
THE TOPOLOGY OF REDUCED THREE-BODY PROBLEM AND THE 

EXISTENCE OF PERIODIC ORBITS 


L.SBANO 

ABSTRACT. We consider the Three-Body Problem (3BP) with a Newtonian-like potential propor
tionallixi - xl II-a with Q ~ 2 we consider also the Newtonian case Q' = 1. We study the dynamics 
reduced on the manifold defined by the vanishing of the total angular momentum. Using vari 
ational methods and the topology of the reduced configuration space, we prove the existence of 
periodic solutions: For the )J'ewtonian potential, we prove the existence of a weak periodic solution. 

L I~TRODUCTION 

In this paper we want to use the topology of the planar Newtonian-like Three-Body Problem 
(3BP) together with the variational methods to study existence of periodic solutions. 
\Ve study the 3BP with the following potential: 

(with a ~ 2 and a = 1). 
The potential \I is 0(2, JR.) invariant and we study the SO(2, JR) reduction of the system on the 
submanifold of the phase space defined by the vanishing of the total angular momentum J. The 
interest of this choice is due to Sundman's result [4] about total collision solutions. For the ~e\vtonian 
potential, he proved that total collision solutions take place on J = 0, for a a one can refer 
to [5], [2], [3]. 
\Ve study existence of the periodic orbits on J O. In order to apply the variational method. first 
we construct the Lagrangian function on the manifold defined by J = O. This is obtained by the 
Routh's reduction method. The topology of the reduced configuration .IVt r space is then studied. 
It turns out that A1r is a double covering of the space of the relative distances of the bodies. On 
.IVt r • with the reduced Lagrangian we construct the reduced Least Action principle. Then we apply 
variational methods to study the reduced Action. If the coincidence set is eliminated,the topology of 
the reduced configuration space leads to identify classes of non contractible trajectories; the reduced 
Action is positive and coercive on these sets and therefore attains its minima. 
For a ~ 2 critical points are strong solutions of the reduced equation of motion and different critical 
points lie into disjoint classes. For a = 1 (the Newtonian potential) critical points are weak solution 
of the reduced equations of motion and we are not able to distinguish the homotopy class of these 
solutions. 
These critical points are T-periodic solutions of the :3BP in the reduced configuration space. It is 
not possible to check whether these orbits are'T-periodic in the unreduced configuration space since 
they are not explicitly constructed. 
A general reference for the application of the variational methods to the N-Body Problem is the 
monograph [9]. 
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2. LAGRANGIAN REDUCTION AND REDUCED CONFIGURATION SPACE 

The system is composed of 3 point-like particle of masses ml, m2, mg which lie on a plane and 
interact through a newtonian potential. The configuration space is taken to be 1R 6 = {Xi E :.2: i = 
1,2, 3} with Xi == (Xf' xl). The system has 6 degrees of freedom. 

The dynamics of the system is described by the Lagrangian function L : IR 12 -+ IPL 
•g g 

(1 ) L = L~i IIXil12 + L mimj a 
- I 2 '....L' IIXi XJ'II 
1= t~J 

where < ',. > 11.11 are the scalar product and the norm in }R2. 

The Lagrangian L is defined outside the coincidence set: 

(2) Kc == {(Xl, ... , Xg) E IR6 I Xi = Xj, i:f; i} 

The linear momentum P = (PI, P2 ) and the angular momentum J {a scalar) 

g 3 

(3) 	 Pk = LTniX7 k = 1,2 J - ""' m. [X~X~ - X~X~]- 6 . t t t t 

i=l 	 i=l 

are integrals of motion, 

For fixed values of J we describe the motion through a reduced Lagrangian obtained by the Routh's 

proced ure (see [7]). 


Let the center of mass be at rest in the origin, consider the class of frames defined by selecting 

one of the bodies, say the 3th one. and setting: 

ql ~ Xg - Xl(4) { q2 = X3 - X2 

We denote by Ai the reduced configuration space. 

The Lagrangian takes the following form 
g 	 g 

""' 1 .. ""' mgmi ml m2(5) 	 2J1jjL =~ (qi, qj) + ~ IIqilla + IIql - q211 a 

where Ilqll = (q, q) 

mj (1-.!I!:..i..) -~ )
(6) 	 j\;1 == Jl. Jl. 

( _m,mj m'(l-!I!:..i..)
Jl. t Jl. 

and J.l == I::;=l Tni is the total mass of the system. 
By the further change of variables 

(7) 	 h : ?,,6\I<c ---+ IR 6\ I<c 

(ql,Q2) ---+ (Pl, (}l,P2,(}2) 

(8) 	 qI = Pi cos OJ
{ q; = Pi sin OJ 

the Lagrangian becomes: 

2 1 2 	 1 .. 2 

(9) 	 L = L 2Aij/Jipj + L 2Bij(}i(}j + L cijpJ}j + V(Pl, P2, ~l' (}2) 
i,j::l t,j=l i,j::l 
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where: 

lvf11 -M12 COS((}1 - (}2)
(10) A=( )
-/Vf21 COS((}2 - (}t) M22 

A 12PIP2(11 ) B=( AllPl )A 21 P1P2 A22P~ 

and 

0 M 12 P1 sin((}1 - (}2) )(12) C=( A12IP2 sin((}2 - (}t) 0 

(13) 

The reduced system is defined on M :::::: IR~ x [0, 211"F, with IR+ == {p > O}. 
The matrices A, B, and C are functions of PI, P2 and (}1 - (}2. The Lagrangian (9) is invariant under 
rotation 

(}j -r (}i + a, a E [0,211"] 

One can then introduce a cyclic coordinate conjugated to the total angular momentum and apply 
Routh's construction of the reduced Lagrangian. 

