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Abstract. 

In this paper we find a class of solutions of the sixth Painleve equation 

appearing in the theory of wnvv equations. We describe the asymptotic 

behaviour close to the critical points in terms of two parameters and we find 

the relation among the parameters at the different critical points (connec­

tion problem). Results on the subject are already proved by some authors 

quoted here, who solved the connection problem for a limited range of the 

parameters. Other approaches allow to find the asymptotic behaviour for 

a wider range of parameters, but without solving the connection problem. 

Here we extend the range of the parameters for which we solve the connection 

problem and give a unified picture of pre-existing results. 
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Introduction 

Let us denote with PVIIJ. the sixth Painleve' equation with the following choice of the parameters (in 
standard notation of [8]): 

(2J.L - 1)2 
a= 2 ,/3=, 0, <5 = ~ 

2 

Namely: 
2 

d Y 1 [1 III (dy ) 2 [ 1 1 1 1dy
dx2 = 2' y+ y - 1 + y - x dx -;- + x - 1 + y - x dx 

+~ y(y - 1)(y - x) [(2J.L _ 1)2 + x(x - 1)1 
2 x 2 (x 1)2 (y _ X)2' J.L E C 

This choice is important in the theory of WDVV equations of associativity for n 3 fields. The WDVV 
equations can be reduced to PV IIJ. [3J 

We study the case 2J.L f/. Z and find solutions to PVIIJ. with asymptotic behaviour a(O)x1-u(O) for 
x -+ 0, 1- a(l) (1 - X)l-O"(l) for x -+ 1, a(oo)x-O"(oo) for x -+ 00, where a(i) and a(i) are complex numbers 
such that a(i) =I- 0 and a(i) f/. (-00,0) n [1,(0) (here (a, b) denotes an open interval and [a, b] a closed 
one). The convergence of x to the critical points x = 0,1,00 is along spiral or radial paths, according 
to the value of a. We also describe the analytic continuation of such solutions and solve the connection 
problem, namely we find the relation among the three couples (a(i) , a(i»). 

The existence of solutions with one of the above asymptotic behaviours at one of the critical 
,. points was proved by Shimomura for generic parameters a, /3, " <5 in [17] [9]. The three criti­

cal points were treated separately (actually, just x = 0 was considered, the others being equiva­
lent by symmetries) and the connection problem was not touched. We quote his result: for any 
a E C\ {(-00,0] n [1, +oo)} and any k E C there exist a solution of PVI on the domain D(E) := 

{x E C\{O} I 0 < Ixl < f, le-kx1-ul < f, lekxul < f } behaving in the following way: y(x) = e-kx 1- u(1+ 

O(lxl + le-kx1-0"1 + lekxO"I). Here f f(a) is sufficently small and C\{O} is the universal covering of 
C\{O}. In the case ~a < 0 and ~a 2:: 1 the shape of the domains above forces x to converge to 0 along 
spiral paths. 

We observe that the case a = 0 is not included in Shimomura's picture. Moreover, it is not clear if 
a solution having the prescribed asymptotic behaviour close to a critical point (say x 0) has a similar 
behaviour when x approaches another critical point. And if it does, how are the parameters (a, k) 
characterizing the behaviour at one critical point related to the parameters at another critical point? 

For 0 ~ ~a < 1, Jimbo [10] solved the connection problem for solutions having the above asymptotic 
behaviour along radial paths converging to the critical points. He made use of the isomonodromic 
deformation theory under some genericity assumption on the parameters 0, /3, ,,8. Exploiting the 
connection between the Painleve' equation and Schlesinger equations, he found the relation between the 
parameters a, a and the monodromy data of the fuchsian system associated to PVI. The crucial step 
in his proof is a result on the asymptotic behaviour of a class of solutions of Schlesinger equations which 
was proved by Sato, Miwa, Jimbo in [16]. 

Later, Dubrovin-Mazzocco [4] applied Jimbo procedure to PV IIJ. (2J.L ~ Z), which violates some of 
the genericity assumptions. They classified all the algebric solutions of PVIIJ. in terms of monodromy 
data and gave a geometric interpretation of the data themselves in terms of finite reflection groups. 

In this paper we prove that Jimbo [10], and Dubrovin-Mazzocco [4J procedure can be extended to 
any complex a(i) ~ (-00,0) n [1, (0). While in [10] and [4] the convergence of x to the critical points is 
along radial paths, the extension of the result to any a(i) ~ (-00,0) n [1, (0) forces us to consider spiral 



paths whenever ~a < 0 and ~a 2:: 1. Thus it turns out that the solutions we find can be identified with 
those studied by Shimomura: in this way we give an extended and unified picture of both Shimomura 
and Jimbo's works, and we solve the connection problem for Shimomura's solutions. Actually, we prove 
that a solution behaves as stated above simultaneously at the three critical points, we give explicit 
formulae which connect the parameters (O"(i) , a(i») with the monodromy data of the fuchsian system 
associated to PVIp. by the isomonodromic deformation theory and so we obtain the connection between 
the parameters themselves. We also describe how these parameters change under analytic continuation 
of the solution (this point was carefully analyzed in [4] for 0 :s; ~O" < 1 and is crucial for the classification 
of algebric solutions). 

The notes are organized as follows. In section 2 we give the results with a few comments. In section 
3 we derive them. In particular, lemma 1 of section 3 is the generalization to any complex 0" ¢ (-00,0) n 
[1, (0) of Sato-Miwa-Jimbo result [16] used in [10] [4]. Section 4 is an Appendix on the monodromy data 
of the fuchsian system associated to PVIp. by the theory of isomonodromic deformations. 

Acknowledgments: I thank prof. B. Dubrovin for being always ready to discuss and give me 
hints. I'm indebted to M.Mazzocco for many discussions, and for drawing my attention to the works of 
Shimomura. In this paper I often refer to [4], where the case 1 :s; ~O" < 1 is studied. 

2 Results 

2.1 Local Behaviour 

In these notes we suppose that 
2p, tf. z 

A solution y(x) of PVIp. is a meromorphic function of the point x belonging to the universal covering 
of pI \ {O, 1,00}. Usually, one starts from the local study of a branch y(x) of the solution, where 
x E pI \ {O, 1, oo}. Studying a branch means that x can't describe loops around 1, 0, and 00. Thus, 
some branch cuts are necessary (for example I arg(x)I < 7r and Iarg(l - x)1 < 7r, see figure 2). The 
global solution y(x) is obtained as the analytic continuation of such a branch along curves encircling the 
singularities 0, 1, 00 . 

Let 0" and a denote two complex numbers, with the restrictions 

0" E n := C\{(-00,0) U [1, +oo)} a =f. 0 

Our firt aim is to show the existence of solutions of PVIp. which behave like a xl-u as x -+ 0 in a suitable 
way. Thus, we concentrate on a small punctured neighbourhood of x = 0, and the point x can be read 
as a point in the universal covering of Co := C\{O} with 0 < Ixl < € (€ < 1). Namely, x = Ixleiarg(x), 
where -00 < arg(x) < +00. 

In order to specify the way x tends to zer~we introduce a domain contained in the universal covering 
of Co (we denote the universal covering by Co). If a 0 we define the domain 

D(e;O" = 0) = {x E Co S.t. 0 < Ixl < e} 

If 0" =f. 0 we observe that 

~O" arg(x) 

log Ixl 

We define a domain in which 0 < O"'(x) < 1. Let (h, O2 E R, 0 < if < 1 and: 

D(€jO",01,02):= {x E Co S.t. 0 < Ixl < €, e-th~ulxl&::; Ixul:S; e-02~ulxlo, 0 < if < I} 

Here € is small enough, depending on if (in particular, from the proof of theorem 1 which follows, we'll 
see that € -+ 0 if if -+ 1). The domain can be rewritten as 

~O" log Ixl + 02~a :s; ~a arg(x) :s; (~O" - if) log Ixl + 01 ~O" 

Figure 1 shows the domains. Note that if 0 ::; ~G' < 1 the domain contains any sector of width 
less then 27r (provided Ixl is sufficiently small). Also note that D(€;a,fh,82 ) = D(€;a 0) for real 
O:S;cr<1. 
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figures where it is not zero) 



When we consider a branch y(x) of a solution y(x) we have to restrict arg(x) to a < Iarg(x)\ < b 
with la bl < 211". Thus in the following we'll always understand that fh and (}2 are chosen in such a 
way that the values a < arg(x) < b are contained in D(€;a,(}1,(}2) 

Theorem 1: Let 2J.l rj. Z. For any a E n and for any a E C, a:f- 0, there exists a branch y(x; a, a) of 
a solution of PV II-' whose analytic continuation in D(€; a, (}I, (}2) has the asymptotic behaviour 

(1) 

Here 0 < .5 < 1 is a small number. If 0 :::; ~a < 1 the branch y(x; a, a) itself has the above behaviour as 
x --+ 0 in any sector of width less then 211". 

