4.1 

The matrix B(P) is symmetric and such that there exist b1 ,b2 E R+ such that for all 

vectors V E R3: 

(41) 


where with (.~.) we denote the natural scalar product in R3. 

(see [7]) 

In [7] we proved a sort of "weak Poincare inequality": 

Proposition 4.2 

Let be ((t) == (p(t),z(t)) EAT- The following inequality holds: 

(42) 

This inequality allows to show that there are CO-compact sets. Let us now define the 

following subsets (depending on k2): 

Mk2 ..:.. {( E AT n Bh such that: sup g(p(s)) ~ k2} 
sE[O,T] 

with k2 > °and where: 

3 

IIp(s) II == I:(Pi)2 
i=l 

We found [7] that for any kl , k2 > 0, the following sets 

are L2([0, T], Q)-compact subsets of the sublevels of the Action functional. In the remark 

below we show that the compactness is in Co topology_ 

The same result can be concluded for the set: 

Mk1 ,k2 == {( E BQ / 3f' E [O,T] / a(((t*)) == ((t*+T/2), AT[(]:::; kt, sup g[((t)] ~ k2} 
tE[O,T] 
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vVe have to stress that the proof of the compactness of Mkl ,k2 depends only on the existence 

at least of one time of antisymmetricity. This result will be very important in the next 

sections. 

Remark 4.2 

Let us consider the following decomposition for the set Mkl ,k2: 

where 

Bk2 . {( E .Alkl,k2 I sup /I,o(s)1I < 3jTk2 l bt } 
sE[O,T] 

The set Bk2 is trivially CO-compact. On the other hand, for its complement~ we can 

consider the facts: 

(i) by hipothesis suPsg[((s)J 2:: kl 

(ii) the following inequality holds: 

sup 1I,o(s)ll- inf 1I,o(s)1\ ::; IT dt dd 1I,o(t)/11 
s s Jo t 

We prove the compacness for B~2' 

Using polar coordinates r == 1IP11, E ...:... ,o/IIPlI, it turns out that 

(T (T (T' • 
k2 2:: AT [(] 2:: a Jo dtr2 + bJo dtr2 + C Jo dt(E, E) 

vVith a, b, c > O. 

Now taking a sequence {rn(t), :En(t) E 52} E Bk2 with rn(t) = Tn{t) + 1JJ ~-rn{t) one 

finds that there exist Ct , C2 , C3 > 0 such that: 

then, the first term, the mean of rn(t), gives a bounded sequence in R. Using standard 

Sobolev inequality, the second term give that sups rn{s)is bounded. Since E(t)oE 52 Vt E 

[0, T] then sups IIE(s)1I is bounded. hence we can extract a subsequence converging in the 

Co topology. Therefore Bk2 is CO-compact. @ 

In' [2],[7] it is proved that collision solution are not minima for the Action functional 

of the full Three Body Problem. Indeed the following Proposition holds: 
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Proposition 4.3 

In jJ coordinates the collision solutions are described, near the collision instant t e , by: 

with Ci functions of the limit Central Configuration ([2}) and 

1I"li(t)11 =: O(td
) 0 < d < 1 i =: 1,2,3 

There exist continuous functions (91(t),92(t),93(t)) . g(t) and 8 small enough such that: 

with Ct, C2 > 0 and 3 > 1/2. 

Hence Collision solutions are neither minima nor regular critical points for the the 

Action functional of the Three-Body Problem reduced on J =: 0; thus regular critical 

points are not collision orbits. 

Critical manifold and its perturbation 

In this section we construct an explicit solution for the unperturbed problem. This so­

lution turns out to be a smooth critical point for the Action-functional therefore we can 

apply the perturbation theory to the full problem. 

The full Action functional is denoted by : 

AT[(, t] = A~[(] + Ay[(] (4:3) 

where: 

AT[(] ,;, f dty' 

with: 

limAT[(] =: 0 
<0-+0 

uniformly out of the collisions, but if ( is a collision solution the limit holds. 