Setting: 

T2:M-rA1 

(14) 

(}1 is the cyclic coordinate and the total angular momentum is given by 

(16) 

Now Routh's prescription gives the reduced Lagrangian for J = 0: 

",2 1 A .. C·· 1 B . 2R i-li,j=l"2 ijPiPj + 2lPl 'P2 +"2 22'P2+ 

[E.(Bi2<P2+Cijpdf' + V( )(17) - 2 ,,:2. B. . P1 , P2, 'P2 
L.", ',1=1 'J 

The reduced system has configuration space given by: 

MIS l 
:::::: IR~ x [0,211"] 

Remark 2.1. In the reduction we obtained a system defined on the quotient space Mr that is a 
quotient. In order to reconstruct the whole motion on IR 2 one needs to use the expression of (h given 
by the condition J = O. A periodic motion on Mr with period T leads to a periodic motion (in 
general with different period) of the original problem only if: 

(18) 2~ loT dt8, E <Q 
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3. REDUCED 3BP 

Let us return to the formulation of (17) and describe the reduced system. 
We have seen that M ~ ffi.~ x [0,21r] X [O,21r] and then 

(M\I<c)r ~ ffi.~ x [O,21r] 

and 	the reduced Lagrangian R : T(.I\rt\I<c)r -+ R is written as follows: 

R((, () = ~ L MS)(()pd)j + ~ L Mi~2)(()Pi<P + 
i,j 	 i 

(19) 

the matrices .wI(l), jVJ(2) and j\{(3) forms a positive definite quadratic matrix on ffi. 2N -3. 

We introduce another description of the reduced configuration space (M\I<c)r. We now show that 
(M\I<c)r is diffeomorphic to the algebraic manifold 
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(20) )V\I<c == {(Pl,P2,P3,Z) Effi.t x ffi.ll z2 LPT = [A(Pl,P2,P3)]2} 

where A(Pl, P2, P3) is proportional to the oriented area of the triangle whose sides are PI, P2· P3: 

Il~ J' k is the product cyclic in the indices i, j, k. From the definition of Nr one verifies , , 

. Proposition 3.1. (J\rt\I<c)r is diffeomorphic to N\I<c. 

Proof. In (M\I<c)r ~ R~ x 51 we 'take ( and we describe it by the local coordinates (rl, r2, y); the 
we define the map I as follows: 

Pi = ri i 1,2 

P3 = (rr + r~ - rlr2cosr.p)1/2 
.., _ rlr,;!sinp{ 

- 2v'2vr~+r~-rlr2cosrp 

At the coincidence set I<c the jacobian is not defined. One verifies that the rank of the jacobian of 
I equals three out of !<'c. Indeed the jacobian has the following form: 

o 
1 

vr;+r5-2rlr2 cosrp
rt sin rp 

The transformation I can be inverted, 1-1 is given by: 

{ 
~i 
r.p 

: 

-
P{i ~:r~c!s [(pi + p~ _ p~)/ (2pIP2)] 

+ arccos[(PI + p~  p~)/(2plp2)] 
if Z(Pl, P2, P3) < 0 
if Z(pl' P2, P3) ~ 0 

Therefore (M\I<c)r and N\I<c are diffeomorphic. 
4 
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In the sequel we often consider ('/\.1\Kc)r ~ N\Kc. 

About N\Kc note that: 

(i) The expression defining [A(Pl' P2, P3)]2 must be positive, then Pi + Pj ~ Pk for all permutation 

of i, j, k. These are the triangular inequalities. 

(ii) If z 0, Pi > 0, i = 1,2,3 then for some indices i, j, k Pi + Pj = Pk, this corresponds to a 

collinear configuration of the three bodies. 

(iii) In the closure of ;V\Kc there are Pi = 0 for some i then triangular inequalities imply that 

Pj Pk with j, k i- i. 

We term )V the closure in !R 4 of ./V\I{c. 

Now N can be embedded into RD x lR 1 where 


(21 ) 	 I ri + rj - rk ~ 0 cyclic permutations ofi, i, k} 

where IR+ == U {OJ. 

RD is the set of the relative distances among the three bodies. ~ote that anD i- 0: 


aRD = u~t,),.krri'k) 

where rr}k are: 
. 	 -3 

(22) 	 rrjk == {1' (1'1,1'2, r3) E lR+ I ri + 1'j - rk = O} 

Using that (,,\.1\Kc )r ~ "V\Kc and local charts we can write the reduced Lagrangian in terms of the 
relative distances. 

