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ABSTRACT 
When determining the state of the universe in the past from conditions on our past 
null cone, as determined by astronomical data, a crucial issue is whether or not the 
decaying mode in the density perturbation is zero (within the error bounds of the ob­
servations). We demonstrate a method for examining this amplitude, using a Newtonian 
gauge-invariant formalism. IRAS-QDOT data supply the density, assuming we know the 
value of the bias parameter, and the POTENT scheme is employed to find the velocity 
field. While the data are not good enough at present to arrive at a solid conclusion, 
nevertheless the method is shown to provide a way of testing important assumptions 
usually made regarding the origin of structure in the universe. An alternative viewpoint 
is to assume there is no decaying mode, and use this to determine a value for the bias 
parameter. The value determined in this way, on the basis of present data, is similar to 
that obtained in other ways. 
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INTRODUCTION 

Modern cosmology is constructed on the basis of a subtle 
blend of observation and theory, usually each supporting the 
other but from time to time in confrontation. The theoreti­
cal basis of the standard approach is the Robertson-Walker 
models and their interpretation as average (smoothed-out) 
models of the physical universe on a large scale (Weinberg 
1972; Peebles 1980; Gunn, Longair & Rees 1978; Kolb & 
Turner 1990). However observational data has not always 
found the universe to be as smooth as these ideal models 
suggest. Recent observations have made great strides in de­
termining what is actually there, for example through the 
Centre for Astrophysics surveys, and have lead to the dis­
covery of voids and walls, large-scale streaming flows, and 
the great at tractor (de Lapparent, Geller & Huchra 1986; 
Kirshner, Oemler, Schechter & Shectman 1987; Lynden­
Bell, Faber, Burstein, Davies, Dressler, Terlevich, & Wegner 
1988) - none of them predicted by theory before they were 
discovered. 

The theoretical basis for investigating how the universe 
really is, rather than comparing observations with the pre­
dictions of idealised models, was laid in a fundamental paper 
by Kristian & Sachs (1966), detailing how null cone obser':' 
vations can be used to determine space-time geometry and 
the matter distribution in it. The theory of this approach 
has been developed since in a series of papers (Ellis, Nel, 
Stoeger, Maartens & Whitman 1985; Stoeger, Ellis & Nel 

1992) whose aim and intention is summarised in various 
reviews (Ellis 1980, 1984). The observational results men­
tioned above in effect carry out a programme of this kind, 
on a relatively local scale where a Newtonian-like approach 
is adequate. 

Concomitantly on the theoretical side, considerable 
progress has been made in recent years in the gauge-free 
study of perturbations of Robertson-Walker cosmological 
models, in particular through the major paper by Bardeen 
(1980) and subsequently through analysis of an equivalent 
but fully covariant approach (Ellis & Bruni 1989). An inter­
esting issue, then, is how to relate these two studies to each 
other: specifically, to what extent the initial data for cosmo­
logical perturbations can be related to realistic astronomical 
observations on our past light cone (which is the locus of all 
events that can be probed by possible astronomical obser­
vations), along the lines outlined by Kristian and Sachs, but 
not necessarily restricted to 'near' our present space-time 
position (the vertex of the past light cone). Thus there is 
a need to relate the gauge-invariant analysis of cosmolog­
ical perturbations to the analysis of possible astronomical 
observations on our past null cone, in effect amalgamating 
the perturbation results of Ellis & Bruni and the null-cone 
observational approach of Stoeger et al. in a strictly obser­
vationally based theory of inhomogeneities in cosmology. 

This paper represents a testing out of that idea from 
present data catalogues, using the well-developed POTENT 
techniques (Bertschinger, Dekel, Faber, Dressler & Burstein 
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1990) and IRAS data (Kaiser, Efstathiou, Ellis, Frenk, 
Lawrence, Rowan-Robinson & Saunders 1991) to investi­
gate the initial data for perturbations in the regime near us, 
where a Newtonian analysis of dynamics is adequate. The 
results presented are interesting but should be treated with 
caution, for reasons to be explained in the main text; how­
ever some important issues are raised that deserve further 
study in more systematic long-term analysis of the data, 
both in the Newtonian regime (studied here) and in the 
analysis of observations on larger scales where a relativistic 
analysis is appropriate. 