Theorem 1 is valid if the convergence of x to zero is along a "regular" path, like a radial path (when it 
is possible) arg(x) = bconstant, or a spiral-shaped path ~a arg(x) (~a I:) log Ixl + b~a, 0 ~ I: :::; 0-, 
contained in D(€; a,fh, (}2). Along the paths with I: = 0 ( and a :f- 0) the theorem must be slightly 
modifided by substituting the constant a by a function a(x) = 0(1) as x --+ O. This function will be 
explicit ely computed in the proof of the theorem. 

The solutions y(x) of theorem 1 can be compared with those found by Shimomura [17]. They are 
actually the same, with a slight change of the domains. In figure 1 we also draw the possible paths along 
which x --+ O. 

A remark on the notation: in the following, I will omit fh, (}2 writing the domains. Also, we say that 
two matrices M and N are conjugated if there exists an invertible matrix A such that M = A-I N A. 
Finally, we denote by I the identity matrix. 

2.2 Parametrization of a branch through Monodromy Data 

As it is well known, in the case 2J.l rj. Z there is a one to one correspondence between a class of equivalence 
of admissible triples of monodromy data (xo, Xl, xoo) of the fuchsian system associated to PVII-' in the 
theory of isomonodromic deformation, and a branch of a solution (see section 3 and the Appendix). 
Two triples (xo, Xl, xoo) and (x~, x~, x~) are equivalent if their elements differ just by the change of two 
signs. A triple is admissible if just one Xi = O. The following relation holds: 

(2) 

We expect that for any (a, a) of theorem 1 we can find a set of monodromy data, and conversely for a 
set of monodromy data satisfying (2), eventually resctricted by some additional conditions, we can find 
0'= a(xo,xl,Xoo ) and a = a(xO,xl,Xoo ). 

Theorem 2: Let 2J.l rj. Z. For any a E n and for any a :f- 0 of theorem 1, there exists a tril)le of 
monodromy data (xo, xl, xoo ) given by the following formulae: 

i) a-:/; 0, ±2JL + 2m for any mE Z. Let a - 4~' s:f- O. 

Xo = 2 sine ~a) 

1 

Xl = - [1(10-) (2 + F(a) s + F(;) 8)] 2 (3) 

where 
2cos2(~a) 

f(a) = cos(11"a) c~s(211"J.l)' 

ii) 0'=0 
Xo 0 

xi = 4sin2 (11"J.l) (1 - a)

1x~ = 4 sin 2 (11"JL) a 



We can take any sign of the square roots 

iii) a = ±2J-L + 2m. Let again a =: - 4
1
8 

iiil) a = 2J-L + 2m, m = 0,1,2, ... 

Xo = 2 sin(7rJ-L) 

16i'+rnr(J.L+m+l)2
X - - 2

1 - r(m+1)r(2J.L+m) 

Xoo = i Xl e-i7r J.L1 

iii2) a = 2J-L + 2m, m = -1, -2, -3, ... 

Xo = 2 sin(7rJ-L) 

X - _ 1 1 
1 - cos2 (7rJ.L) 16i'+7T>r(J.L+m+!)~r(-2J.L-m+1)r(-m) VB1 

7r2 

Xoo = iX1e~7rJ.L 

iii3) a = -2J-L + 2m, m = 1,2,3, ... 

Xo = 2 sin(7rJ-L) 

16-i'+7T>r(-J.L+m+ 1 )2
X - - 2

1 - r(m-2J.L+1)r(m)1 
Xoo = iXl ei7r J.L 

iii4) a = -2J-L + 2m, m = 0, -1, -2, -3, ... 

Xo = 2sin(7rJ-L)I ~, 1 I 
Xl = - co"(~~) 16 i'+7T> r( - J.L+m+! )2r(2J.L-m)r(1-m) VB1 

In all the above formulae the relation x6 + xr + x~ - XOX1Xoo = 4sin2 (7rJ-L) is automatically satisfied. 
Note that a "I 1 implies Xo "I ±2 

Conversely, for any set ofmonodromy data (Xo, Xl, xoo) such thatx6+xr+x~-XOX1Xoo = 4sin2 (7rJ-L) 
there exist parameters a, and s := -1/4a (or a) obtained as follows: 

I) Generic case 
2(1 - cos(7ra)) = x6 

fl(j) (2 + F(a) s + F(;) 8) = xr (4)

11 (2 F() -i7r(j 1) 2f((j) - a e s - F((j)e "rcr 8 = Xoo 

Note that f (a) may be rewritten as 

f ( ) 4 - x6 _ 4 - x6 
a = 2 - x5 - 2 cos(27rJ-L) - xI + x~ - XOX1Xoo 

Any solution a must satisfy the restriction a "I ±2J-L + 2m for any m E Z, otherwise we encounter the 
singularities in F(a) or 1/F(a) (namely, the zeroes and the poles of f( .. )) and in f(a). If x6 = 4 the 
system has solutions a = 1 + 2n, nEZ, which do not belong to n. In order to have solutions a = 2n, 
n E Z we need Xo = °.We treat this possibility in the following case I I ). 

II) Xo = 0. 
2(1 - cos(7ra)) = 0 

4sin2 (7rJ-L) (1 - a) = xI14sin2 (7rJ-L) a = x~ 



Note that the only solution in n is a 0 and 

Xoo 
a == --;:---::-­xr +x~ 

III) x6 = 4sin2 (7rfL)· Then (2) implies x~ -xr exp(±27rifL) . Four cases which yield the values of a 
non included in I) and II) must be considered 

1II1) x~ == -xre-211"iJ.l 

a 2fL + 2m, m == 0,1,2, ... 


f(m + 1)2f(2fL + m)2 
8 ~~--~~~--~- xi 

162J.l+2m f(fL + m + ~)4 

a -2fL + 2m, m == 1,2,3, ... 

f(m - 2fL + 1)2f(m)2 x2s 
16-2Jl+2mf(-fL + m + ~)4 1 

a -2fL+2m, m==O,-I, -3, ... 

s = COS:(~I-') [16-'.+2mr(-I-' + m+ ~)4r(21-' m)'r(l- m)' xir' 
If xa =J. 4 (a =J. 1 + 2n, n E Z) we can always choose (from I), II), III) ) a E n. Then there 

exists a branch y(x; a, a) y(x; Xo, Xl, x oo ) parametrized by the monodromy data and whose analytic 
continuation in D(C; a'(h ,fh) has the asymptotic behaviour of theorem 1. 

Observe that the formulae iii), III) are also obtainable from (4) and (3) respectively in the limit 
a -+ ±2fL + 2m. However, we will prove them separately, because in the proof of the general case we 
will encounter divergences for a ±fL + 2m. Three remarks are in order here: 

Remark 1: In the generic case I), with x6 =J. 4, the system (4) in two variables a, s and three 
equations is compatible. Actually, the first equation 2(1 - cos(7ra)) == x5 has always solutions. Let us 
choose a solution ao (±ao + 27rn, 'Vn E Z are also solutions). Substitute it in the last two equations. We 
need to verify they are compatible. 

Instead of S and ~ write X and Y. We have the linear system in two variable X, Y 

F(ao) F(~O) ) (X) = ( f(ao) xI - 2 ) 
( 1 -~1I"0"o Y 2 f( ) 2F(ao) F(O"o) e ao Xoo 

The system has a unique solution if and only if 2i sin(7rao) == det ( F(!)(a;2 i1l"0"o 1 F(;~i1l"0"O) =J. O. 
F(O"o) 

This happens for ao ¢ Z. The condition is not restrictive, because for a even we turn to the case I I) of 
the theorem 2, and a odd is not in n. The solution is then 

2(1 + e-i 1l"0"o) - f(ao)(xi + x~e-i1l"0"O)
X 

F(ao)(e-211"iO"o - 1) 

y 



Compatibility of the system means that X Y == 1. This is verified by direct computation: 

XY = e- i1T O' [2(1 + e- i1T O') - (xI + x~e-i1TO')f(O")] [(xIe- i1T O' + x~)f(O") - 2(1 + e-i1TO')] 
(e- 2i1T0' - 1)2 

_ 8cos2 (¥)(xi + x~)f(O") - 4(4 sin2 (¥» - ((xi + X~)2 - xaxtx~)f(0")2 
-4 sin2 (-JrO") 

Using the relations COS2 (1T{) = 1- xa/4, COS(1To") 1- x5/2 and f(O") = --.r:--.;--"'--- we obtain 

1 ( 4 - (xi + x~ - XoX I Xoo) f (0" ») = ~ (4 - (4 - X5») 1 
Xo 

It follows from this construction that for any 0" solution of the first equation of (4), there always 
exists a unique 8 which solves the last two equations. 