The Lagrangian at t =: 0, to, is given by: 

to =: L [ai Pi~ + a~] + ala2(p1p2~): (44) 
i=1,2 2 Pl 2 Ei=1,2 alPi 
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whose Action functional is given by: 

A~[(l = f dtio(((t)) ( 45) 

The Lagrangian (44) describes a system formed by non-interacting masses al a2, each of 

which is attracted to the other by a Keplerian force, under the constrain that the total 

angular momentum is zero. 

We define A~[.] on the Hilbert space: 

with scalar product: 

(:pI, cp2)Hl([O,T],[O,21!"]) + L (pI, p;)H~([O,T],R+) 
i=1,2 

where (., . )Hl is the standard HI-scalar product. 

The Euler-Lagrange equations of the system are: 

for i = 1, 2; j =f:. i 

and 
ala2(plP2?~ 

2 = C 
Ll=1,2 alPI 

with c E R. These equations can be written as: 

d2p.
l a··- - i = 1,2t dt2 ­

(46)
{ y= 

The system (46) admits circular solution (0 : [0, T] -+ Q given by: 

(47) 

The solutions are parameterized by c and cp(O). \Ve have now to specify c and cp(O) such 

that (0 be cilcular periodic orbit, antisy~metric in the sense defined in the preceding 

section, i.e. reflected with respect to the line which connects two of the three masses. 
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In order to seek for these condition one has to take account of the fact that 'P is the 

relative betw~en the two bodies. <p is measured by this oriented line, therefore 'Po( t) E 

[0,21i] has a a minimal period To = T /2 where with T we denote the period of the 

trajectories in AT. 
Now (o(t) belongs to set of trajectories defined by the following relations 


Pi(t +To/2) Pi(t) = °i = 1,2 Vt E [0, To] 
 (48){ <pet +To/2) - yet) = -1i Vt E [0, To] 

In the next section we will prove that (0 belongs to ATo and the same for the continued 

solution (e. 

Substituting the solution (o( t) in (48) for c one finds: 

c = [To( a~: a~)] 1/3 (49) 

Rernark 5.1 

Using the Schwartz Inequality the second condition of (48) implies: 

(50) 

\Vith this condition we have a circular To-periodic antisymmetric solutions for the un­

perturbed problem. 

\Ve described solution which lives in Q, its image in Q, reduced the action of the 

translatio~s, is given by the couple (<p,'l/J). Using the condition that the total angular 

momentum is zero and that we areconsidering the case € = 0, one obtains: 

(51) 

From the expression of ~ one gets the condition for the periodicity of the motion in Q: 

(52)(::r E Q 

When this ratio is not a rational number then <po (t), 'l/J°(t) fill a two dimensional torus 

[0,21i] X [0,21i] ~ T2 in Q. From (52) one can write the trajectory in T2 corresponding 

18 
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to (0: 

(53) 

If (52) holds the ( is a family of periodic orbits on T2 parameterized by the r.h.s. of (53) 
·33 

which we denote with ~(al' a2, cp(O), '¢'(O)). Fixed To > 0, one has that al+-a~ < 1. Let bea1 a2 

r . (ai - a~)/(ai + a3 
) E Q, hence 3p, q E N / r = p/q, then using (51) the minimal 

period for the motion in [0, 27r] x [0, 27r] is qTo. 

Now we show that the circular antisymmetric solution (o(t) living in Qis not a min­

imum for the Action functional (45). This trajectory lies in a manifold which is non­

degenerated in in a sense which will be defined below. This fact will allow us to prove 

that when the perturbation is turned on the critical point (o(t) is continued in the small 

parameter. 

Proposition 5.1 

Let 

(54) 

{ 
p~ = (To/27r )2/3(1 + a3)2/3 


p~ = (To/27r )2/3(1 + a3)2/3 a12 (55) 

cpO(t) = ~t + cp(O) cp(O) E [0,27r] 


be the circular solution of the unperturbed problem. For all a2/al E R+ ( is a Critical 

point for for the Action functional: 

A~o[(l = to dtio«((t)) 

J.\Ioreover the circular solution (0 belongs to the non-degenerate manifold E ~ U:,;(O)(( t; 9(0)). 

