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Jacobi groups, although without this name, arose in the theory of generalized root systems 
of the affine type studied by Looijenga [L080]. The latter belong to the wider class of marked 
extended affine root systems which were introduced by Saito [Sa85, Sa90]. They are generalized 
root systems of affine type which preserve a semidefinite positive bilinear pairing with two­
dimensional kernel: the "marked" refers to a choice of a sublattice of rank one in the kernel, 
in order to extend the metric to a preserved hyperbolic metric, namely nondegenerate and 
indefinite. 

Already Looijenga noticed that those Weyl groups carry a natural SL(2, Z)-action and hence 
one can define a semidirect product which we denote by Jf(g) in correspondence with a simple 
lie algebra g: later Wirthmiiller [Wi92] began the study of a suitable algebra of invariants under 
Jf(g), which he named "Jacobi forms" because in the case g = Al they reduce to the Jacobi 
forms in the sense of Eichler and Zagier [EZ]. He proved a Chevalley's type theorem (except 
for the case E8 ) which states that the invariants constitute a polynomial, freely generated, 
bigraded algebra over the graded ring of modular forms M.: this algebra, which we denote 
with J~?j, plays the same role as the algebra of polynomial invariants of finite Coxeter groups 
or the exponential invariants for the affine Weyl groups [Bo]. 

Now it is known from [Du92J that the spectrum of these algebras (Le. the underlying mani­
fold structure of the quotient space) can be endowed with a very rich geornetric structure called 
"Frobenius manifold" [Du93]; Frobenius manifolds arise in a different, --physical-, context as 
intrinsic formulation of the Witten-Dijkgraaf- Verlinde- Verlinde (WD VV) equations of associa­
tivity for a two dimensional topological field theory. 
Since there are many points of contact between the polynomial case (Le. Coxeter groups) and 
the elliptic one (i.e. Jacobi groups), it is natural to work out an analog structure in the context 
of these Jacobi invariants. 
A generalization to the case of "extended" affine Weyl groups was already made in [DZ98]; 
the authors considered a particular extension of the affine Weyl groups of simple Lie algebras 
which endows the algebra of invariants with a grading operator analogous to the usual grading 
of Coxeter-invariant polynomials. 

In this work we go in the same direction by constructing a Frobenius structure on (a suitable 
covering of) the orbit space of the Jacobi group of type All Vl = 1 ... and G2 • 
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We have worked out explicit analytic expressions for the generators of the Jacobi algebras of 
type Al and B l ; they are given in terms of a generating function which can be regarded as 
elliptic deformations of the analog generating functions for the Coxeter invariant polynomials. 
This techique also allows us to generalize the work done by Saito, Yano and Sekiguchi in 
[SYS80], where they computed the matrix elements of the intersection form in the basis of 
invariant polynomials. 

The explicit computations enable us to carry out the corresponding formulas for the gen­ .... 
erators and the intersection form in the case of G2• This latter -in some respect- is more 
interesting than the series Ai because lies in the category of "co dimension one cases" studied 
by Saito in [Sa90]; this means that there exists a unique generator of the algebra of theta invari­
ants of maximal index. This implies that there exists a natural flat structure on the spectrum 
of the invariant algebra as described in [Sa90]. On the other hand, however, the study of the A2 
case will show that there exists a different and independent flat structure, which is described 
in example 2.2 and section 2.7: this structure comes from the fact that the algebra J!~2) is 
embedded into J!~2) as a consequence of the fact that the respective Jacobi groups are in the 
reversed inclusion. 

Since the results are of two different types, we have divided the work into two parts. 
The first part deals with the general definition of Jacobi group, of Jacobi forms and related 
objects, giving the suitable geometric interpretation of their algebra. Later we specify to the 
series Al and Bl and construct the corresponding Jacobi forms usign a technique of generating 
function which is essential for the second part and for the computation of the intersection 
elements VJti,k (see later); as we said, this is an elliptic deformation of the formulae in [SYS80] 
for the case of polynomial invariants, and we show how to recover them under suitable limits. 

In the second part we explain the basic definitions and objects of Frobenius manifolds and 
Hurwitz spaces (following essentially [Du93]) and finally come to the construction of a natural 
(twisted) Frobenius structure over a suitable covering of the orbit space of J(A1); this provides 
a series of solution of WDVV which are polynomials in t l , ... , tz, t~I' tl+1 and depend on to via 
modular functions. Having a singularity at t a (due to the presence of the modular functions 
of to and a pole in tl+ I ), these solutions to the associativity equations do not saytisfy the "good 
analyticity properties" in the sense of [Du93], Appendix A, but do provide interesting examples 
of twisted structure, 
Notice moreover that the flat coordinates to, t l , .'" tl+1 are flat theta invariants on a suitable 
covering of the orbit space of the complex crystallographic affine Weyl group (though not 
precisely in the sense of [Sa90]). 