(23) 	 R((,() I:
3 

1vfij(()TiTj+ I: m;.mj 

i,j=l i,j,k k 


The 3 x 3 symmetric matrix ,\4 has entries smooth homogeneous functions of the r~s (see [1]): 

1/2{1/m2 + 1/m3) -(rr + 1'~ - 1'~)/21'l1'2m3 -(1'r + r~ - r~)/21'lr3m2 ) 
M- 1 -(ri + r~ - r§)/2rl1'2m3 1/2(1/ml + 1/m3) -(r§ + r~ - rt)/2r3r2ml

( -(rr + 1'j - 1'~)/2r1r3m2 -(1'j + r~ - 1'f)/2r3r2ml 1/2(1/ml + 1/m2)
\ 

In the application of variational methods we will need that the reduced Lagrangian written in term 
of local coordinates z (=1, Z2, =3) E (M\Kc)r hence: 

3 
~ 1 ( ).. ~ mimj(24) 	 R((, () 6 .t\Jij ( ZiZj + 6 ~(,.) 

i,j=1 i,j Pt) 

We now extend, at least formally, the Lagrangian on the space N that contains the coincidence set 
Kc. We will show that consider trajectories which have the tangent vector with a finite number of 
discontinuities. 

3.1. Geometry of the reduced configuration space. The Lagrangian L is invariant under the 

lift on T M of the diagonal action of the group 0(2, lR). 

vVe denote this action as follows: 


<I> : 0 (2, lR) X.l"-1 -+ .1'\.1 

(25) 	 (g, x) -+ <l>g(x) = (g. X1,g' X2) 

where g. denotes the standard action of 0(2, JR) on the plane. 

Recall the following properties of 0 (2, JR): 


Proposition 3.2. The group 0(2, lR) is generated by the set 8 2 of all reflections with respect to 
independent lines in the plane. 
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Proof Here we consider the natural action of 0(2,JR) on the vector space JR 2• The proof is elemen

tary, it is given noticing that in the plane the product of two reflections is a transformation with 

unit determinant. This transformation is a rotation. 

Now we want to give an explicit matrix construction: 

In a chosen coordinate system we take a direction [v] == [VI: V2] E JRpi. One can show that the 

reflection S[Vl:V2J E S2 w.r.t. the direction [VI: V2] takes the following matrix form: 


1 

If one considers [VI: V2] = [cos Q : sin a] 

COS 2a sin 2a )
So: = .( sm 2a - cos 2a 

Now given two directions in plane defined by two angles, respectively a and j3, by means of simple 
manipulations one finds that: 

S . S _ ( cos 2 (j3 a) sin 2(j3 a)) 
0: 3 - _ sin 2(j3 - a) cos 2(j3 ~ a) 

and so: 

So: . S/3 R2(/3-0:) E SO(2, JR) 

The reduced configuration space is given by the quotient:
• 

(/v1.\/{c)/SO(2, JR) 

We now consider the the geometry of reduction of the 3BP: 
The symmetry S2 is not reduced: one can describe the reduction of the configuration space by the 
following diagram: 

(. vt\/{c) JR! x [0,21r] X [0, 21r] 
P 11' 

'\.t ~ 
JR! X [O,21r] 

With F we denote the diffeomorphism describing the coordinate transformation from qi to ri. "Pi, (h. 

The map 7r describes the quotient of (M\/{c) w.r.t. SO(2, lR) action. The map p == 7r 0 F provides 

the reduction and induces a map j5 : (A1\/{c)/SO(2, JR.) --7 RD\/{c. 

The map p is the transformation between the coordinates (rI' r2, i.p) and (P2, P2, P3): 


Pi =rj i = 1,2 
{ Pa = (ri + r~ - rlr2costp)1/2 

Note that: 

If one studies the configuration space in terms of the RD it turns out that: 

Proposition 3.3. The map p : (.tvt\/{c) --7 lR+ x [0,21r] induces a map p : (.Ivt\/{c)/ SO(2.:R) --7 

RD\/{c which is a ramified covering with a monodromy group isomorphic to 

Recall the definition of ramified covering: 
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Definition 3.1. A quadruple (5, S, iZn, ps) where Ps : 5 -+ S is a ramified covering if: 
(i) S are manifolds, 
(ii) Th~re exists a closed subset K C 5 such that (5\K, S\ps(I<)' Zn,PS) is a covering with mon
odromy group iZn, ! 

(iii) For all s E S there exist a neighborhood V (s) homeomorphic to a ball in S such that the 
connected components of Ps1(V(s)) are homeomorphic to a ball in 5 

Proof. Consider the quotient manifold (M\Kc)/SO(2, lR). Any class [q] E (M\Kc) / SO(2.}() is 
composed of configurations which differ by a rotation. 
Now chosen a direction [V1 : V2] E JRp l any element of S2 can be written as the product of a reflection 
w.r.t. a fixed chosen direction times a rotation: 

S2 ::1 S[Vl :v:,d . Rex = Rf3 . S[Vl :V2] 

for some Rex, Rf3 E SO(2, lR). 

Therefore on (J\.1\Kc)/SO(2,IR) we define the action of S2 as follows: 


~ : S2 x (./\.1\Kc)/SO(2,lR) -+ (M\Kc)/SO(2,lR) 

(26) (S[Vl:V2]' [q]) -+ ~S["l:tJ21([q]) == [<1>S["1: V 2] (q)] 

Then the action of S2 on (M\Kc)/SO(2, lR) is equivalent to the action of only one reflection w.r.t. 
a chosen line [V1 : V2] E lRpl. The direction [V1 : V2] corresponds to the classes '\[v] with ,\ E ~\{O}. 
Consider the group G {S[Vl:V2]' id}. The action of G on (M\Kc)/SO(2,lR)\{,\[v]) is proper and 
discontinuous without fixed points, then 

(M\Kc)/SO(2, IR)\{'\[v]} -+ {(M\Kc)/SO(2,lR)\ {'\[v]}} /G 

is a covering. In fact we can use the following result (see [8]): 

Theorem. Let X be a connected, locally arcwise-connected topological space and let G a properly 
discontinuous group of homeomorphisms of X. Let p : X -+ X / G the natural projection of X onto 
the quotient space. Then the couple (X,p) is a regular covering space of X/G. 