Remark 2: The first equation of system (4) determines 0" up to 0" 1---+ ±O" + 2n, n E Z. As remarked 
above, substituting in the last two equations one of the values of 0" E n obtained from the first equation, 
we determine uniquely s. In the different domains D(e, ±O" + 2n) the spiral-shaped paths along which x 
tends to zero are different. Thus the same branch y(x; Xo, Xl, xoo) has anlytic continuations on different 
domains with different asymptotic behaviours prescribed by theorem 1. In particular, note that it is 
always possible to choose 0 ~ ~O" < 1, by the transformation 0" 1---+ ±O" + 2n. In other words, we can 
always consider radial paths of convergence for the branch y(x; Xo, Xl, xoo). 

Observe however that for 0 ::; 0" < 1 the operation 0" 1---+ ±O" + 2n is not allowed, because 0" leaves n. 
Remark 3: A triple of monodromy data (xo, Xl, xoo) determines 0" and -0" through the equation 

2(1 - COS(1To"» = x5. The parameter s corresponding to 0" is determined by 

1 ( 1 ) 2f(O") 2 + F(O") s + F(O") s = Xl 

1 ( . 1) 2-- 2 - F(O")e- l1T O' s - . =X
f(O") F(O")e- t1T O' 8 00 

We observe that f(O") = f( -0") and that the properties of the Gamma function 

1T 
r(l-z)r(z)= . ( )' r(z + 1) zr(z)

sm 1TZ 

imply 
1 

F( -0") = F(O") 

Then the value of s corresponding to -0" is (uniquely) determined by 

1 ( 8 F(O"»)
f(O") 2 + F(O") + -8­

1 ( s =X~f(O") 2 - F(O")e- i1TO' ­

We conclude that s( -0") 
Theorem 1 describes the asymptotic behaviour of the solution y(x; xo, Xl, xoo) in terms of the pa­

rameters (0", a = and (-0", a = - 4S(~0') on the domains (e may not be the same, but we take 
the smallest) 

D(e; 0") : ~O" log Ixi + B2~0" ::; ~O" arg(x) ::; (~O" - a) log Ixi + B1 ~O" 

D(e.;-O"): (~O"+a)loglxl +Bl~O"::; ~O"arg(x)::; ~O"loglxl +B2~0" 

The two domains intersect along the line ~O" arg(x) = ~O" log Ixi + B2~0" (see figure 1). This implies that 
the two different asymptotic representations of theorem 1 on D(O") and D(-0") must become equal along 
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Figure 2: Branch cuts 

the line ~a arg(x) = ~a log Ixi + e2~a. Actually, after the proof of theorem 1 it will be clear that along 
the lines ~a arg(x) = ~a log IxI+ b~a (b a constant), contained in D (a), the behaviour of y (x) is 

y(x) = A(x; a, s(a)) Ixl (1 + O(lxr')) 

where 8 is a small number between °and 1, and 

A(x; cr, s(cr)) = [-~ (8 lCe-iQ(X) + s C ei'>(z) 2) ei.,g(x)1 
1

a(x) = ~a [[(~a)2 + (~a)2] arg(x) - (~a)2b] , C =e- fSub 

The property s( -a) immediately implies that 

A(x; -a, s( -a)) = A(x; a, s(a)) 

In this way we have proved that the asymptotic behaviour, as prescribed by theorem 1 in D(a) and 
D( -a), is the same along the common boundary of the two domains. 

2.3 Analytic Continuation of a Branch 

We describe the analytic continuation of the branch y(x; a, a) y(x; Xo, Xl, Xoo ), a < arg(x) < b, 
la - bl < 271". 

We fix a basis in the fundamental group 71"(PI \ {a, 1, oo}, b), where b is the basepoint (figure 2). The 
analytic continuation of the branch along paths encircling x = 0 and x = 1 (a loop around x 00 is 
homotopic to the product of two loops around °and 1) is given by the action of the group of the pure 
braids on the monodromy data (see [4]). Namely, for a counter-clockwise loop around 0 we have to 
transform (xo, Xl, x oo ) by the action of the braid f3r, where 

f3r : (xo, xl, xoo ) r--t (xo, Xl + xoxoo xlx5, Xoo - XOXI) 

For a counter-clockwise loop around 1 we need the braid f3~, where 

Let /3 be a braid corresponding to a loop in PI\{O, 1, oo}. Solving the system (4) or using the 
formulae of I I), I I I) in theorem 2, we find the new parameters a!3, a!3 of the new branch /3 (y(x; a, a)) 
y(X; a!3 , a(3). 

As an example, consider the loop around X = O. From the formulae in I), II), III) of theorem 2 we 
derive the transformation 



In fact, Xo ~ Xo implies that a does not change. The transformation of a is proved as follows: 

For a = 0 we have Xo 0 and f3f : (O,Xl,Xoo ) ~ (O,Xl,Xoo )' Thus 

Xoo 
a=---~---==a 

Xl + Xoo 

For a = ±2t£+ 2m, we consider the example a 2t£ + 2m, m = 0, 1,2, .... The other cases are analogous. 
We have 8 = XI H(a) = -x~H(a)e2Tii/-L, where the function H(a) is explicitely given in theorem 2, 
III). Then 

Then 
a ~ ae - 4Tii/-L == ae- 27riu 

For the generic case I) (a t/. Z, a f:. ±2t£ + 2m) recall that 

F(a) 8 + = xrf(a) - 2 

{ F(a)e- iTiu 8 + -::::-r-~~- = 2 - x~f(a) 

has a unique solution 8. Also observe that f3l : Xoo ~ Xl. Then the transformed parameter f31 : 8 ~ 8/31 

satisfies the equation 
. /3 1 2F(a)e-'I.1rU 8 1 + = 2 - xlf(a)

F(a )e-i7ru 8/31 

== - (F(l1) S+ F(~) S) 
_eiTiuThus 8/31 = 8. This implies 

27riu 2Tiiuf3r: 8 ~ 8e a ~ a e-

We know that the branch y(x; a, a), and the branch y(x; a, ae-2Tiiu ), which correspond to different 

monodromy data (XO,Xl,Xoo ) and (xgr,xfr,x~) respectively, and with the same a < arg(x) < b, 
la - bl < 27r, are local representations for the same solution of PVIw On the other hand theorem 1 tells 
us that the analytic continuations of the two branches have the behaviour 

1y(x;a,a) = ax -
U(1 + O(lxla)) 

2TiiU ) = 2Tiiu ly(x; a, ae- ae- x - u(1 + O(lxIO)) a(xe2Tii )1-U (1 + O(lxIO)) (5) 
2Tiias X -t 0 in D(€;a,01,02)' For suitable 01 , O2 and for sufficiently smalllxl both x and x':= xe are 

contained in D(e;a,01,02) and thus y(xja,a) and y(x;a,ae-27riU ) == y(x';a,a) are actually the analytic 
continuations of the branch y(x; a, a) to the points x and x'. Thus theorem 1 is in accordance with the 
analytic continuation obtained by the action of the braid group. 

For a loop around 1 the action of f3~ changes Xo to Xo - Xl XOO' Thus the new branch has new exponent 
a/3~ f:. a and new coefficient a/3~ obtained from I) I I), I I I) of theorem 1. 