Jacobi groups and Jacobi Forms 

Jacobi groups are particular extensions of complex crystallographic groups [BS86]; they are 
discrete groups acting on a vector space in such a way that the quotient is compact. 
They can be considered in much generality in the setting of generalized root systems but for 
our purposes these groups are rather easily described and each of them is associated to one 
of the finite dimensional simple Lie algebras. It will be most effective to consider an explicit 
description of the group and an explicit faithful representation as an action on a cone. 
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1.1 The group ](9) 

In this section all the objects we will refer to (Weyl groups, root lattices, ... ) are the objects 
corresponding to a complex finite dimensional simple Lie algebra 9 of rank l. 
Let W be the Weyl group, A the root lattice (as an abelian group). 
Let HR be the Heisenberg group obtained as a central extension of Ax A by Z using the cocycle 
defined by the invariant Killing form <, > normalized to 2 for the short roots, (this implies 
that VA E A, < A, A>E 2Z). 
This group is obtained by definition of the product in A x A x Z as 

V(A,j.L,k), (A',j.L',k') E A x A x Z 

-(A, j.L, k)· (A', j.L', k') := (A + A', j.L j.L', k k'+ < j.L, A' » . 


Since the Killing form <, > is Weyl invariant and the Weyl group W of 9 acts on A, we can 
take the semidirect product W Xl H R : this way we obtain an (infinite) discrete group which we 
denote by W where the semidirect product is specified by the multiplication rule 

W := W Xl HR, s.t. Vw, w' E W, t = (A, j.L, k), t' = (A', li, k') E HR 
(w, t) . (w', t') := (ww', w . A' + A, w . j.L' + j.L, k + k'+ < j.L, A» . 

This group is rather well known and its invariants are theta functions, as we will explain in due 
course. 
We now can give the definition of Jacobi group 

Definition 1.1 The Jacobi group .1f .1f(g)) is the semidirect product W Xl 8L(2, Z). The 
action of 8L(2, Z) on the group W Xl HR is defined by 

Ad')'(w) := w 
ac bd)Ad'Y(t) (aA bj.L, -CA + dj.L, k + 2 < A, A> -bc < A, j.L > +2 < j.L, j.L > , (1) 

for w E W, t = (A, /-l, k) E HR, 'Y (~~) , E 8L(2, '1.,). Then the multiplication rule is 

defined by (V(w,t,1'), (w',t',1") E W x HR x SL(2,Z)) 

(w, t, 1') . (w', t', 1") := (w . w, t . Ad,), (wt'), l' . 1") . 

1.1.1 Faithful representation of .1f 

Let us consider the cone n := C E9 fJ E91£ 3 (u, x, r), where fJ is the complex Cartan subalgebra 
of 9 and 1£ denotes the Poincare upper half plane. 
In the literature it is often called the Tits cone (Lo80] and it is the union of all the images 
under W of the closure of a fundamental chamber C; therefore it is an invariant cone for the 
action of the group W (and of .1f as well). 

Let us consider r E 1£; we have an embedding of Ax A in fJ as the cODlplex crystallographic 
lattice A + r A and we can define the action as in the following 
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Proposition 1.1 The Jacobi group .IT can be represented on n by definition of the action of 
w E W, t E HR and, E 8L(2, Z) as 

w(u, X, r) := (u, wx, r) 

t(u,x,r):= (u+k- < X,/-L > -~ < /-L,/-L >,x+.1+r/-L,r) 

c<x,x> x ar+b) 
,(u, x, r) ( u + 2(cr + d) , cr + d' cr + d . 

.. .. 
The proof is straightforward although rather long, and it is left to the reader. 

Remark 1.1 The action of the Jacobi group is non linear, but it could be made such by realizing it 
as a discrete subgroup of the conformal group: in fact, as we will see, its action is a conformal action 
for the metric du ® dT + dT ® du+ < dx ~ dx >. 

1.2 Jacobi forms 

Since we want to consider the orbit space n/.IT(g) , it is necessary to study the algebra of invariant 
functions; this is the analog of the study of polynomials over a vector space which are invariant 
under the action of a Coxeter group ( which gives the orbit space a structure of weighted 
projective space1

). In this case one studies better the 5L(2, Z)-equivariant functions for the 
Jacobi group; it means that they are invariant under the action of the normal subgroup W, and 
transform under some representation of the metaplectic group (as in Definition 1.4); in more 
geometrical terms one studies the invariant sections of a suitable line-bundle over the orbit 
space. 
We will come back to this picture later, but for now we give the definitions and the results of 
the theory. 