In our case X (M\Ke)/SO(2,lR)\{,\[v]) and the rank of G is finite and equals two, then we 
have a ramified covering whose monodromy group is IZ2. The map p can be defined as 

p([q]) == p(q) = (n- 0 F)(q) = 1] E 1lD 

One verifies that p is not a homeomorphism at {'\[v]}. One can also verifies that for any [q] E 
(M\Kc)/SO(2, lR)/G there exist a neighborhood whose connected part, homeorphic to a disk. is 
mapped by p-1 into open set in (.1\.1\Ke)/ SO(2, lR) homeomorphic to a disk. 
Therefore we can conclude that 

(27) p: (M\Ke)/SO(2,lR) -+ {(M\Kc)/SO(2,JR)}/G 

is a ramified covering whose branching points are '\[v] with ,\ E JR. 
The thesis is obtained noticing that 

((M\Ke)/ SO(2, lR)} /G ~ (M\I<e)/0(2,lR) ~ 1lD\Kc 

o 

Now we want to extend the reduced configuration space adding the coincidence set lie. Note 
that there is only one configuration where the quotient is singular, this is the total coincidence 
configuration K* , i.e. the origin in M. We define the reduced configuration space Mr as: 

Mr = p-1(1lD) 

where we define p(K*) = K*. 

We give a geometric description of the ramified covering. Mr is embedded into JR4 and Mr is an alge

braic manifold: for any (P1, P2, P3) E 1lD\a1lD we have two values for Z I Z = ±A(P1, P2, P3)/ JL~ pr· 
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A~ ", 
nDx 

FIGURE 1. Reduced Configuration Space. The couple of surfaces (Ai! A~), 
1,2,3 are identified (glued) 

In the figure 1 we show that .\lt r can be thought as two copies of nD (two infinite dihedra) 
embedded in }R3 with common vertex and common faces. They form the two sheets of the covering 
that are glued along the collinear configurations, (thin and dashed lines represent the gluing). The 
surfaces Ai) i = 1) 2, 3 and A~, i = 1, 2, 3 are the two copies of the collinear configurations:: O. 
Heavy lines correspond to the coincidence of two bodies, while the common vertex is coincidence of 
three bodies. Indeed, consider the two spaces nD x lR+ and nD x (lR\oc+). Define the map: 

i: anD -+ nD 
(28) ( -+ i(() ( 

now take the disjoint union 

nD x oc+ u nD x (lR \lR+) 
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then the following equivalence relation is defined: 

( '" (' iff: 

either (= (' 

or i() (' 

then, by i, we define the gluing 

.Ivtr = (RD x IR+ U RD x (JR\JR+»)/ "'= RD x 1R+ Ui RD x (JR\JR+) 

For N =3 we define the following involution: 

0-: Mr -t Mr 

(29) (= (rl,1'2,<p) -t o-[(] = (1'l,1'2,211'"-<p) 

The action of 0- on .lvtr corresponds to the action of S2 on M and in fact it has a manifold of fixed 
points corresponding to aRD. 

4. REDUCED LEAST ACTION PRINCIPLE 

Consider .Ivtr as submanifold of . \Ve specify the functional spaces of trajectories on -,vtr in 
order to study the solutions of the Euler-Lagrange equations as critical points of the reduced Action 
functionaL 
Choose T> °(the period), on and define the space of continuous functions c~(JR4) as follows: 

(30) c~(I~4) == {«(t) E Co([O, TJ, 1«(t) «(t + T), 11(1100 = sup 1(1 < oo} 
t 

with 1(1 == maxi:l IZil· 

We now define the fuctional space on trajectories on Mr. 

First we define the space of continuous periodic trajectories on M r : 


(31 ) 

We also define: 

(32) COO ([0, TJ, .lvtr) == {«(.) E COO ([0, TJ, JR4) I«(t + T) = «(t), «(t) E M r} 

In the construction of the reduced Lagrangian we found a positive definite quadratic form defined 
on TM r : 

(33) 
i,j 

with ( E Mr and v E T.lvtr. 
We describe a trajectory ( : JR -t .;vtr with 1'1,1'2, <p, then using (33) we define H}(M r ) the following 
Sobolev space: 

(34) H}(M r) == {«(.) E cOO([O, T],Mr) 1«(t) = «(t + T), 11(lIt}(Mr) < oo} 

where 11(llt}(.I\.tr) == JoT dt[(AI()«(t), ((t» + Li 1'r(t)], and 

(A1()((t), «(t» = [:L.[A1H)()1\rj + A1P) ()ri<;?J + }v.fJi) ()(<;?) 2] 
t,] 

By H}(Mr) we define the following space: 

AT(Mr) == {«(.) E H}(M r) I 
(35) ri(t + T /2) 1'i(t)i =1,2,3 <p(t + T /2) =211'" <p(t)} 

9 
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The space AT (.A,1r ) can be described using the involution u introduced in the preceding Chapter: 

(36) ATVvtr) == {( E H}().;tr) I «(t +T/2) == u((t)), «(t) E J\t1 r "It E [0, } 

Note that by the standard Sobolev embedding ( E H}(j\t1r) implies that ( E C~(j\t1r) therefore the 
condition «(t) E J\t1 r for all t E [0, T] is well defined. On H}(j\t1 r) we define the following (Action) 
functional AT[.] 