2.4 Singular Points x = 1, x = 00 (Connection Problem) 

In this subsection we use the notation a(O) and a(O) to denote the parameters of theorem 1 near the 
critical point X = O. We describe now the analogous of theorem 1 near X = 1 and X 00. The three 
critical points 0, 1,00 are equivalent thanks to the symmetries of the PVI/-L equation. 

a) Let 

x = ~ y(x):= ~ y(t) (6) 

Then y(x) is a solution of PVI/-L (variable x) if and only if y(t) is a solution of PVI/-L (variable t). The 
singularities 0 and 00 are exchanged. Now, we can prove theorem 1 near t = O. We go back to y(x) and 
find a branch y(x; a(oo), a(oo») whose analytic continuation to 



arg(x) 
arg(x) 

~ 
IOg~ loglxl 

o<0' <1 Re 0' >1~ 
Figure 3: Some examples of the domain D(M, 0' (}()) 

O~a-<l} 

has the asymptotic behaviour 

(7) 


where M > °is sufficiently big and 0 < 8 < 1 is small (figure 3). 

b) Let 
x 1 - t, y(x) = 1 - yet) (8) 

y(X) satisfies PVIp. if and only if yet) satisfies PVIp.. Theorem 1 holds for yet) near t = 0 with coefficients 
0-(1) and a(1). Going back to y(x) we obtain a branch y(x; 0-(1), a(l») whose analytic continuation to 

D(E;o-(I»):= {x E C\{l} S.t. 0 < II-xl < € , e-81~t711_xliT ~ 1(I-xt(l)1 ~ 

O~a-<l} 

has behaviour 
(9) 

Let us fix branch cuts in C\{O,I} (for example Iarg(x) I < 11", larg(1- x)1 < 11"), or equivalently in 
pI \ {O, 1,00} (figure 2). 

Then we choose a (class of equivalence of) triple of monodromy data (XO,Xl,Xoo ) satisfying (2). 
They correspond to a unique branch y(x; Xo, xl, xoo) whose asymptotic behaviour at x = 0 is given by 
theorems 1 and 2. 

After the transformation (6) the solution yet) corresponds to a solution of Schlesinger equations 
whose class of equivalence of monodromy data is represented by (xoo, -XI,XO - XIXoo ) [4]. In the same 
way, for (8) the monodromy data are (XI, Xo, XOXI - xoo). It follows that the analogous of theorem 
2 holds at x 00 and x = 1. It determines 0-(00), a(oo) and 0-(1), a(l) in terms of monodromy data, 
provided we make the substitutions 

(Xo, Xl, Xoo) H- (Xl, Xo, XOXI - Xoo) at x = 1 

We have thus solved the connection problem: given (XO,Xl,Xoo ) we can always find (o-(O),a(O»), 

(0-(1), a(1»), (0-(00), a(oo») from theorem 2 with the above substitutions. There is a unique branch 
y(x; Xo, Xl, xoo) whose analytic continuations on the domains D(f(O); 0-(0»), D(E(!); 0-(1), a(l») and D(M; 
0-(00), a(oo») have asymptotic behaviours at X = 0, x = 1, x = 00 given by (1), (9), (7) respectively. 

As a last remark, note that, for 2J.L fj. Z, the case 0-(0) = 0-(1) = 0-(00) = 0 is forbidden because otherwise 
Xo = Xl = XOO O. Also, the cases 0-(0) = ±2J.L + 2m(O), 0-(1) = ±2J.L + 2m(1), 0-(00) = ±2J.L + 2m(00) are 
forbidden, otherwise xa = xr = x~ 4sin2 (1I"J.L) and (2) is violated. 



3 Derivation of the Results 

3.1 Proof of Theorem 1 

In order to prove theorem 1 we have to recall the connection between PV IlL and Schlesinger equations 
for 2x2 matrices Ao{x), Ax{x), Al{X) (x in Ax is a label, not a variable!!) 

4A..o.­
dx - x 

(10) 

We look for solutions satisfying 

Ao(x) + (x) + A, (x) = (-t ~):= -A= I' E C, 21' rf- Z 

tr{Ai) = det(Ai) = 0 

Let 
Ao Ax Al

A(z,x):= - + +-­
z z-x z-1 

Then y(x) is a solution of PV IlL if and only if A(y(x), Xh2 = O. 

The system (10) is a particular case of the system 

(11) 
d:; = -~ L:~:=I[Bv,Bvl] + L::;I[Bv,AIL ] 9ILv(X) + L:~/2=dBv,Bvl] hvv1(x) 

where the fundons fILv, 9ILv , hILv are meromorphic with poles at x = 0,1,00 and L:v Bv + L:IL AIL -Aoo 
(here the subscript", is a label, not the eigenvalue of Aoo !), System (10) is obtained for fILv 9IL v = 
bv/(alL - xbv ), hILv 0, nl = 1, n2 = 2, al b2 1, bi = 0 and BI Ao, B2 = Ax, Al AI. 

We prove the analogous result of [16], page 262, for the domain D(e; a): 

Lemma 1: Consider matrices BZ (v = 1, ." n2), A~ ('" = 1, .. , nl) and A, independent of x and such 
that 

LB~ + LA~ = -Aoo 
v IL 

I::B~ = A, eigenvalues(A) = a 

Consider the domain D(c; a, (}ll (}2) (or D{c; u 0») introduced in section 2, depending also on 
o< (j < 1. Also, suppose that fILv, gILv, hILv are holomorphic for Ixl < c. 

For a fixed (j and a sufficiently small e < 1, the system (11) has holomorphic solutions AIL(x), Bv(x) 
in D( c; U, (}I, (}2), satisfying: 

t71IIAIL(x) - A~II ::; G Ixl l 
­

A t71Ilx-A Bv(x) x - B~II ::; G Ixl l -

Here G is a positive constant and (j < Ul < 1 

Important remark: There is no need to assume here that 2", tf. Z. The theorem holds true for any value 
of ",. If in the system (11) the functions fILv, OIL v, hILv are chosen in such a way to yield Schlesinger 
equations for the fuchsian system of PVIlL' the assumption 2", tt. Z is still not necessary, provided the 
matrix R (see the Appendix) is considered as a monodromy datum independent of the deformation 
parameter x. 

Proof: To simplify notations, we write x instead of X. Let A(x) and B{x) be 2 x 2 matrices holomorphic 
on D(c; a) and such that 

IIA(x)11 ::; GIl IIB(x)ll::; G2 on D(c;u) 



arg(x) 

log Ixl 

Figure 4: Path of integration. 

Let f(x) be a holomorphic function for Ixl < e. Let a2 be a real number such that (j < a2 < 1. Then, 
for sufficently small e the following estimates are valid for xED (e; a) 

Ilx±A A(x) x=FAIl :::; Cl lxl- U2 

IIx±A B(x) x=FAII :::; C2 1xl-0"2 

Ilx-A 1(.) dB A(s) SA B(s) s-A f(s) x A II ::; C, C2 Ixl '-U 
, 

Ilx-A 1(.) ds sA B(s) s-A A(s) f(s) xA II ::; C, C2 Ixl'-u 
, 

where L(x) is a path in D(e; a) joining 0 to x. To prove the estimates, we observe that 

~ 
in D(€; a)max{lxl 2 ,Ixl 

Then 
IlxA A(x) x-All :::; IlxAIIIIA(x)II II x-All :::; e2(h~u C l lxi-iT 

= (e2(h~0" Ixlu2 - iT ) Cl Ixl-U2 
Thus, if e is small enough (we require e0"2- iT :::; e-2(h~u) we obtain IlxA A(x) x-All:::; C1 Ixl- u2 • 

We turn to the integrals. The integrands are holornorphic on D(e;a), then they do not depend on 
the choice of the path, but only on the point x. Thus we choose the path 

arg(x) = a log Ixl + b, a= or arg(x) = b if !Sa = 0 

where b is chosen appropriately such that L(x) stays in D(e; 0"). See figure 4. Then we compute 



where by Idsl I mean d{) Ids({))/d{)l, and {) is a parameter on the curve L(x). The last step in the 
inequality follows from 

and the observation that, on L, IsO"I = Isla- e-b~O". Thus 

Is~1 Is-~I} {lsl~ 
max { Ix~ I' Ix-~ I = max Ixl~' 

The parameter s on L(x) is 
s({)) := ei 'l1 

where {) E (-00, arg(x)] or E [arg(x), +(0). Then 

{ Idsllsl-a- = ( d{) Ids IIS({))I-a- = ~ Ii +.!.I e arg(:J-b(l_a-} = ~ Ii + ~llxll-a-
JL (x) JL (x) d{) 1 a 1 (J"(J" a 

Then, the initial integral is less or equal to 

e201~0" max If(x)1 C1C2 constant lxiI-iT 
Ixl<f 

Now, we write lxiI-iT = Ix10"2- iT Ixl l -0"2 and we obtain, for sufficiently small t: 

- U2e201~U maxlf(x)1 Cl C2 constant Ixll-iT:s Cl C2 Ixl l
Ixl<f 

We remark that for u = 0 the above extimates are still valid. Actually IIxA II Ilx ( ~ ~ ) II di­
verges like Ilogxl, IIxAA(x)x-AIi are less or equal to Cl Ilog(x)12, and finally Ilx-A fL(x)ds A(s) 

sA B(s) s-A f(s) xA11 is less or equal to C1C2 max Iflllog(x)1 2 fL(X) Idslllogsl2. We can choose L(x) to 

be a radial path s = pexp(io:), 0 < p < lxi, 0: fixed. Then the integral is IxlClog Ixl2 2 log Ixl + 2 + 0:2 ). 