Following [Wi92] we will consider holomorphic functions on n with the further property 
that they are locally bounded (in u, x) as ~(r) -+ +00; this is natural since r is interpreted 
as modular parameter of an elliptic curve and the Jacobi forms will realize the holomorphic 
sections of a certain line bundle over it, which one wants to extend at the cusps of 8L(2, Z). 
To be more definite, we will study the invariant modular forms, Jacobi forms, of weight k, 
:F(u, x, r)(dr)k/2, which have the following definition 

Definition 1.2 ([Wi92]) The Jacobi forms of weight k and index mare holomorphic func­
tions on the Tits cone n = C EB fJ EB 1i :3 (u, X, T) which satisfy 

1
Ecp(u, x, T) := -2'oucp(u, x, r) = m cp(u, x, T)

Z1r 
cp(u, x, r) = cp(u, w . x, r) ; 

cp(u, x, r) = cp (u- < t, x > - ~ < t, t >, x + rt + A, r ) 

-k ( C < x, x > x ar + b)
cp(u, x, r) = (cr + d) cp u + 2( d) , d' d' (2)

cr+ CT+ CT+ 

lRecall that a weighted projective space IPno,nl ... ,n, with weights no, ".,nl E N is the quotient space of 
C+1 / {O} with respect to the C· -action determined by the formula p(t)(zo, ,." Zl) = (tnO Zo, , .. , tn, zd, 
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and are locally bounded functions of x as ~(r) -+ +00. 
The space of Jacobi forms of weight k and index m is denoted by Jk:,m' 

This means that the Jacobi forms are the invariants of the group W == W ><l HR and transform 
as drk / 2 under the modular group S L(2, Z), being also eigenfunctions of the Euler vector 
E == 2i7r8u with eigenvalue m. 

Remark 1.2 Instead of thinking in terms of line-bundles, we could define equivalently a truly in­
variant algebra by adjoining to n a coordinate of the line-bundle as follows; consider the trivial line 
bundle Y := C x n with coordinates (v, u, X, r). Then define the action of the Jacobi group on Y as 

V c < x,X > x ar + b)
,(v,u,x,r):= ( --d'u+ 2( d) '--d'--d ' cr + cr + cr + cr + 

and in the obvious way (leaving v unchanged) for the elements of W. 

It follows that we can associate to any Jacobi form <p E Jk,m an invariant function on Y as 


~(v,u,x,r) :=vk<p(u,x,r) 

and hence define a second grading vector JC := v tv which co~ld be called the weighting operator. 

Digression 1 The action of the group W is the well known action in the theory of theta functions, 
namely, the invariance under W = W >:1 HR can be rephrased by saying that the Jacobi forms of index 
m are in particular theta functions of "level m" for the affine Weyl group in consideration. We recall 
briefly some basic facts (but for a complete reference, see [KP84]). Adapting the notion to our setting 
and notations, if P is the lattice of weights (i.e. < P, A >= Z), 

Definition 1.3 (Section III in [KP84]) Let mEN be fixed. The space of theta functions Thm is 
defined as the set of holomorphic functions of (u, x, r) which are invariant under HR and of degree m 
for the Euler field E. 
The theta functions of characteristic pEP and degree mEN for p in P mod m A v (here Av is the, 
lattice of coroots) are defined by 

e (u x r) .- e-2i7rmu "'"' eim7rTI!>-1I2_2im7r<>-,x>.p,m ".- L....t 
>-EAV+~p 

The C linear span of them inside Thm is denoted by Thm . 

It can be shown that 

Proposition 1.2 [Lemma 3.12 and Prop. 3.13 in [KP84]] For m E Z we have 

(a) 	 Tho = 0(1-£) (where 0(1-£) denotes the holomorphic functions of r); 

(b) 	Thm = {O} for m < 0; 

(c) 	 the space Thm is a 0(1-£) module over Thm and hence the (graded) ring Th. := E9mEN Thm is 
a free module over 0(1-£) with basis {ep,m, mEN, m > 0, p E PmodmAV} U {I}. 
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-w 
Let us denote by Th. the Weyl-invariant part of this ring (which is clearly also an algebra); regarding 
its structure we have 

-w
Theorem 1.1 [Thm 2.7 in [Lo76]] The algebra Th. is a (graded) polynomial O(1l)-algebra freely 
generated by l + 1 W -invariant .theta functions 00 , ... , 0l. These generators are given by 

OJ 	 := W . 8 pj ,mj ; 

here W . 8 denotes the symmetrization w.r.t. the action of the (finite) Weyl group, Pj are the . .. 
fundamental weights (we have set Po := 0) and mj are the integers appearing in the decomposition 

-v 	 -v
of the dual of the highest coroot (XV in the basis of roots, namely (XV 2.:::;=1 mj(Xj, (setting for 
brevity mo 1). 