(37) 	 AT[(] == /.T dtR(C:,() 

with ( E H}(M r ) 

The Action AT [.] is continuous on the set: 

(38) 	 DA == {c: E H}(Mr) I [ dt I: (Pi~~;)))a < 'XJ} 
t,) 

Note that for ex 1 D A contains the collision solutions at which the Action is not differentiable. 
The Least Action Princple states that, in the domain of differentiability of AT [.], the equation of 
motions are given by the first variation of AT[']: 

(DAT [(], v) = 0 

(39) 

We can now define the Action functional for trajectories in Mr. Let us recall the reduced Lagrangian 
IS: 

3 

R( ~:.) 1 ""' I"{ ( ).. ""' mimj.(,. (, = 2" 	 L.,; l~ij Z ZiZj + L.,; (z)<l' 
i,j=l i,j Pk 

We take the following integral as a definition of the reduced Action functional: 

(40) 	 AT [((t)] = /.T dt {~ t M'j(z)z'Zj +L ("'.'(";Da } 
o i,j=1 i,j PtJ 

AT['] is defined in Hj,{.,I\t1 r ) n DA. 

Any C'2 solution of (39) is termed strong solution. 

In the next section: we will show that for the considered problem with ex 2: 2 we can prove 
the existence of strong T-periodic solution, while a == 1 we can show the existence of genemli=ed 
T-periodic solution. 

5. 	 T-PERIODIC SOLUTION FOR THE NEWTONIAN-LIKE REDUCED 3BP, AND GENERALIZED 

SOLUTIONS FOR THE REDUCED NEWTONIAN 3BP 

In this final section we study of the Action principle for AT['] in two different cases: 
i) a 2: 2 Newtonian-like Potential, 
ii) ex = 1 Newtonian Potential. 
The case i) it is the case of Strong Force SF potential, in fact: 

Definition 5.1. The potential V : lR,6\ {O} -t IR.+ satisfies the SF condition if there exist a, r > 0 
such that 

1 
V(Xl' X2, X3) 2: a 2: !Ix' _ X _11 2 

iy:j . t J 

fOl' all (Xl X2 X3) such that 0 < IIXi Xjll < r. 
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The variational methods can be directly applied in the case i). In case ii) one studies just the 
modified problem. 
In fact, for a 1 we consider the Action AT['] expressed in terms of the relative distances r's and 
we define the new Action 

3 0 
(41) A~[(] == AT[(] + 1.° 

T 

dt tt rl(z(i)) 

The new Action (41) is of class Cl wherever defined and it takes value +00 on collision solutions. 
In the domain of definition of the Action, using the geometry of the coincidence set f{el we define 
classes of non-contractible trajectories~ on which an inequality of Poincare type holds and we can 
prove the coercivity of the A~ [.]. 
On each such class r the Action attains absolute minimum which is a strong T-periodic solutions 
of the reduced 3BP with SF. We prove that when 0 -7 0 the sequence (f converges weakly in 
HI to a trajectory (r which is a weak T-periodic solution of the reduced 3BP. In general in our 
context we cannot prove that (r i= (rl for r i= r'. \Ve have to notice that this solution lives in the 
reduced configuration space A1 r . There is the problem of the lifting of the T-periodic orbit into the 
unreduced configuration space. The condition (18) ca!lnot be directly verified since the solution is 
not explicit given. 

5.1. The "strong force" method. \Ve describe any trajectory on Mr using the local coordinates 
given by: 

ri = Zi iI, 2{ r3 = .jzf + z~ - 2ZI Z2 cos Z3 

here Z3 is the angle between rl and r2. 


The the Action is now expressed in terms of ( (Zl' Z2, Z3). Now AT[.] will be written as follows: 


(42) 

The functional A~ [.] is defined on H j. (,;\11 r) by 

A~[(] == AT[(] + FO[(] 
T 2 

(43) with FO[x] == 1. dt L 
o i=l 

For every 0 > 0 the A~[.] is of class CIon its domain of definition and it formally takes value +'x· 

on collision solutions of the 3BP. 

Then we study the sublevel sets of the Action A~[.J. 


Se = {A~[(] ::; c} 

\Ve will show that we can find a set of T periodic trajectories r such that Se n r is invariant under 
the gradient flow and A~[.] is coercive on Se n r (not empty for c > 0), i.e. 

lim A~[(nJ = +00 if {(n}n C n rand II(nIIHTl (M .. ) -700 
n-+oo 

Then Se n r is compact in CO([O, T], j\l1 r) and one concludes that minima exist. 

To obtain a solution for the 3BP without the SF additional term, we study the limit of (0 when 

o -7 O. We prove that this limit exists, and it corresponds to a weak T-periodic solution of the 

problem. Weak solutions are defined as follows (see [9]): 
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Definition 5.2 (vVeak solutions). t-Jie term (o(t) a weak solution of 3BP iff: 
(1) (0 is a strong solution for A~[.] for any 0 >° 
(2) limo-to (0 (0 weakly in AT(.Ivt) and uniformly in [0, T] 
(3) A~[(O] < 00 for all 0 > 0. 