The factor Ixl does the job, because we rewrite it as Ixl u2 Ix1 1 
-

u2 (here (J"2 is any number between 0 
and 1) and we proceed as above to choose t small enough in such a way that (max If I Ixl0"2 x function 
diverging like log2lxl) :s l. 

The estimates above are in a sense enough to prove the lemma. 
We solve the Schlesinger equations by successive approximations, as in [16]: let Bv(x) x-A Bv(x)xA. 

The Schlesinger equations are re-written as 

Then, by successive approximations: 

B~k) (x) B~ + { ds {~[B~k-l) (s), L s-A(A~k-l} (s) - A~)sA]+
JL(x) IJ. 

+ L[B~k-l) (s), S-AA~k-l) (s)xA] glJ.v(s) + L[B~k-l) (s), B~~-l) (s)] hI/vI} 
IJ. 1.1' 



The functions A~k)(x), B~k)(x) are holomorphic in D(€;CJ), by construction. Observe that IIA~II :s C, 
IIBel1 :s C for some constant C. We claim that for Ixl sufficiently small 

crlIIA~k) (x) A~II:S Clxl l -

Ilx-A (Ahk) (x) - A~) xAIl :s C 2 1xl l 
- cr2 (12) 

IIB~k)(x) - Bell :s Clxl l - crl 

where (j < CJ2 < CJI < 1. Note that the above inequalities imply IIAhk)11 :s 2C, IIB~k)1I ~ 2C. Moreover 
we claim that 

Ilx-A (Ahk) (x) A~k-l)(X)) xAII ~ C 2 <5k- l Ixl l - cr2 (13) 

IIB~k)(x) - B£k-l)(x)11 :s C <5k-llxll-crl 

where 0 < <5 < l. 
For k = 1 the above inequalities are proved using the simple methods used in the estimates at the 

beginning of the proof. Then we proceed by induction, still using the same estimates. We leave this 
technical point to the reader, but we give at least one example of how to proceed. As an example, we 
prove the (k + 1)th step of the first of (13): 

IIAhk+l) (x) - A~k)(x)11 :s C 8k Itl l - crl 

supposing the kth step of (13) is true. For simplicity, we take 81 = 82 = O. Let us proceed using the 
integral equations: 

+SAB(k-l) s-A A(k-l) - sA B(k) s-A A(k») f (s) II <v f.J. v f.J. f.J.V ­

:::; j dlsl t IIAhk)sAB~k) - Ahk-l)sAB~k-l)s-Alllfpv(s)l+ 
L(x) v=l 

N ow we estimate 

~ IIAhk)sAB~k)s-A Ahk-l)sAB~k)s-AII + 

+ IIAhk- l )sA B~k)s-A - Ahk- l )sA B~k-l) s-A II 
:s IIAhk) Ahk-l)llllsABtk)s-AII + IIAhk-l)llllsAIIIIBtk) - Btk-I)lllIs-AIi 

By induction then: 

The other term is estimated in an analogous way. Then 

IIA~k+l) _ Ahk)II ~ constant 8n2 C 2 max Iff.J.vl 8k- l lxiI-iT Ixll-crl 

We choose € small enough to have const 8n2 C 2 max If I lxiI-iT :s 8. Note that the choice of f is 
independent of k. In the case CJ = 0, lxiI-iT is subsituted by Ixl(log21xl + O(log Ixl)). 

http:Iff.J.vl


The inequalities (12) (13) imply the convergence of the successive approximations to a solution of 
the Schlesinger equations, satisfying the assertion of the lemma, plus the additional inequality 

o 

We turn to the case in which we are concerned: we consider three matrice Ag, A~, A~ such that 

Ag + A~ A, Ag + A~ + A~ = diag(-f.L,f.L) 

tr(A?) = det(A?) = 0, 0, x, 1 

Lemma 2: Let rand s be two complex numbers not equal to 0 and 00. Let T be the matrix which 
brings A to the Jordan form: 

a=O 

The general solution of 

is the following; 

For a =I- 0, ±2f.L: 

(2f.L)2_~ (-a2 - ~_(2_f.L)_2 (i -r)A - 8 (2p.)2_0-2 
/-L r 8f.L r-1 

0_ "4 o ­
( 

0-

( 

0- 8) T-1AD - T _Q:l Ax = T Q:\ 
4 s 4 s 

where 

For a = -2f.L: Ag and A~ as above, but 

A (-t :) A~ = (~ -;) T 0 ¥) (14) 

or 

A= (-: ~) A? ( ~r ~) T= ( 1 (15)n 
For a = 2f.L: Ag and A~ as above, but 


AD
A = (-t :) 1 (~ 7) T=(¥ ~) (16) 

or 

A= (-: ~) A~ = ( 
-r 
0 ~) T= (~ -~) (17) 

2p. 

For a = 0: 
AD = T (0 s) T-1 AD = T (0 1; s)

x ° 0 0 0 

(-~ ~4 r )A = ~2 ) A~ (=1 i!:. 
r 



T=(_~ -2~!)

P.T p. T 

We leave the proof as an exercise for the reader. 

We are ready to prove theorem 1: 

Theorem 1: The solutions of PV Ip., corresponding to the solutions of Schlesinger equations (10) 
obtained in lemma 1, have the following behaviour for x -+ 0 along a path ~CT arg(x) = (RCT-:E) log Ixl + 
b~CT, 0 ::; ~ ::; jj, contained in D(€; CT'(h, ( 2): 

y(x) = a(x) x1- u(1 + O(lxIO)), 

y(x) = sx (1 + O(lxIO)), CT=O 

where 0 < 8 < 1 is a small number, and a can be computed as a function of s. Namely 

1 
a 

4s 

along any path, except for the paths ~CT arg(x) RCTlog Ixl + b~CT, along which IxuI = Constant as 
x -+ O. In this case 

a(x) :s (1 - 2 s Ceio:(x) + S2 C2e2iO:(X») 0(1), for x -+ 0 

1
a(x) = RCT [ [(RCT)2 + (SSCT)2] arg(x) - (~CT)2b ] , C = e-~ub 

Proof: We write x for x to simplify notations. y(x) can be computed in terms of the Ai(X) from 
A(y(x), Xh2 = 0: 

x(Aoh2 x(Aoh2
y(x) 

(1 + x)(Aoh2 + (Axh2 + X(Alh2 = x(Aoh2 - (Ad12 + x(Ad12 

(Aoh2 1 
= - x -- -:-----:-:--:---:----:--:---:---:­

(Alh2 1 - x((Aoh2 + (Ad12) 
U1As a consequence of lemmas 1 and 2 it follows that Ix (Ad121 ::; c Ixl (1 + 0(lxI 1

- )) and Ix (Aoh21 ::; 
U1c Ixl 1- u (1 + 0(lxI 1- )), where c is a constant. Then 

y(x) 

From lemma 2 we find, for CT =I 0, ±2JL: 

Then (recall that jj < CT1) 

x
y(x) = -­

4 

Now x -+ 0 along a path 
~CT arg(x) (atCT - ~) log Ixl + b~CT 

for a suitable band 0 ::; ~ ::; jj. Along this path we rewrite: 

xC" = C Ixl E eio:(z) 



b
a(x) = [~" + ~;~~l arg(x) c= 

Then 

1 u x ­ [1y(x) = -- ­
4 8 

For E -:j:. 0 the above expression becomes 

1 1 u U1y(x) = __x - (1 + 0(lxI 1- ) + O(lxIE))
48 

We collect the two 0(..) contribution in O(lxIO) where t5 = min{1 - 0"1, E} is a small number between 
oand 1. We take the occasion here to remark that in the case of real 0 < 0" < 1, if we consider x -t 0 
along a radial path (i.e. arg(x) = b), then E = (j = 0" and thus: 