Proof 

We start with a definition: 

Definition 4.1 

Given a C 2 functional F : H ---+ R on H Hilbert space, E c H compact and connected. 

E is called non-degenerate critical manifold for F iff: 

(i)E has no boundary 

(ii) DF(x) = 0 for all x E E 

(iii) ker D2 F(x) = TxE for all x E E 
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Obviously (0 E E. Since E rv [0,27r] mod 27r (i) is verified, then we already know that 

condition (ii) hold, we are left to verify (iii). 

We perform a rescaling in the A.ction functional, and we introduce the parameter: 

Parameter a does not appear in the Proposition, and, in fact, the circular solutions are 

critical points independently on the values of a, i.e. independently on the periodicity in 

the unreduced configuration space Q. 
The reduced Lagrangian becomes: 


i 1. 2 a . 2 + 1 + a + a(PIP2<P )2

'2PI 

I 

2P2 o == T PI P2 2(pt + ap~) 

and remember that ((t): 

vVhere c is obtained by the periodicity ~ondition on c.p: 

33 

c = [To(12: a)r
Firstly we compute the Hessian of the Lagrangian evaluated in ((t), ,ve get: 

where with 0 is a 2 x 2 matrix with null entries. The nonvanishing blocks are given by: 

A ..:.. (1 0)lOa 
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and 
. (T~(l + a3))1/3 

C = (27r)4/3 

For the second variation of the Action functional and one gets: 

where fi,g E Hh and: 

fl(t) ) 
v ~ f2(t)

( g(t) 

and c is the function in a already defined. 

Now by means of the periodicity conditions the following conditions hold: 

fi(t) = fi(t +To/2) i = 1,2 Vt E [0, To] 
{ g(t) = g(t +To/2) Vt E [0, To] . 

and thus we can represent the variation in term of their Fourier series: 

fj(t) 1/2To Lk[f4kexP 2kiwt + f4k" exp (-2kiwt)] j = 1,2 
{ g(t) = liTo Lk[g2kkiw exp 2kiwt - g2k *kiw exp (-2kiwt)] 

where w = 27r ITo and.* is the complex conjugation. Hence inserting these expressions into 

the second variations, using the Hessian of the Lagrangian and after some computations 

one obtains: 

< D2A~o«()v,v >= LI,j !AFj(f~f6* f6f~*)+ 

+ Lk LI,j(A]1 + 4w2k2A}I)~(f4k"f~k + f~k" f4k)+ 

+ Lk LI2bliw(kg2kf~k" - kg2k" f4k)+ 

+4w2Lk CIg2k l 2k2 (,j6) 

we can write: 

< D2 A~o«()v, v >~ L vkHkVk v6A2VO (57) 
k=l 

where: 
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and 

Hk ~ ( A2 + 4~2k
2
Al wb ) 

wbt 4w2C 

Firstly we note that when one considers constant variations in (57) one has: 

D2AO (r)..... ... .....tA .....< To I:, V, V >= Vo 2VO 

and one easily verifies that the matrix A2 has a negative direction for all values of a~ hence 

the constant directions are negative directions of the Hessian, and thus (o(t) is not local 

minimum for the Action functional. 

vVe have to study the kernel of D2A~o [(]. By means of the expression for the second 

variation, computed aboye, one can find the equations for the kernel: 

for i = 1,2, with obviously the periodicity condition on the variations It, I2~g. This 

system can be rewritten as: 
cPj ........ 


Al dt 2 = A2I + by 

:t {Cg} = 0 

The second equation can be integrated one time: 

Cy=d dER 

Then one gets: 

This system has an homogenous part given by: 

where 
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This matrix has eigenvalues with alternate sign since: 

det{A) < 0 

for all a E R. Using the form of matrix B, the allowed periodic solutions are given by: 

f (), d 0 

and hence we conclude: 

ker{D2 A~[(o]) = {{0,0:90) ; 90 E R} 

which corresponds to the direction tangent to (0. @ 

Theorem 5.1 

There exists fO E R+ and an H~-nei9hborhood Uf of (o{t) such that for all 0 < f < fO 

the Action functional ATo[., f] has a critical point (f(i) in Uf.. 