Then we prove that (0 is a generalized solution i.e. it fulfills the properties collected in the 
following definition: 

Definition 5.3. Let Ie(o) be the subset of [0, T] such that 

Ie(o) == {t E [0, T] I (o(t) EKe}, 

we term (0 (.) aT-periodic generali:ed solution of the Euler-Lagrange equation iff: 
(0) (0(t + T) = (O(t) for all t E [0. T] 
(l) Ie((O) has zero Lebesgue measure 
(2) (0 E C 2 ([0, T]\Ie) and satisfies the Euler-Lagrange equations. 
(3) (0 has for all t in [0, T]\Ic the same Energy. 
(4) AT[(O] < 00. 

In particular we show that the set of collision times Ie ((0) is discrete. 

5.2. Class of non-contractible trajectories. For the modified Action A~ [.] the coincidence set 
Ke is a singularity. In fact one can prove that the Action increases without bound on any sequence 
of trajectories converging weakly in H}(.vt r ) and uniformly in [0, T] to a trajectory intersecting [\e' 
vVe now study the space of non contractible loops of .Ivtr \I{c. We show that there exist classes of 
non-contractible loops on which the Action is finite and coercive. 

The first homotopy group of .i'vtr\Kc can be computed. Consider the Fig. 2, Mr \Kc is arc wise 
connected and it is homotopic to :R3 minus three independent half-lines 11 ,121 13 having a common 
origin. Denoting by Ii a continuous loop around li and by [Ii] its homotopy class, one can prove 
that: 

(44) bd + bi] = l:k] with i, j, k cyclic permutation of 1,2,3 

hence the presentation of IT1 (JR? 3\ {1 1 . 12 , l3}) is given by two of the cycles [Ii] i = 1, 2, 3 and one of 
the relations (44). Therefore we have: 

Proposition 5.1. The first homotopy group of the space .Ivtr \Ke is given by: 

(45) 

Proof. \Ve know that: 

ITd"vtr\Kc) ~ ITdJR?3\{11,12,13}) 

Without loss of generality we identify the space Il{3\{11' l2' 13} with Il{3 with the negative half-axes 
removed. 
Now we apply a corollary of the Siefert-Van Kampen theorem which states that if a space X can be 
covered by two open arcwise connected· sets U and V such that 

ITdU n V) ~ ° 
then 

ITl(X) ~ ITdU) EB ITdV) 
12 



RD x IR~ 

RD x 1R: 

FIGURE 2. non-deformable loops 11, 12 and ,3 with the "strong force" 

We take X =Mr \I<c and define 

u = {(x,y,z) E IR31 x > O,y f. O,z f. O} 


V = {(x, y, z) E JR. 3 I y > 0, x f. 0, z f. O} n {IR3\{z > 0, x = yO}} 


One verifies that: 

and this concludes the proof. o 

Note that the classes nbi] - mbj] with i f. j, n, mEW are not homotopic to one of the generators. 

On these classes we now evaluate the Action. 

Now we can state the following Lemma: 


Lemma 5.1. For all i = 1,2,3 for any A E [Ii] there exist tl < t2 (depending on A) such that A{td 
and A(t2) are different collinear configurations. 

Proof. Indeed in Mr collinear configurations forms three planes. We define the varieties 7r1k as the 
subset of Mr such that: 

ri = rj + rk cyclic permutation of i, j, k 
13 



\Ve have three rr]k! they have co-dimension one, ,/\t1r has three dimension. Now the union U~.j.k;rjk 
(that is aRD see Chapter 1), disconnects .A,1r. Now coincidence configurations are: 

. k 
Ii = n1k n 7rij 

Any element A(t) E bd is homotopic to a generator of rrI(A1r \I<c) which does not intersect Ii and 
must have points in the two connected part of .I\t1 r \aRD. by the continuity of A(t) we conclude that 
there exist two different times t1 f::- t2 such that 

A ( t d E rr7j A ( t:d E n1k 

o 

The Action A~[.] is finite and Cion the open set 

(46) fT (.A,1r) == Hj (.I\t1 r) n {((t) ~ I<c 'Vt E [0, T]} 

We now define the classes of trajectories where we study the Action. 

Definition 5.4. vVe term ~T the set of all smooth, closed tmJ'ectories ,(t) = ,(t + T) in .\4,. \I{c 

homotopic to an element of 


for some if::- j and m, n E fcI\{O}. 


Remark 5.1. Using the preceding Lemma 5.1 we can always choose the pammetrization of A 

[0, T] -7 .I\t1 r \I<CI homotopic to a fundamental cycle, such that: 

if A"'"' Ii then A(td E rr7j and A(t2) E :r{k with t1 < t2, 


if A "'"' -,i then A(td E rr-lk and A(t2) E rrfj with t1 < t2' 


\Ve now prove an important property of the elements of ET: 

Proposition 5.2. For any, E there exist at least four times °< t1 < t2 < t3 < t4 < T sllch 
that: 

ri(td =rj(td + rk(td, rj(t2) =ri(t2) + rk(t2) 

(47) rk(t3) = rj(t3) + rdt3), rj(t4) rdt4) + rk(t4) 

for a sequence of the indices i, j, k. 

Proof \Vithout loss of generality consider the class ["'N] - hj]. Take A, one of its element. :Xow we 
can continuously deform A in such a way that it becomes the union of Ai E hi] and Aj E -bj]· 
Up to a reparametrization we can write that Ai is defined in [0, T/2) and Aj is defined in [Tj2. 
Now we can apply the preceding Lemma 5.1 and Remark 5.1 to Ai and Aj and we conclude that' 

Adtd E rrfj Adt2) E rr{k 
with t1 < t2 in [0, T /2) and 

Aj(t3) E rrdk A(t4) E 7rJi 

with t3 < t4 in [T/2, T]. This concludes the proof. 