41sxl-u(1 + O(lxI U 
)) for 0 < 0" < ~ 

y(x) = 
{ U141sx1-u(1 + 0(lxI 1 - )) for ~ < 0" < 1 

Finally, along the path with E = 0 we have: 

y(x) = 

Namely 

u U 2y(x) = a(x)x1
- (1 + 0(lxI 1- )) , a(x) := - 1 (1 2 8 Ceio:(x) + 8 C 2e2iO:(X)) = 0(1) for x -t 0 

We observe that y(x) is 

Ey(x) = [- 4 : Ce-'a(z) e'.,g(z) ]IXI'- (1 + O(lxI6)) , E # 0 

y(x) = [-~ (/ce-,a(z) + s C e,a(z) - 2) e,",g(z)]IXI (1 + O(lxI6)) , E =0 

We let the reader verify that also in the cases 0" = ±2/-l the behaviour of y(x) is as above (use the 
matrices (14)and (16)) and that for 0" = 0 

U1y(x) 8 x (1 + 0(lxI 1 
- )) 

For 0" 0, we recall that 0 < 0"1 < 1 is arbitrarily small. 

3.2 Proof of Theorem 2 

We are interested in lemma 1 when 

Equations (11) are the isomonodromy deformation equations for the fuchsian system 

As a corollary of lemma 1, for a fundamental matrix solution Y(z, x) of the fuchsian system the limits 

Y(z) := lim Y(z, x)
x-tO 



exist. Here x --+ 0 in D(E; (J). They satisfy 

dY = [nl A~ +~] Y 
dz L z - a z 

1-'=1 I-' 

In our case, the last three systems reduce to 

dY 
dz [ 

AO(X) + Ax (x) + Al (x) 1Y 
z z-x z-1 

(18) 

elY 
dz 

dY 
dz 

[ ~+~l Y z -1 z 

[ 
Ag + A~ 1Y 
z z-1 

(19) 

(20) 

Before taking the limit x --+ 0, let us choose 

z --+ 00 (21) 

Thus we have 

Y(z) = , z -4 00 (22)([ + 0 G)) z - A~ 
A=(I + O(z)) z 

A 
Co, z --+ 0 

A AJ =GdI + O(z - 1)) (z - 1) Cl , z --+ 1 

A A A A(0 1)Where GIl A?Gl = J, J = 0 0 . Co, Cl are conection matrices. If we choose a fundamental matrix 

solution for (20) with the following behaviours 

z --+ 00 (23) 

- J ­
= Go (I + O(z)) z Co, z --+ 0 

=Ch(I + O(z - 1)) (z _1)J 61 , Z --+ 1 

then 
Jim x-Ay(xz, x) = Y(z) Co (24) 
x~o 

Here Gal AgGo = J, GIlA~Gl = J. We choose a monodromy repersentation for (18) by fixing a 
basepoint and a basis in the fundamental group of pI as in figure 5. Let Mo, Ml , Mx , Mrx; be the 
monodromy matrices for the solution (21) corresponding to the loops "Ii i = 0, x, 1, 00. Note that 
Mrx;MlMxMo = I. The dependence of (18) on x is isomonodromic, because the coefficients satisty the 
Schlesinger equations. For this reason, since the system (19) is obtained from (18) when x and 0 merge. 
and the singular point z = 1 does not move, we have 

(25) 

where Ml is the monodromy matrix of (22) for the loop 1'1 in the basis of figure 6. Moreover, observe 
that 

(26) 



and the system (20) is obtained as ~ and 00 merge (figure 7). Also, observe that the singularities z = 0, 
z = 1, z l/x of (26) correspond to z = 0, z = x, z = 1 of (18). The poles z = 0 and z = 1 of (26) do 
not move as x -+ O. By isomonodromicity we conclude that 

Mo COl MoCo== ColCole21iiJCoCo (27) 

Mx Co1M1Co == ColClle21iiJClCO (28) 

where Mo,l are the monodromy matrices for (23) in the basis of figure 6. Here Co comes from (24). 

The monodromy group of (18) is the group generated by the linear operators represented by Mil 
i = 0, x, 1. Thus, the matrices Mi and K MiK- l are equivalent, for any non degenerate 2 x 2 matrix 
K. If follows that the monodromy group is completely caracterized by the three numbers xy, i = 0,1,00 
given by 

2 - x~:= tr(MoMx); 2 - xi := tr(MxMI); 2 x~:= tr(MoMd; 

Taking square roots we define the triples (xo, Xl, xoo) of section 2. The sign of the roots are chosen in 
such a way that 

x~ + xI + x~ - XOXlXoo = 4sin2(1TJL) (29) 

this last condition coming from MIMxMo =M;;}. For details see the Appendix and [4J. We only recall 
that two equivalent triples (as defined in section 2) represent the same monodromy group, and in the 
case 2JL f/. Z at most one Xi may be zero. 

In order to find the parametrization y(x; (J', a) in terms of (xo, Xl, Xoo) we have to compute the 
monodomy matrices Mo, M l , Moo in terms of (J' and a, and then take the traces of their products. In 
order to do this we use the formulae (25), (27),(28). In fact, the matrices Mi (i = 0,1) and Ml can be 
computed explicitely because a 2 x 2 fuchsian system with three singular points can be reduced to the 
hypergeometric equation, whose monodromy is completely known. 

Lemma 3: The Gauss hypergeometric equation 

dy
(ao + ,80 + 1)] dz - ao,8o y 0 (30) 

is equivalent to the system 

(31)dw = [H -a~{3o -~o) + z ~ 1 (~ 'Yo - ;0 - {30 ) 1w 

where W= Cz Yl)~). 
Lemma 4: Let Bo and B1 be matrices of eigenvalues 0, 1 - " and 0, , - a f3 - 1 respectively, such 
that 

Bo +B1 diag(-0, -,8), 01=,8 

Then 
a(-y-a-1) )

a-{3 r 
,8(-y-a-l) 

a-,8 

-(Boh2 ) 
,8(,8+1-,) 

a-{3 

for any r 1= O. 

We leave the proof as an exercise. The following lemma connects lemmas 3 and 4: 

Lemma 5: The system (31) with 

00 = 0, ,80 ,8 + 1, ,0 = " 0 1= ,8 
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Figures 5: Branch cuts and loops for the fuchsian system associated with 
PVI 

Il 

Figure 6: Branch cuts and loops when x - a 
Figure 7: Branch cuts and loops for the rescaled system before and after 

x-a 



is gauge-equivalent to the system 

dX = [BO +~l X (32)
dz z z - 1 

where Bo, Bl are given in lemma 4. This means that there exists a matrix 

G(z) := ( a-(3 [0 Z~ a(.8+1-')')] 1. z a~.8 -r1)
(.8+1-,),).8 a-.8 r (.8+1-,),).8 

such that X(z) = G(z) 'l1(z). It follows that (32) and the corresponding hypergeometric equation (30) 
have the same juchsian singularities 0,1,00 and the same monodromy group. 

Proof: By direct computation. 

Note that the form of G(z) ensures that if Yl, Y2 are independent solutions of the hypergeopmetric 

equation, then a fundamental matrix of (32) may he chosen a X(z) = (Yl :z) Y2~Z)) 

Now we compute the monodromy matrices for the systems (19), (20) by reduction to an hypergeo­
metric equation. We first study the case (7 f/. Z. Let us start with (19). With the gauge 

y(1)(z) := z-~ Y(z) 

we transform (19) in 

[ AY + A - ~Il y(l) 
z-l z 

We identify the matrices Bo, Bl with AY and A ~I with eigenvalues 0, 0 and 0, -a respectively. 
Moreover AY + A ~I = diag( -p. - ~,p. - ~). Thus: 

(7 a 
0= p. + 2' /3=-p.+-, 1=(7+1

2 

0-/3 2p. =I- 0 by hypothesis 

The parameters of the correspondent hypergeometric equation are 

00 = p. + ~ 
/30=1-p.+~

{ 'o = (7 + 1 

l,From them we deduce the nature of two linearly independent solutions at z = O. Since 10 f/. Z (a f/. Z ) 
the solutions are expressed in terms of hypergeometric functions. On the other hands, the significative 
parameters at z 1 and z = 00 are respectively: 

01 := 00 = p. + ~ 

/31 := /30 = 1 p. + ~ 


{ 
II := 00 + /30 - 10 + 1 = 1 

000 00 = J.L + ~ 
/300 := 00 -,0 + 1 = p. - ~ 

{ 
100 = 00 - f30 + 1 2p. 