Proof 

From the definition of Hh it turns out tha:t: 

we proved that: 

hence: 

(ker(D2AH(o])).i = {(fl, /2,g) ; { dsg(s) = o} 
by the symmetry of D2 A~[(o] we have: 

Let be W E (ker(D2A~J(o])).1, we want to solve 

(58) 

for f small enough. Now the equation (58) can be rewritten as: 
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with liII1e_o1/ER((0,wE) = 0 for all w such that IlwllHl < 00. D2A~o[(0] is invertible 
Q 

on (ker(D2 A~o [(0])).1, hence by the Implicit Function Theorem we can deduce that there 

exists EO > 0 such that for all 0 < E < EO there exists a C 1 function w( (0, E) such that 

Nlust be noted that (( depends parametrically on at, a2 which appear in the Lagrangian. 

The Lagrangian is smooth for al =I- 0, a2 =I- 0 hence also (( turns out to be smooth in the 

parameters. 

We now prove the nondegenerancy of DATo [.: E] In ((' Let vETHh with 1.: E 

(ker(D2 A~o[(o])).1 then: 

by means of nondegenerancy of D2 A~J(o] on (ker(D2A~o [(oJ)).1 and using the regularity 

properties of ATo[" E] for Esmall enough.@ 

vVe want to find periodic solutions for the unreduced system the we give a conyenient 

functional description for the periodicity condition on the unreduced configuration space. 

Let us define the following functional P defined on Hh: 

(.59) 

with r rational and r < 1, To > 0 and (( E U(( (0) VE < Eo. 

From the definition follows that: 

Now if € 0 one has: 

. this expression vanishes if we take: 

a2 = [~lI/3 (60) 
al 1 + r 

and this value of the ratio of the masses corresponds to the periodicity condition for (o(t) 

in the unreduced configuration space. 
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In the sequel will be u'seful to consider the following change of coordinates in the mass 

parameters space: 
a = a2/al 

{ 0: = al + a2 

so we can write Pr,To/2[(o al~ a2] Pr,To/2[(t:, 0:, a]. 

Theorem 5.2 

Git'en To > 0, r rational r < 1 and 0: E R, there exists € > °such that for all 0 < E < € 

there exists a{E) continuous function of E) such that for (t:{t) E U~{(o) 

holds) and (t:{ t) is a periodic solution in the unreduced configuration space Q. 
Proof 

vVe have already see that given To > °and a rational number r < lone has: 

for a'" = [(I r)/{l + r)]1/3. 

We want to use the Implicit Function Theorem to find a continuous function a{E) such 

that VE < €, for some € > 0: 

with (t: E Ut:{ (0). 

In order to do that we have to take account that the constant EO appearing in Theorem 

4.1 does not depend on the masses aI, a2 and so on a. In fact· the regularity properties of 

ATo[.,E] as function of Edo not depend on at,a2. 

In order to apply the Implicit Function Theorem we are left to prove that: 

dPTo/2,r = /.TO/2+t d dP (':"( ~ t: ;t:) -t 0
sd p,p,tp,c.p rda t a 

computed at E , 0 and a = a*. 

Now we have: 

dPTo/2.r = /.To/2+t ds { ap djJ + a~ dpt + ap dept: + ap dept: } 
da t apt: da apt: da aept: da aept: da, 
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Taking into account that (e(t) (from Theorem 4.1) is C1 in a and t, we obtain: 

condition a* =I- 0 is equivalent to r < l. 
Hence we can now apply the Implicit Function Theorem concluding that given To > 0, 

r rational and less than 1, a E R there exists €(To, r, a) ~ to such that for all 0 < t < € 

there exists a continuous function a(t) such that: 

with (e E Ue(E) so p~(t +To/2) = Pl(t) , p;(t +To/2) = P2(t) , cpe(t +To/2) y(t) = Ii. 
Let us observe thaL considering r = p/q p, q E N we have: 

therefore the minimal period of (e(t) in 'Q is qTo.@ 

Non-collision solutions for the perturbed problem 

In this section, collecting the preceding results we prove that, for small value of the two 

masses, the Three-Body Problem reduced on J = 0 has non-collision periodic solutions 

which live in an appropriate Co - compact set Mkl ,k2 • 

Now we prove: 