Precisely, then, what we are after is a Newtonian gauge­
invariant description (Ellis 1990) of the region that is, cos­
mologically speaking, close to the Milky Way. This is in­
tender!. to .~!.:fye as a slice of initial data from which one 
could in principle integrate backwards in time. Immediately 
one encounters the problem of whether the decaying mode is 
or is not zero, which will be discussed further below. How­
ever a preliminary comment is in order: some of our col­
leagues will doubtless claim that it is obvious this mode is 
zero nowadays, so there is no need to test this supposition; 
it is a waste of time doing so. In response to the question of 
how we know this is 'obvious', the answer has to be that it 
is predicted by our standard theory of large scale structure 
formation; if the decaying mode is non-zero, the usual form 
of this edifice (and in particular, its relation to the cosmic 
microwave background radiation anisotropy measurements) 
will have to be altered. 

There are essentially two responses to this attitude. The 
first is to go along with it: why test what is fundamental to 
our present standard models, which we love and believe in? 
All we will do is verify what we already know. The second is 
that it is precisely because of this foundational importance of 
the result that it should be tested by all means available. The 
test may verify what we already know; in that case our sup­
position will be on a sounder footing than before. However 
there is always the admittedly small but nevertheless non­
zero possibility that the standard model may be wrong; in 
this case the experiment is of importance. If pressed further 
on why we should query the present standard understand­
ing, the response is that the commonly agreed models have 
often been wrong or misleading in the past, as fashions have 
come and gone (see e.g. Ellis 1989), and in particular in re­
cent times the standard understanding has failed to predict 
the major features already mentioned (walls, voids, stream­
ing motions, great attractors) before they were observation­
ally discovered. The philosophy advocated here is we should 
try and see what is actually there, rather than assuming we 
know the answer on the basis of theoretical predilections. At 
the root is the question of whether we prefer to base cosmol­
ogy more on observational tests Or on philosophically based 
models - an ongoing debate of fundamental importance (El­
lis 1991). 

For those not convinced by this argument, one can re­
verse the reasoning. In order to use the IRAS data to esti­
mate the density, we have to assume a best-fit value for the 
bias parameter, chosen on the basis of other astronomical 
observations; this value then underlies our determination of 
the magnitudes of the growing and decaying modes. One 
can however instead assume the decaying mode is zero, and 
use this assumption to determine a corresponding value for 
the bias parameter. We use our analysis to determine the 

bias parameter in this way, on the basis of present day data, 
arriving at a value of b consistent with that determined by 
other means, but really valid only as a sort of average over 
our sample, smoothed at a particular scale 

For simplicity in discussing the evolution of the pertur­
bation data we consider only the case n = 1, but this restric­
tion does not apply to the analysis of the initial data which 
is the main theme of this paper. Thus our main conclusions 
are unaffected by this simplification (certainly we would re­
gard observational testing of whether or not n is unity, as 
an important part of the approach advocated; however that 
is not the concern here). 

2 THE NEWTONIAN INITIAL DATA 

The evolution of linear Newtonian perturbations of the den­
sity and velocity is well known (Peebles 1980). In the linear 
regime, one finds 

where the subscript 'i'refers to the initial time, and aCt) is 
the cosmological expansion factor. 

The gauge invariant variables corresponding to density 
perturbation and its time derivative are the comoving spatial 
gradients of the density and of the fluid expansion: 

'Va == aCt) p,a (2)
p 

Za aCt) 0,a, 0 == divv. (3) 

The evolution of these quantities is given in Ellis (1990): If 
the perturbations are linear, 

(4) 

where the dot represents the convective derivative, and the 
second order propagation equation for 'Va is (op. cit., eq. 
28): 

(5) 

in the linear regime. It follows that the comoving fractional 
spatial density gradient can be written in terms of growing 
and decaying modes. When n = 1 and the pressure is neg­
ligible (i.e. p = c" 0), the solution is exactly the same as 
that for the usual density contrast in a flat background: 

(6) 

the first term (with spatially varying coefficient c+ a ) being 
the growing mode, and the second (with spatially varying 
coefficient c-a ) the decaying mode. Taking the convective 
time derivative along the fluid flow lines, we find 

(7) 

The initial data for (5) is 'Va and Va = -Za; if these quanti­
ties can be determined observationally as a function of spa­
tial position at the time to, then (6), (7) are a system of two 
linear equations, from which we can get C+ a and C- a at each 
point within the sampled region. In fact we easily see 

3 3/2 • 
C+ a ::=: sto ('Valo + to'Valo) (8) 
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Figure 1. Radial peculiar velocities in the sample, with Iczl < 
1500 km/sec. This is the supergalactic plane. Circles mark the 
positions of galaxies projected onto the SG plane after correcting 
for l\Ialmquist bias. 