Definition 5.5. We call f4 the 11.lIoa-completion of 

In f 4 there are trajectories which enter the coincidence set I<c, these are the collision trajectories. 
We can define a subset of which does not contain collision trajectories, in fact we have: 

Proposition 5.3. If V satisfies SF then for any c E (0, +00) the set 

(48) A4 f4 n {( E fT(M r ) I A~[(] :::; c} 

does not contain collision trajectories. 
14 
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Proof. By contradiction we assume the there exists a sequence {((.)n} C A4 which converge in the 
11.1100 to a trajectory ((.) which enters in I<c. Therefore we can consider that there exist 1 E [0. T] 
such that ((I) E ]{c. Then there exists f > 0 such that II(n (t) II < r for t E [I - f, 1 + f] and n large. 
For all i 

iTdtV(((t)) 2: iT dt----:-(n..,--)I
o 0 (ri (t))2 

but 

taking n ~ co we get a contradiction. In fact either ri(t) = 0 for all t E [I, I+C] or rin) (I) ~ O. D 

Note that this Proposition holds for the modified Action A}[.] with 0 > O. 

For any trajectory in ~T a Poincare's inequality holds. We now study the trajectories in ET 
that have four collinear times. Since we consider with time intervals where the trajectories are not 
collinear we can use as coordinates the relative distances rl, r2, r3. 

Proposition 5.4. For all ( E LT: 

(49) iT dt(J;f(r)r, r) 2: 8al sup min rl(t)° 9T tE[O,.T] lE{i,2,3} 

Proof Let us assume the following sequence of collinear configurations: 

r3(tt} = r2(tt} + rl(tt), r2(t2) r3(t2) + rl(t2) 

rl(t3) =r2(t3) + r3(t3), r2(t 4 ) r3(t 4 ) + rl(t4) 

We have to estimate the kinetic energy of a trajectory which passes through at least four collinear 
configurations. Three collinear configurations are different. 

For simplicity we put: 

ri(O) = Xi = sup rdt) with i = 1,2, 3'and Xl ::; X2 + X3 
tE[O,T] 

ri(td =~i with i = 1,2,3 and ~3 =~2 + 6 
ri(t2) = TJi with i = 1,2,3 and TJ2 = TIl + Tl3 

ri(t3) = Vi with i = 1,2,3 and VI =V2 + V3 

ri(t4) =Xi with i =1,2,3 and X2 = Xl + X3 

15 



Now we have: 

i
tl 1

T 3 +l
dt(JJ(r)r, r) 2:: L dt(M(r)r, r) 

• 0 1=0 t, 

then 

T r dt(M(r)r. r) ':? t t a~ t [t(ri(tl) - ri(t1+1))2] 
10 1=0 1+1 1 i=1 

Now in each interval [tl' tl+d we minimize the ~uxiliary functions: 

3 

f[tl,t,+d = L(ri(td - ri(tl+d)2 
i=l 

Taking account of the constraints of collinearity one finds: 

minf[o,td = ~(X3 - X2 - xt}2 


. ~ 22 ( )')

mm J[tl,t21 = Xl + X3 + Xl - x2 ~33 

. ~ 22 ( )')
mmJ[t2.t3] = 3~ Xl + X3 + Xl X2" 

22 
min f[t3 ,tol] 37(3X3 + 4X2X2 + X3 - xt}2 

Now taking account of the triangle inequalities and that tl+1 - tl < T one finds the thesis. 0 

5.3. Periodic solutions of the 3BP. Now we can prove the main Theorem. 

Theorem 5.1. In the set A4 = {A~[(] S; c} n r 4 there exist (0 strong T -periodic solution of BBP 
reduced on :10 with SF. The solution (0 converges uniformly in [0, T] to (0 that is a weak T -periodic 
solution of the reduced 3BP. The limit (0 is a generalized solution of the reduced 3BP. 

Proof On AT we have that: 

A[(l ':? ~~ min {s~p rr(t), s~p r5(t). s~p r~h (t), r,(t). z(t» } + 
T T 

(50) + ~ r dt-:- + r dt J 
~ 10 rr(t) 10 (r3(rI(t) , r2(t), z(t)))2 

l 

For any sequence {(n}n E A4 such that Il(n 1100 -+ 00 we have 

A~((n] -+ +00 

hence the Action is coercive. The Action is CIon A4 since no trajectory has a collision. The Action 
is bounded from below and hence by standard argument: 

AO [(0] min AO ((]
T (EA4 T 

therefore (6 solves the Euler-Lagrange equation for A}[.]. 

We now prove that when one removes the SF one obtains a weak solution for the 3BP. 
For all J E (0,1) we have: 

this implies that 

° KlIe IIHi-(M,.) s; al 

16 
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therefore (6 converges weakly in H} (.,\1r) and uniformly in [0, T] to trajectory (0. 
(0 is different from zero since 

I 

J{ > 1T 

L m~7k
° ijk % 

(here r3 r3(rl' r2, z)). The preceding expression would give a contradiction for 8 -+ O. 