1. For some kl' k2 > 0 E C Mkl,k2 (where Mkl,k2 denotes the set Mk1 ,k2 whose definition 

contains AT[., t] in the place of AT['])' 

2. We use the Theorem 5.1 to continue in € the the Critical point (0 into (e which 

belongs to a neighborhood Ue of (0. Thus we prove the existence of critical points for the 

functional AT [., t] in Mkbk2 . 

Proposition 6.1 

There exits t1 > 0 such that for all 0 < € < t1 the circular orbit (o(t) are such that 

(o(t) E Mt.k2 with 
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Proof 

vVe show that (o(t) E Nh1 ,k2 using transformation T. Indeed, for a trajectory in l\lkl,k'2 

one needs that there exists t .. E [0, To/2] z(t*) -z(t"" + To/2) and Pi(t*) = Pi(t- + To/2). 

for i 1,2,3. Now let cp(O) be in [0,1r] so z(O) = 1. No,vthere exists t* E [0, To/2] such 

that cp(t*) = 1r /2 so z(t"') = 1. For (0 we have: 

hence cp(t* + To/2) E (1r,21r) and thus z(t* + To/2) = -1 and Pi(t*) = Pi(C + To/2) for 

z 1,2,3 so we ha\-e (o(t) E 1\Ik1 •k'2' 

The first estimation comes from the definition of the set Mkf k . The term
}, '2 

Computing this expression on (o(t;cp(O)) = (p~,pg,wOt + cp(O)) one obtains a smooth 

function on 51 which can be minimized uniformly in t getting the first estimation. 

The second estimation can be found evaluating ATo [., t] on a generic element of L;, 

then one finds : 

ATo[(o, f] = ~(21l")2/3[To(1 + a3W'3 + ATo[(o] 

by means of the properties of the term depending on t ,ve can find t1 such that for all 

t < t1 

From this estimations one can also conclude that (0 f/. aJik1 ,k2 .@ 

Theorem 6.1 

Let ATo [., t] = A~o [.] + A~[.] the Action functional for the Three-Body Problem reduced 

on J = 0 with two small masses m1 = m m2 = mal t rna = ma2t. 

There exist k1' k2 > 0 t > 0 such that for all 0 < t < t the set Mke k contains a
1, '2 

neighborhood Uf of (0 (critical point for A~o[']' It turns out that the Action functional 

ATo [., t] has a critical point (e in Ufo This critical point gives a periodic non-collision 

strong solution of the Lagrange equations in the unreduced Configuration space Q. 

Proof 
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In section 4 we proved that for A~o (0 is critical and non-degenerate. Moreover in 

Proposition 5.1 \ve proved that for small values of t (say t < t1) there exists a neighbor­

hood of (0 which contains one critical point (e of the Action functional. As it was recalled 

in section 5, collision orbits are not regular critical points of the Action functional. There­

fore, since ATo[., t] is of class C 2 on the continued critical point, (f is a non-collision critical 

points the Action. 

In Theorem 5.2 we proved that one can choose t so small that there exist continuous 

functiolls a1(t),a2(t) > 0 such that the continued solution (f is periodic of period qTo 

(q E N) in the unreduced configuration space Q. 