Figure 2. Peculiar \'elocity from POTENT. This is the super­
galactic plane. The velocities were smoothed using a gaussian 
window of width 1200 km/sec. Note the "Great Attractor" near 
(-4000,2000) and part of Perseus-Pisces near (3000,-3000). 

2 3· 
C-a = -to(1)alo - -to1>alo) (9)
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where the age of the universe to is related to the Hubble 
constant Ho by to = ~H01. Substituting these values back 
into (6) gives the evolution of the density inhomogeneity 
(in the linear approximation) along the fundamental world 
lines. 

In the following, we use the POTENT analysis to deter­
mine Val o in a local region of the universe and IRAS data 
to determine 1>a loin the same region (the reason for these 
choices will be made clear in the discussion), so determining 
the initial data needed in (8), (9). 

3 THE POTENT ANALYSIS 

The POTENT scheme can be sununarised as follows: (A) 
Radial peculiar velocities are observed for a sample of galax­
ies whose distances are measured independently of redshift. 
These velocities are smoothed (using a tensor window) on 
a large-enough scale. After assuming that the velocity field 
has no vorticity, one can integrate the smoothed radial veloc­
ity on radial rays to get the velocity potential as a function 
of spatial position. The complete velocity field is the gradi­
ent of this potential. (B) Now assuming that the velocities 
arise due to the gravitational attraction of the matter alone 
(i.e. there were no residual velocities from early processes at 
the time of structure formation), one can deduce the matter 
distribution from the velocity field which has arisen through 
the gravitational effect of matter. 

As regards (A), we have been provided with peculiar 
velocity data by Dave Burstein and Stephane Courteau. 
The total sample includes roughly 1000 galaxies, of which 
roughly half are put into groups or clusters in order to reduce 
the errors. (For a thorough discussion of peculiar velocity 
measurements, see Faber &; Burstein (1988).) Fig. 1. shows 
a projected slice of the peculiar velocity sample which we 
employ. We consider the region in a sphere with radius 6000 
km/sec centred on the Milky Way. This allows us to find the 
velocity field and hence the expansion 0 and so the vector 
Za. (where, as we are assuming n = 1, we can normalise a by 
a(to) = 1 without loss of generality). The weakest part ofthe 
scheme is in the estimation of the distances, a notoriously 
difficult problem; the errors are roughly 20% of the distance. 
(Also, the way the galaxies are grouped strongly affects the 
log D n - log (7 relation. We have followed Bertschinger et al 
in using the original groupingsj for an alternative view, see 
Weigert &; Kates (1991).) 

Fig. 2. shows a slice of the reconstructed velocity field 
from our version of POTENT; it can be compared with 

Figure 3. (za Za)1/2 from POTENT. 

figure 13 from Bertschinger et al. (1990). Fig. 3 shows 
(zaZa)1/2 for that slice. The values near the origin have 
been suppressed. 

As regards (B), from the velocity field, one can find the 
density by using the linear solutions of the continuity equa­
tion. In the nonlinear regime, Nusser et a1. have found a 
quasi-linear approximation (Nusser, Dekel, Bertschinger &; 

Blumenthal 1991) that recovers the density remarkably well 
for -1 < 6 < 4.5. This method is formally related to the 
Zeldovich approximation, which explicitly assumes that the 
decaying mode is zero; for as mentioned already,thi,s deduc­
tion of matter density assll.IIl~s that this (sniooth) velocity 
field is, caused by the matter field present, starting from 
negligible initial velocities (Le. assuming the homogeneous 
solution of the equations is zero). If the decaying mode has 
indeed vanished, then we have the ingredients for construct­
ing the Newtonian gauge-invariant variables, so long as the 
overdensity is not too large. However by construction the 
decaying mode will be found to be zero; for that assumption 
has effectively been the basis of deduction (B). 

Thus it is not possible, at least in the linear regime, to 
compare the relative amplitudes of the decaying and growing 
modes by using POTENT alone, since they are not, in this 
approximation, linearly independent. Indeed in this analysis, 
in terms of the fractional overdensity 

Da a(t) 1~ 6 ' 

to first order we must obtain 

Da ;:;; -aH(t)Za 

because 6 = -(V. v)/aH. Half of the generality of general 
physical solutions has been lost. 