Now we prove that (0 is a generalized solution of the 3BP. 
From the previous inequalities we have that: 

. . mimj 8 
hmmfiT dt ['L-6-+ L-(6)2 ] 

6-+0 ° ijk rk i ri 
<f{ 

(here r3 = r3(r1' r2, z)). Using that (6 -+ (0 uniformly in [0, T] and Fatou's lemma one finds that 
the set of collision times has zero Lebesgue measure. 
The complement of the collision set is open and dense, we call it I. Take a smooth function w with 
support in I C [0, T]. Consider the equations of motion 

(DA~[(6], w) =0 

rdt L .iVfij(=r))=fwi = rdt L ij L Wk 8861~fij(z6)it iJ +
if ij if k Zk 

- r dt [ t Wk m(i;')1 + L Wk (r
2
/)3]

if ij,k~3 k~3Zk k 

- r dt [W3 71";2 6 2 + W3 62~ 6 3]if (r3(=1,z2,z3)) (r3(zl,z2,z3)) 

For all tEl and for 8 E [0,1] we have 

and 

"" mimj "" 28 ml m2 28 
o {=6)2 + 0 (r6)3 + (r6)2 + (r6)3 < C3 
ijk~3 k k~3 k 3 3 

with C2, C3 > 0 by Lebesgue's dominate convergence theorem we can pass to the limit 8 -+ 0 getting 
the weak form of the equations of motion. The strong form of the equations of motion out of the 
collision set is obtained using standard regularity arguments. 
To prove that (0 is a generalized solution we have to prove that the mechanical energy has the same 
value in all I. The energy is: 

then one finds 

1 [ ""'6 2 6 [ 6]]E6 ~ T a2 iT° dt ~.)Zk) - AT ( . 

therefore E6 is bounded when 8 -+ O. Then for any t* for which (O(t) is generalized solution we 
have: 

17 



i 

E = ~ '" .~I(.:0({*))z9(t*)zg(t*)) _ '" 
I 

mimj _ mlm2° 2 L... 'J L... zO(t*) r3(zO(t*))o 0k#3 k 

where Eo -+ Eo (up to a sub-sequence). Eo does not depend on t*. o 

Now we can prove: 

Corollary 5.1. The weak solution (0(.) has at most a finite number of collisions. 

Proof. Note that Ic(O) C [0, TJ is bounded and if there are not accumulation points then Ic(O) is 

finite and hence the collisions are isolated. 

vVe now prove that there are no accumulation points in Ic(O). 

vVe have seen that (0 (.) is a strong T-periodic solution. Let us define the function: 


1 3 
(51 ) ~O(t) == 2 ~(rdt))2 

t 

We define the function (51) using the the relative distances because the finite dimensional metric 
defined by matrix M is equivalent to the Euclidean metric. 
Let us assume that along (de 

d2 

(52) dt 2jlO(t) > ° for all t,d such that jlO(t) < f.l with f.l > ° 
Then for any t E [0, TJ\Ic(O) such that jlO(t) < f.l/2 we get jlO(t) < f.l for d small enough. 
Now (0 -+ (0 uniformly in [0, TJ\Ic(o) we obtain 

d2 

dt2jlo(t) > ° for t E [0, TJ\Ic(O) and ~O(t) < f.l/2 

By contradiction, ifi is an accumulation point of Ic((O) one can take a sequence {in}n with in < tn+l 
such that tn -+ l. Then there exists in E [tn,in+d where jlO(.) attains its maximum at In. Now 
jlO(t) is convex then jlO(ln) = f.l/2. Hence we get: 

f.l/2 = lim jlo(ln) =° 
n-+oo 

and this is a contradiction. 
) 

Now to conclude the Corollary we have to prove (52). 
We evaluate the second time derivative of (51) along (0 we write jl° in the coordinates rt, 1'2,1'3. 
This can be done because any strong solution (0 (.) is collinear at most on a discrete set of times 
(see [1]). We have: 

2 
(53) 1 d "(1'1)2 = "r1r~ + "(r~)2

2 d(2 L...' L... t, L... f 

iii 

Now the Euler-Lagrange equations are: 

For i = 1,2 and i, k are determined by the cyclic permutation 

'" M'o 8 '" u '0'02dtd L... ilr1 = L...Jv.l.lmr1 rm + 
1 1m 

mkmj 2d
(54) - (rtF - (rn 3 

moreover the conservation of the energy gives 
I 

1 '" ° '0'0 '" mimj '" d2" L...Mij(T )riTj = Eo + L... -;tI + L... -(0)2 
ij ijk k k r k 

18 



Substituting into the expression (53) we obtain: 

d2 

-d')~O(t)
t~ 

(55) 

where 
I 

(56) ~d(O) =2Eo+ ~ I::: 
ijk 

Now one can evaluate the derivatives of the matrix M by the formula 8M -1\1 ·8M-l·.A1. :\Iatrix 
M has smooth entries. Using the explicit form of M- 1 given in section 2 we find: 

"'"' 0 ~1-1 8':vljm -0 -0 ~ "'"' 0 ~1,-1 8Mlm '0'0 > 
- ~ ri lV ij 8ra rl r m + 2 ~ ri lV.J ij 8r~ rl r m _ 

ijlm I ijlm ' 

(57) ct. ((rO:;r)6) ~(r1)2 
The constant C depends only on the masses. Considering the properties of regularity of the matrix 
M, we see that we can choose Zi(t) so small that ~1((0) is positive definite and it is the main 
contribution to (55). So there exists Jl. such that (52) holds. 0 

19 
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