Since II = 1, at least one solution has a logaritmic singularity at z = 1. The condition 2p. f/. Z ensures 
that no logaritmic singularities appear at z =00. 

For the derivations which follows, we use the notations of the fundamental paper by Norlund [15]. To 
derive the connection formulae we use the paper of Norlund when logarithms are involved. Otherwise, 
in the generic case, any textbook of special functions (like [13]) may be used. 

First case: 0:0, f30 ¢ Z. This means 

a =I- ±2p. + 2m, m E Z 



We can choose the following independent solutions of the hypergeometric equation: 

At z 0 

y~o) (z) = z1-l'o F(o:o -,0 + 1,,80 ,0 + 1,2 - ,0; z) 

where F(o:,,8,,; z) is the well known hypergeometric function (see [15]). 

At z = 1 
y~1\Z) == F(0:1,,81,,1; 1- z) 

y~l)(Z) = g(0:1,,81,,1; 1- z) 

Here g(o:,j3,,;z) is a logarithmic solution introduced in [15]. 

At z = 00 

(00) _ -ao F( a . 1)Yl -z aoo,poo"oo,­
z 

y~oo) z-f3o F(j3o,,8o - ,0 + 1,,80 - ao + 1; ~)
z 

Then, from the connection formulas between F( ... ; z) and g( ... ; z) of [13] and [15] we derive 

0 000 = 

0 01 

We observe that 

y(l)(Z) = (I + ~ +0(:,)) zdiag(-#-~,#-t), z -t 00 

= Go(1 + O(z)) zdiag{o,-O") Go160, z -t 0 

=G l (I+O(z-I)) (z-I)J el , Z-t 1 

where Go == T of lemma 2; namely Gal AGo = diag(~, -~). By direct substitution in the differential 
equation we compute the coefficient F 

(}'2 (211)2 (1w here A0 = ---'---'-r--:.­__ -r)
1 8f.-L ~ -1 

Thus, from the asymptotic behaviour of the hypergometric function (F (a, ,8,,; ~) ,...., 1, z -t 00 ) we 
derive 

l.From 

we derive 
(1)() (1) )y(1)(z) = Yl Z Y2 (z) a-leo 

( * * 0 

A (a ~ + br) b' 0"2_(2J.L)2Finally, observe that G1 = ~ b for ar 1trary a, b E C, a 1:- 0, and w := BJ.L • We recall 

that y~l) = g(al,,81, 1; 1 - z) ,...., ?jJ(ad + ?jJ(j3I) - 2?jJ(1) - i7r + log(z - 1), Iarg(1 z)1 < 7r, as z -t 1. 



We can choose a = 1 and a suitable b, in such a way that the asymptotic behaviour of y(l) for z -t 1 is 
precisely realized by 

The we conclude that the connection matrices are: 

A 

C (GAO-lCAO)C1 = 01 

Second case: 0:0,(30 E Z, namely 

u ±2p,+2m, mEZ 

The formulae are almost identical to the first case, but COcx> changes. To see this, we need to 
distinguish four cases. 

i) u = 2p, + 2m, m = -1, -2, .... We choose 

Here 90(Z) is another logaritmic solution of [15]. Thus 

COl = ( 
° 

As usual, the matrix is computed from the connection formulas between the hypergeometric functions 
and 90 that the reader can find in [15]. 

ii) u = 2p, + 2m, m = 0,1,2, .... We choose 

Thus 

iii) u -2p, + 2m, m = 0, -1, -2, .... We choose 
° ) 

Thus 

° )COl = ( r(1+2~-2m) 
- r(2~-m)r(1-m)° 

iv) u = -2p, + 2m, m = 1,2,3, .... We choose 

Thus 
r(m)r(m+1-2~) ) 

r(2m-2~) 

o 

Note that this time F = (~ ) in the case u = ±2p, (i.e. m = 0) because A~ has a special 

.c • h' Th' CA th 1 t !T2_(2~)2 (C ) !T2_(2~)2 (C) b b' d £lorm In t IS case. en In 0 e e emen S 8~(1-2~) Ocx> 12, 8~(1-2~) Ocx> 22 must e su stItute , or 

m 0, with 1!2~ (COcx»12? 1!2~ (COcx>h2' 



We turn to the system (20). Let Y be the fundamental matrix (23). With the gauge 

y(2) (z) :== Gal (Y(z)Go) 

we have 
dy(2) = [Bo + Bl ] y(2) 

z z-l 

~n 

BI =6- 1 A~6o = ( ! -=-v)48 

This time then 
00 % 

130=%+1 
{ 

1'0 = 1 

01 =-% 
131 ~ + 1 

{ 
1'1 1 

OJ:== 
{ roo = (J' 

If follows that both at z 0 and z = 1 there are logaritmic solutions. We skip all the derivation of the 
connection formulae, which is done as in the previous cases, with some more technical complications. 
Before giving the results we observe that 

z -+ 00 

A 1 - J
Go Go (1 + O(z))z Gh, z -+ 0 

=60
1&1 (1 + O(z - l))(z - l)J GL z -+ 1 

where 
I - A

Gi := GIGO, i = 0,1 

Then 
- A '-1Mo = Go (Go) (~ 2~i) C' 6- 1 

o 0 

- A '-1Ml = Go (Gl ) (~ 2~i) G' 6- 1 
1 0 

Then, the connection problem may be solved computing G~. The result is 

where 



To prove theorem 2 it is now enough to compute 

2 x~ = tr(MoMx) == tr(e27riJ(C~1)-le27riJC~1) 

2 - xi = tr(MxM1 ) == tr((CD-le27riJC~COile27riJCOl) 

2 - x~ = tr(MoMl) == tr((Cb)-le27riJCbCOile27riJCOl) 

Note the remarkable simplifications obtained from the cyclic property of the trace (for example, Co 
disappears). We obtain formulae I), II) and III) of theorem 2. All the other formulas are deduced 
from them. 

The case (J' E Z interests us only if (J' = °(otherwise (J' (j 0). We observe that the system (19) is 
precisely the system for y(2)(Z) with the substitution (J' M -2f.J. In the formulae for i = 0,1,00 we1 

only need COl, which is obtained from C~1 with ao = p,. 

0 I-S)As for the system (20), the gauge y(2) GO' YGo yields ilo (~~ ), il, ( o ° .Here 

Go is the matrix such that GO' AGo (~~). The behaviour of y(2)(z) is now: 

-;:.-1 J I =Go (1 + O(z»z Co, z -+ ° 
=Cit (1 +O(z -1»(z If C~, z -+ 1 

Here G is the matrix that puts Bi in Jordan form, for i = 0,1. y(2) can be computed explicitely:i 

y(2) (z) = (~ s log(z) + (1 ~ s) log(z - 1) ) 

If we choose Go =diag(l, l/s), then 

In the same way we find 

C' = (1 0)
1 s° 1 

To complete the proof of theorem 2 (points i), ii), iii», we just have to compute the square roots of 
the xt (i = 0, 1,00) in such a way that (2) is satisfied. 

Appendix: Monodromy Data 

The equation PVIj.£ is equivalent to the equations of isomonodromy deformation of the fuchsian system 
discussed in section 3. In particular, the solution y(x) is obtained from the coefficients Ai(x), i = 0, x, 1. 
More generally, the system 

3 

tr(Ai) = det Ai 0, L Ai = -diag(f.J, -f.J) 
i=l 

with isomonodromic dependence of the matrix coefficints Ai on u = (Ul' U2, us) is associated with PV1M 
by 

q(u) - Ul
() =Y X 

U3 - Ul 

4 
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where q(Ul' U2, ug) is the root of 

if 11- :j: 0 

The case 11- = 0 is disregarded, because PV111-=0 == PV111-=1. Ai (u) can be obtained as solutions of 
Schlesinger equations. In section 3 we have chosen Ul = 0, U2 = X, Ug = 1. For references, see [5], [8], 
[11]. 