. To determine the density gradient vector independently 
of the velocity field, we need an alternative estimate of the 
density field, using POTENT to determine the velocity field 
as in (A) but replacing the density estimate (B) by other 
observations. This would allow construction of an indepen­
dent 1>a. One method, described below, requires a complete 
redshift catalogue and estimates of the Mass to Luminosity 
ratio to determine the density function. The POTENT data 
cannot be used for this purpose, as it does not comprise a 
complete catalogue of the relevant part of the sky (the ideal 
would be a complete catalogue with both redshift and inde­
pendent distance measures for each galaxy; to obtain such 
a catalogue would be a very costly exercise). However the 
IRAS data is in principle suitable for the purpose. 

4 THE IRAS DATA 

Instead of using POTENT to determine the density distribu­
tion, as discussed above, we have estimated 1>a using IRAS­
QDOT data. This is a complete infra-red catalogue, with 
redshifts measured for a large sample of objects. The fluctu­
ation in the number density of galaxies, 6n , is found follow­
ing Saunders et a1. (1991). The density is then found after 
assuming a value for b, the linear bias parameter (Kaiser 
1987). This assumes that light traces mass in a linear way. 
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Figure 4. Galaxy number density from QDOT IRAS. This is 
the supergalactic plane. The smoothing scale is 1200 km/sec. 

Figure 5. (V a 'Pa)l/2 for b 1. To correct for a linear bias, 
divide by b2 • 

No correction for peculiar velocity has been made. The num­
ber counts are corrected for the IRAS mask using the QD OT 
luminosity function, and smoothed with a Gaussian window 
of width 1200 km/sec. Va is found numerically by fitting a 
Chebyshev series to the grid data along each direction sep­
arately (supergalactic x,y,z) and then taking the analytic 
derivative of the fit. This is a noisy procedure because of 
the numerical derivative. 

It is clear that the bias factor affects the gradients Va 
in a critical way. We will assume a constant bias factor here, 
although recent developments suggest that b ......, 1 on very 
large scales (r >- 100h-1 Mpcj Kaiser et al. 1991) and 
b ....., 3 on smaller scales (r <......, 5h -1 Mpcj Salucci, Persic 
& Borgani 1993). However this should not affect us as we 
are using one smoothing scale; the assumption is that the 
bias factor should be (spatially) constant on that scale. In 
the linear theory, one finds not b but the combination bOo.6 i 
this is just equivalent to a renormalisation of the bias value. 

Fig. 4 shows the number density from QDOT, which is 
the number density of (mostly spiral) galaxies, in the Super­
galactic plane. Fig. 5 shows (vaVa)1/2 for the QDOT slice, 
for b 1. 

A number of technical points arise in the analysis: (a) 
The distance to each galaxy is assumed to be equal to the 
redshift in the Local Group frame. There is error involved 
here but we smooth over large scales. 
(b) The number density is found on a grid 25 x 25 x 25 by 
weighting each galaxy (of 2181) in the sample by the inverse 
of the QDOT luminosity function (Saunders et a1. 1991) and 
smoothing with a Gaussian window of width 1200 km/sec. 
The QDOT mask (sections of the sky where no data is avail­
able from IRAS due to "incomplete satellite coverage, source 
confusion, or redshift incompleteness") is taken into account. 
(c) The real density will be displaced due to the effects of 
bulk motions tsee Kaiser 1987) So far no correction has been 
made for this. We do not expect the effect to be large. 
(d) The POTENT group compared its results with the 1.936 
Jy IRAS results (Strauss et al. 1992) by selecting a random 
subsample of galaxies and running them through the PO­
TENT machine (Dekel et a1. 1992). To do this, they esti ­
mated the peculiar gravitational potential due to the galaxy 
distribution, and then inferred peculiar velocities for the ran­
dom subsample (it's an iterative procedure). To get these ve­
locities, they assumed the decaying mode is gone. The broad 
agreement obtained shows it is not outrageous to use the dif­
ferent samples to get the density and the velocity field, as we 
do here (it would of course be preferable to have one data set 
that gave all the needed information, as mentioned above; 
such data is obtainable in principle, but is not at present 
available). 

Figure 6. !c-I/lq I for b = 1 and b = 2. 