In Proposition 6.1 we showed that there are k1' k2 > 0 such that (0 E Alk1 ,k2 and 

(o~ 81~lkl,k2 for t < t2. Hence chosen t <min{tl,t2} we can find Ue , a neighborhood of 

(0 such that: 

Ue C Mk1 ,k2 

Ue n 8Mk1 ,k2 == 0 

thus we can conclude that all the perturbed critical point (f of the Action functional 

belong to Mkl ,k2 .@ 

Behaviour of the Action functional on unbounded 
trajectories 

In this last section we study the behaviour of the full reduced Action functional on se­

quence of functions which converge to unbounded trajectory. Let us observe that the 

Action functional AT[., t] defined on Hh (with (48)), loses coercivity only on sequence of 

trajectories (n) for which: 

i) 3i j SUPt p~n)(t) E (0,00) 

ii)J;{ ds(<p(n) (S))2 <00 

This follows from the following inequality: 

AT[I", t] 
':t 

'"" II . 112L: Pi £2 
a1 a2(sUPt pt)2(SUpt P2)2 IIL;'11 22 

a1(sUPt pd2 + a2(sUPt P2)2 T' £ 
+ O(ljP1, Ijp2) 

then one finds: 

lim AT[(n), t] < 00 
n-oc 
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We will therefore consider_ only configurations in which goes to infinity the relative distance 

of one body with respect to the center of mass of the other two. 

In order to do that we rewrite AT['] using (24) as: 

(61) 

Some modifications are needed in the transformation by which the Reduction"a la Routh" 

was made. Since we want to consider the case when one of the three particles escapes to 

infinity, it is natural to use a system of coordinates which contains, as a coordinate, the 

distance of one particle from the center of the mass of the other two. Hence we substitute 

11 and define T{ : Q ~ Q as: 

(62) 

Remark 7.1 

In this coordinates the third body (with mass ma) will be the "leaving body" and in H~ 

we will consider sequence of trajectories for which inft lIy~n)(t)11 ~ 00 when n ~ 00. 

Then we apply transformation 72 with the substitutions: 

Therefore the Lagrangian (1) becomes: 

L (63) 

where: 

(64) 
i=1 

and in thfs coordinates one finds that the potential V becomes: 

Vert, r2, 8 1 - 8 2 ) = m1m 2/r1+ 

+m1ma[r~ + 2m2r1r2 cos(81 - 8 2)/(m1 + m2) + m~ri/(m1 +m2)2]1/2+ 

+m2ma[r~ - 2m2r1r2 cos(81- 8 2)/(m1 +m2) + m~ri/(m1 + m2)2]1/2 (65) 
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At this point we use the transformation T3 with (h -t 0 i c.p -t cf> 'lj; -t Wand the 

Reduction" a la Routh" and therefore we obtain the reduced Lagrangian whose form is: 

1 ~ . 2 4>2 MIM2rir~ 
Lo = 2 ~kliri + -2 M 2 k! 2 +V(rb r2'cf» (66) 

i=I Ir l + 2r2 

vVe can now write explicitly the terms appearing in (61): 

AT'[(] ~ { dt { ~1 [r~ + r~4>2] + m~~2} 

A res[r] . laTd {.LlI2 -2 V( .-h.) Ml(ri4»2}
T ':, = t -;:;-r2 + rI,r2,'1' - 2"- iU'". ~ 

o - L.Jt=I,2 lVltr~ 

Remark 7.2 

A rapid inspection to the two coordinates systems (PI, P2, c.p) and (rb r2, cf» shows that 

the passage bettceen the two is give by: 

(67) 

this transformalio n implies correspondence the periodicity conditions: (rl, r2, cf» have the 

same periodicity condition of (PI, P2. r..p),. therefore we consider again the space H~ whose 

elements wi~l be denoted with ( = (rI' r2, cf». 

vVe study Ar[.] on H~ with the usual condition (48), in the sequel we often use the 

canonical embedding of HI into Co. 

Firstly we study the behaviour of the Action on a particular set of unbounded sequence. 

Proposition 7.1 

Let {(k)(t)}~o E H~ be a sequence of continuous functions satisfying (48) for all k, 

and such that: 

lim inf r~k) 00 Z 1,2 
k-HX) t 1 

then: 

Proof 


All the terms in: 


Ar[(] f dtLo(((t)) 


30 



are positive, hence we have: 

Now since: 

• 

implies: 

Therefore: 

Now we have only to remember that by means of (48) for ~ one can prove that: 

Now evaluating the estimation found for the Action on the sequence prescribed by hy­

pothesis, the Proposition is proved. @ 

In the next Proposition we will use the decomposition (61). 