The problem is equivalent to a Riemann-Hilbert problem (R.H.): find the coefficients Ai(U), i 1,2,3 
from the following monodromy data: 

a) the matrices 
(L = diag(l1-, -11-), 11- E C\{O} 

0 if 211- ¢ Z 

R= (~ ~), P>0) 
if 211- E Zn~), 11-<0 

bE C. 
b) three poles Ul, U2, Us, a basepoint and a base of loops in 7r(C\{Ul,U2,US};Zo). See figure 8 
c) three monodromy matrices MI , M2 , Mg relative to the loops and a matrix Moo similar to 

e-21ri (fi.+ R ), and satisfying 
tr(Mi ) = 2, det(Mi) 1, i = 1,2,3 

M3 M2 Ml = Moo 
Moo = C;;} e-21ri(fi.+R ) Coo (33) 

where Coo realizes the similitude. We also choose the indices of the problem, namely we fix the logMi 
as follows: let 

J:= (~ ~) 
We require there exist three connection matrices CI , C2 , C3 such that 

C -Ie21riJC· - M·i Z - ~, i = 1,2,3 (34) 

and we look for a matrix valued meromorphic function Y (z; u) (branch cuts are understood as in figure 
5) such that 

(35) 



Goo and G i are constant inverible matrices. The coefficient of the fuchsian system are then given by 

dY(zj u) -1
( ) dzA z; Ul, U2, U3:= Y(Zj u) 

Recall that a 2 x 2 R.H. is always solvable [1]. The monodromy matrices are considered up to the 
conjugation 

det B '# 0, i = 1,2,3,00 (36) 

and the coefficients of the fuchsian system itself are considered up to conjugation Ai I-t F-1 AiF (i = 
1,2,3), by an invertible matrix F. Actually, two conjugated fuchsian systems admit fundamental 
matrix solutions with the same monodromy, and a given fuchsian system defines the monodromy up to 
conjugation (depending on the choice of the fundamental solution). 

On the other hand, a triple of monodromy matrices M1 , M 2 , M3 may be realized by two fuchsian 
systems which are not conjugated. This corresponds to the fact that the solutions Coo, Ci of (33), (34) 
are not unique, and the choice of different paricular solutions may give rise to fuchsian systems which are 
not conjugated. If this is the case, there is no one to one correspondence between monodromy matrices 
(up to conjugation) and solutions of PV1p.­

We show now that the only case in which this happens is for 2/-l E Z and R O. This is easily done 
in the following way: consider two solutions C and C of the equations (33), (34). Then 

(Ci Ci
- 1 )-le27fiJ (Ci C;I) = e27riJ 

(CooC;;} )-le-27ri(it+R) (CooC;;}) = e-27fi(it+ R ) 

We find 

c.C-:- 1 = (a b) a,b E C, a '# 0 ~ t 0 a 

Note that this matrix commutes with J, then 

We anso find 

if 2/-l ~ Z 

C- 1C a '# 0, if 2/-l E Z, R '# 000 00 

if 2/-l E Z, R = 0 

Then 
i) z-itCoo = z-itdiag(a, (3)Coo = diag(a, (3)zfJ.Coo 

ii) z-~z-RCoo = ... = [aI + zl!~1 QJ z-~z-R6oo 

where Q = (~ g ) , or Q = (~ ~ ). 

...).) -itC - [ Ql Q Q 12 /-L1] -itC­1/l,~ ~ z 00 = ... - Z12/-L1 + 0 + -IZ Z 00 

where Qo =diag(Q, (3), Q±1 are respectively upper and lower triangular (or lower and upper triangular, 
depending on the sign of /-l), and CooC;;} = Ql + Qo + Q-l 

This implies that the two solutions Y(z; u), Y(z; u) of the form (35) with C and C respectively, are 
such that Y(z; u) Y(z; U)-1 is holomorphic at each Ui, while at z = 00 it is 

i) Goodiag(a, /3)G~1 
Y(z;u) Y(Z;U)-l = ii) 0:1

{ iii) divergent 



Thus the two fuchsian systems are conjugated only in the cases i) and ii), as we wanted to prove. In 
other words the R.H. has a unique solution, up to conjugation, for 2jJ. ¢ Z or for 2jJ. E Z and R =f. 0. 

Once the R.H. is solved, the sum of the matrix coefficients Ai(U) of the solution A(Zi U1,U2,u3) = 
2.::~=1 Z-Ui must be diagonalized (to give - diag(jJ., -jJ.)). After that, the solution of PV IJ.~ can be 
"computed" . 

Note however that if Goo Coo = I, then 2.::;=1 Ai is already diagonal. Moreover, for 2jJ. ¢ Z, 
MI, M 2 , M3 and the choice of normalization Y(z;u)zft -+ I if z -+ 00 determine uniquely AI, A 2 , 

A 3. Actually, for any diagonal invertible matrix D, the matrices M{ = D- IMID, M2 = D- IM 2 D, 
M~ D- I M3D determine the coefficients D- 1 AiD, whose sum is still diagonal (the normalization of 
y is the same). 

Finally, let· us recall that the parameters in the space of the monodromy representation independent 
of conjugation of the M i , are 

The triple (Xo, Xl , xoo) of sections 2 and 3 corresponds to (Xl, X2 , X3). 

We review some known results [4] [14}. 

1) One Mi = I (and then two of the xi's are equal to zero) if and only if the Schlesinger equations 
yield q(u) == Ui. This does not correspond to a solution of PVIw 

2) If the Mi'S, i = 1,2,3, commute, then jJ. is integer (as it follows from the fact that the 2 x 2 
matrices commute if and only if they can be simultaneously put in upper or lower triangular form, with 
Ion diagonals in our case); (Xl,X2,X3) = (0,0,0). There are solutions of PVlp. only for 

M = (1 i1ra) 1 i1r) M = (1 i1r(l - a)) a =f. 0, 1 (101 ' M2 = ° 1 ' 3 ° 1 ' 

For jJ. = 1 the solution is 
ax 

y(X) = 1 (1 - a)x 

and for other integers jJ. the solution is obtained from jJ. = 1 by a birational transformation [4] [14J. In 
particular, these solutions are rational. 

3) Non commuting M/s. 

3.1) If (at least) two of the xi's are zero, then one of the Mi'S is I. We return to the case L 

3.2) At most one of the Xj'S is zero. Namely, the triple (Xl, X2, X3) is admissible. In this case there 
exists a basis such that, if for example Xl =f. 0: 

The relation 

I-Xl)
( ° 1 ' 

implies 
xi + X~ + X~ XIX2X3 = 4sin2 (1rjJ.) 

The signs of the Xi'S must be chosen in such a way that the above relation is satisfied. The conjugation 
(36) changes the triple by two signs. Thus the true parameters for the monodromy data are classes of 
equivalence of triples (Xl, X2, X3) defined by the change of two signs. 

We distingush three cases: 
i) 2jJ. ¢ Z. Then there is a one to one correspondence between monodromy data and the solutions of 

PVIw For xJ =f. 4 the solutions are those of section L In particular, the algebraic solutions of [4J are 
included in this case. 

ii) For jJ. half integer there is an infinite set of Picard type solutions (see [14]), in one to one 
correspondence to triples of monodromy data (R f:. 0) not in the equivalence class of (2,2,2). These 
solutions form a two parameter family, behave asymptotically as the solutions of the case i), and comprise 



a denumerable subclass of algebric solutions. For any half integer f..L i- ~ there is also a one parameter 
family of Chazy solutions (non algebric). For them the one to one correspondence with monodromy 
data is lost. In fact, they form an infinite family but any element of the family corresponds to a triple 
(Xl, X2, X3) in the orbit (of the braid group) of the triple (2,2,2) (this orbit is simply obtained by changing 
two signs in all possible ways). Actually, they appear in the case R = 0 (no other solutions of PVI 
correspond to R = 0 and f..L half integer). 

iii) f..L integer. Non algebraic solutions. To our knowledge, they have not yet been studied. There are 
relevant examples of Frobenius manifolds where these solutions must appear, like the case of Quantum 
Cohomology of Cp2 [6], [12], [2], [7]. In this case f..L = 1, the triple (xo, Xl, Xoo) = (3,3,3) (the monodromy 
data coincide with the elements of the Stokes'matrix of the corresponding Frobenius manifold [5] [7]) 
and the real part of a = 1. Although the case f..L = 1 is not formally developed here, lemma 1 still 
holds. As a consequence, we realize that the method developed in this paper and applied to Quantum 
Cohomology cannot give information about the behaviour of y(x) as X converges to a critical point along 
a radial path. It would be desirable to obtain such an information to study the analytic properties of 
the solution of the WDVV. 
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