5 	 THE ISSUE OF GROWING AND DECAYING 
MODES 

Now that V and Z have been independently constructed, 
one can use equations (9) and (4) to estimate the amplitude 
of the decaying mode. Properly scaled (see the appendix), 
the squared magnitudes are 

(10) 

(11) 

Fig. 6 shows the ratio of the magnitudes of C- a and C+a. The 
ratio is quite sensitive to the value of b. The fundamental 
point is that we obtain a non-zero value for the decaying 
mode. What is not clear is the errors involved: is this non­
zero value equivalent to zero, on taking the observational 
errors into account? This issue is crucial. 

If one runs the linear evolution equations backwards in 
time, one finds that any residual decaying mode anywhere 
carries with it the implication of enormous inhomogeneity at 
the last scattering surface (Nusser & Dekel 1992), on using 
the linear analysis to propagate conditions back in time from 
the observed data to the last scattering surface (see equation 
(6». A non-linear analysis would lead to the estimation of 
greater inhomogeneity at last scattering due to these modes, 
than estimated from the linear analysis (we are running the 
equations backwards in time: thus the non-linear gravita­
tional tendency to generate greater inhomogeneity than es­
timated by linear theory from the initial data we are us­
ing, is operative in that direction of time, the equations of 
course being time symmetric). It is well known that when 
the fractional overdensity enters the nonlinear regime, the 
linear theory will underestimate it (Yahil1988). The decay­
ing mode, run backward" in time, will exhibit the same be­
haviour, i.e. if there is any non-zero amplitude in this mode 
today, then we obtain a lower estimate of the amplitude at 
an earlier time on using linear theory. In this sense, it is 
essential that the decaying mode be strictly zero today, if 
one is to interpret for example the COBE data (Smoot et 
a1. 1992) in the standard way as showing the last scattering 
surface was very smooth. 

Now there are some problems with the analysis above 
leading to a non-zero estimate of the decaying mode. In par­
ticular, as implied above, the use oftwo data sets rather than 
one increases the number of hidden biases. The POTENT 
sample includes a sampling gradient bias which can be re­
duced by varying the size of the smoothing window but not 
eliminated; the QDOT sample is biased towards spiral galax­
ies, giving perhaps less weight to structures rich in elliptical 
galaxies. The linear bias factor should be modified to include 
spatial variation. Nevertheless, it is at present impossible to 
disentangle these errors and biases from the evidence for a 
decaying mode. The critical issue is to estimate realistically 
the errors in the data and in the resultant estimation of the 
density gradient and velocity gradient fields; only this will 
establish if the value determined should really be taken as 
an indication of a non-zero decaying mode, or not. One of 
the interesting issues is to see how stable other structures in­
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Figure 7. The Wilcoxon-Mann-Whitney parameter for the sam­
ples D2 and Z2, varying b 

ferred from similar analyses - such as the 'Great Attractor' 
seen in Figure 2 - are when we allow realistic error esti­
mates, such as may be required to set the decaying mode to 
zero. 

One other possibility to keep in mind is that power is 
put into this mode via "non-gravitational" processes, e.g. 
large scale explosions (Ostriker &; Cowie 1981) or wakes 
from relativistic cosmic strings (Vachaspati 1986), at var­
ious times t .. , so that the underlying assumption of (6) that 
the growth is purely due to gravitational effects is revised. 
If the evidence favours a non-zero mode after rigorous error 
estimates, and one finds a nonzero decaying mode too oner­
ous despite such alternative sources of power for this mode, 
then an analysis similar to that given here could perhaps 
be used to constrain and improve the assumptions leading 
to the conclusion (implying a need to revise distance indi­
cators, for example, or providing evidence for biased galaxy 
formation with an effectively spatially varying bias factor). 

The alternative procedure is to insist that the decay­
ing mode is zero and use that assumption to constrain the 
linear bias factor. We take Z from POTENT and 1) from 
QDOT. Then we apply the non-parametric Wilcoxon-Mann­
Whitney test to the samples V 2 and Z2, varying b. This test 
produces a combined order statistic by ranking all the val­
ues in the combined sample and then comparing the sums 
of the ranks of each sample (Lloyd 1986). If these sums are 
very different, the samples are probably not the same. If 
the statistic z = (R1 - )Rl O/var(Rt) has magnitude greater 
than 2, where Rl is the sum of the ranks from one of the two 
samples, and (R) is the expectation value, then the prob­
ability is less than 95%. Fig. 7 shows the graph of z vs. 
b. For comparison, the POTENT-IRAS collaboration finds 
bfRAS = O.T::g:~ (Dekel et al. 1992), which is not inconsis­
tent with Fig. 7 (that figure does not strongly indicate a 
particular value of b, rather suggesting broad ranges that 
are compatible with the observations). 