Proposition 7.2 

Let {((k)(t)}~o E H~ be a sequence of continuous functions saUsfying (48) for all k, 

and such that: 

lim inf r~k) = 00 • 
k-oo t 

while uniformly in k: 

and < 
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and 

Jor all variatio'(1,s v= (JI(t),J2(t),W(t)) in H~. 

Proof 

By means of (61) in order to prove the thesis we have to prove: 

(68) 

and 

(69) 

(68) comes from the following estimations 

(T dt M2 r2 
io 2 2 

and using that ax2+ yb2± cxy cos 'P ~ ax2+ yb2- cxy x, y, a, b, c > 0 one has: 

all these terms go to zero when evaluated on the sequence defined in the hypothesis. 

For (69) we have: 

I < DATS[(k)], v> I ~ f[ dtllVf2r2j21+ 

+f[ dt I~~w +Ei ~~ Ji I+ 
+ itT dt Mlrr l<Pwl+ 

o Li lv/i r ; 

rT d MtM2(~)2rlr21 f f I+Jo t (Li Mi r ;>2 rl 2 - r2 1 (70) 

Now using the following relations 
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. [( inft rl ) 2 ] 2(2: Alir~? 2:: (Inf r2)3r2 Ml + 1\;/2 
i t SUPt r2 

and the usual estimations, one has: 

I < DATS[(k)], v> I ~ M2 1I f 2I1L2 I1j2"L2+ 

+ II ~~IIL2 "W"L2 + L:i II ~~ IIL21IfillL2+ • 
,;Hlllrll1~ 11.i11 II '11 ++Ei 1\fi(inft Ti)2 '.:It L2 W L2 

+MtM211fI 1100 11<i>lIi2 IIrt 1100 (inft r2)2 [Mt G:::~r + M2f + 

+MrM21Ihllooll<i>lIi2(lIr tIl00)2(inf t r2)3 [Mt c:tt:~r + M2f (71) 

now, evaluating this estimation on sequences defined in the hypothesis one get the thesis.@ 

Let us call 3 00 the the set of trajectories in H~, satisfying (48), which fulfil the 

hypothesis of the previous Proposition. Now we show that this kind of trajectories lives 
2 ­out of any L -compact l\Jkl,k2 for all k2 > O. 

Proposition 7.3 

There exist kl > a such that: 

for all k2 > O. 

Proof 
•The constant kl is computed~ by means of the preceding Proposition, using AT eval­

uated on the Kepler System which remain in the finite part of the configuration space. 

Given a sequence of continuous function in 3 00 , in (PI, P2, 'P) coordinates, we are left 

to prove that: 
. '. (p~n) + p\n) _ p~n)r~

hm sup mIn J = 0 (72) 
n-oo tE[O,T] i,j,k (L:r(p~n) )2)1/2 

where obviously: P3 = Jpi + p~ - 2Pl P2 cos 'P-

It is easy to see that if inft r2 -+ 00 IIrllloo ~ C1 then, inft P2 -+ 00 II PI 1100 ~ C1 • 

N ow since p~n) and p~n) have a divergent sup-norm and pln) is bounded, one has that 

'. (p!n) + p(n) _ pln»)2 
sup mIn J 

tE[O,T] i,j,k (L:r(p~n»)2)1/2 
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this is equal to: 
( (n) + (n) (n»)2 

sup PI P2 - P3 
t (l:r(p}n»)2)1/2 

U sing the expression for P3 one finds that the last term is equal to: 

SUPtE[O,T]{(pin»)2 [( 1 + (Ipin)1p~n) - 2 cos cp(n) I)1(1 + (1 + (pin) 1p~n»)2 - 2(pin)1p~n») COS cp(n) )1/2)J2 

1/[p~n)(1 + (pin) 1p~n»)2 - 2(pin)1p~n») cos cp(n»)1/2)]} 

(73) 

but pin) 1p~n) ::; SUPt pin) 1inft p~n) and SUPt pin) ::; C1 one can see that the last term goes 

to zero as 0(11 inf t p~n»). @ 
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