FURTHER DEVELOPMENT 

The first deirable further development would be to proceed 
with the present analysis but better data (as that becomes 
available), trying to run the argument both ways (as in the 
present article). 

Secondly, it would be interesting to extend this work 
to much larger scales, which should still be in the linear 
regime. A direct comparison with the observed fluctuations 
in the CMB would in principle be possible. Unfortunately, 
the redshift-independent distance measures used to find the 
peculiar velocities of the test galaxies cannot be extended 
very far, and since this analysis depends on independent 
velocity and density information, different methods of ob­
taining peculiar velocities on larger scales may be required. 

In the long term, gauge-invariant variables should 
be used to numerically examine the evolution of inho­
mogeneities in nearly FRW spacetimes, in the relativis­
tic domain. Fully general relativistic numerical approaches 
(Bishop 1993) can then be based on null cone data, when 
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integrating back into the past. In this way it should be possi­
ble to consider realistically observable data on the null cone 
and extrapolate backwards. 

The present paper can be taken as testing this approach 
in the Newtonian (linear and non-linear) regimes. The ex­
tension required is to the relativistic, non-linear regime. In 
using this approach one must recognise the problems of com­
pleteness and bias in data analysis (taking seriously selection 
effects and the existence of dark matter); nevertheless one 
can insist on attempting to test what is really there rather 
than relying on theoretical prejudice, at least where it is 
possible to test such prejudice. 

7 CONCLUSIONS 

Using methods similar to those of Nusser &; Dekel (1992), 
but estimating the density variation independently of the 
velocity field, we have found values for Newtonian gauge­
invariant density perturbation variables (Ellis 1990) in a re­
gion in a sphere 6000 km/sec centred on the Milky Way. 
From these, we can not rule out the possibility of a non-zero 
decaying mode amplitude at presentj indeed taking the data 
at face value, we find there is such a mode present. An im­
portant feature of our analysis is that it decouples some of 
the series of assumptions usually made, indeed it is usually 
assumed that there is a negligible decaying mode. However 
we still have had to follow the POTENT analysis in assum­
ing zero vorticity, which is certainly something one would 
like to test observationally rather than taking for granted. 

If there is in reality a non-zero decaying mode present, 
this implies problems for the standard picture of growth of 
inhomogeneity in the universe. It is not possible to draw def­
inite conclusions from the data without reliable error esti­
mates; these are not yet available. Nevertheless the analysis 
above shows how in principle important assumptions under­
lying our present viewpoint are amenable to checking. In 
due course it should be possible, by using similar methods 
on more extensive data, either to verify that the standard 
view - that the decaying mode is essentially zero today ­
is acceptably within the error limits; or to show it is unten­
able. This procedure depends on an assumed value for the 
bias parameter; one can alternatively run the procedure the 
other way, assuming a zero decaying mode and determin­
ing a value for the bias parameter. Perhaps the best view 
is that one is testing the series of assumptions as a whole, 
including the value of the bias parameter; our point then is 
that one can explicitly formulate the analysis so as to test 
the hypothesis that the decaying mode is zero, and this is a 
fundamental feature which should indeed be checked. 
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Appendix: Dimensionless scaling relations for V 
and Z 

We define a dimensionless time t = t/to where the subscript 

"0" denotes the present. Then aCt) = k't2 
/ 

3 
is the dimension­

less expansion and H = 2/3t is the dimensionless Hubble 
parameter. The gauge-invariant variables V and Z have di­
mensions L-1 and (LT)-l, respectively. We choose a typical 
length scale :Z:o and then take the present Hubble parameter 
Ho and then construct dimensionless variables, 

Va = c+ ai/3 + c_at- 1 (AI) 

- _ --1/3 3_ --2
Za. = -C+at + '2C-a.t (A2) 

where c = :z:OC, 15 = :z:oV, and Z = (:z:o/Ho)Z. At the 
present, t = 1, and we have 

C-a = 2/5 (Va. + Za) ; (A3) 

c+a= 3/515a- 2/5 Za. (A4) 

If 11 = 0 then Z = 0 and one finds c_/c+ = 2/3, in agree­
ment with Peebles (page 68, 1980). 

This paper has been produced using the Blackwell Scientific 
Publications L\TEJX, style file. 
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