We now go back to the Jacobi forms. 
The set of Jacobi forms of any weight and index has a natural structure of bi-graded algebra 
where the two gradings are the weight and the index; the following theorem is the the analog 
of Chevalley's theorem for invariant polynomials of a Coxeter group 

Theorem 1.2 [Thm. (3.6) in [Wi92]] Given the Jacobi group associated to any finite dimen­
sional simple lie algebra 9 (possibly except E8 ) 

1. 	 the bigraded algebra of Jacobi forms J.!. := EBk,m Jkm is freely generated by l + 1 funda­

mental Jacobi forms {CPo, .. , CPl} over the graded ring of modular forms EBk Mk 


J •• = M. [CPo, .. , cPz] ; 	 (3) 

2. The generator CPj has weight -kj ~ °and index mj > 0 (for j D... l); the indices mj are 

the integers appearing in 


l 
-v ~ v o = LmjOj , 

j=1 

--v 	 --­
o v being the dual of the highest cor-oat 0 v . 

3. 	 the weights are ko = 0, and k j are the Coxeter exponents plus one namely, if c is the 


product of the fundamental reflections of the Weyl group, then { -2i7r~1-1) , ... , -2i1T~kl-1)} 

are its eigenvalues: notice that kj, j = 1..l, equal the degrees of the invariant polynomials 
that generate the invariant algebra C[Vo]w. 

Remark 1.3 The second statement of Thm. 1.2 about the indices of the generators is not surprising 
if we recall that the bigraded algebra J.,. is a subalgebra of the Weyl-invariant part of the (graded) 
O(1l) algebra of theta functions Th•. 
This means that the generators are graded-linear (w.r.t. the grading induced by the index) combi­
nations of the generators 0o, ... ,Ol, with coefficients which depend holomorphically on T only. This 
dependence is forced because the generators OJ transform as a multiplet of modular forms under 
SL(2, Z). There is only one case in which a theta function is also a Jacobi form: it happens for the 
theta function of characteristic zero in the simply-laced cases for which the lattice of (co )roots is self 

AVdual, namely A = = P. This occurs only for E8, for which the theorem has not been proved. 
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The index zero subspace J.,o C J.,. is the graded algebra of modular forrns M •. To show this 
we observe that J.,o is spanned -by definition- by Jacobi forms independent of u and hence 
they cannot depend on x either; indeed they are (for 7 fixed) bounded functions on ~/(A +7A), 
which is compact, and hence they are constant w.r.t. x. 

Before going on, it is useful to remind some definitions and facts on the modular group and 
forms. 

-. Definition 1.4 (see [KP84]) The metaplectic group Mp(2, JR) is defined as the set 

Mp(2, JR) := {(A,iA) E 8L(2, JR) x {f : 1i ~ C} s.t. iA(7)2 = C7 + d} 

endowed with the multiplication rule 

Clearly we can consider the discrete subgroup Mp(2, Z) and give the following 

Definition 1.5 Let r be a finite index subgroup of Mp(2, Z) and a group homomorphism X : 
r ~ 8 1; a function f : 1£ ~ C is called a modular form of weight k and multiplier 

system X for r if it is holomorphic and for any A = (~ ~) E r we have 

An important example of modular form with multiplier system is the Dedekind's "., function 
(which we will use in the following) 

00 

".,(7) := e if; II (1 - e2i1rTn) • (4) 

It has the following transformations properties under the metaplectic group; 

".,(7 + 1) = ef&".,(7) ; 

71 ( -~) = V( -ir)71(r) , 

where the determination of the square-root is in the right half plane [Ba]: notice that the "., 

i1r 12function is a modular form of weight 1/2 with multiplier system such that X (~ i) e / 

i1r 4and X (~ ~1) = e- ,/ 

We finally recall a fundamental theorem for modular forms which can be found in [Se]. 
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Theorem 1.3 [Corollary 2, Ch. VII in [Se]] The algebra of holomorphic modular forms M. is 
a free graded algebra over C generated by the two Eisenstein series 

of weights, respectively, 4 and 6. 

Consequently the subspace of modular forms of weight k is spanned by the monomials G~G~ ... 

with 4a + 6b = k, namely 


Mk C[G~G~, Va,b,ENs.t.4a+6b=k] 

It will be useful to introduce the following special notations 

The last function is not a modular function as it has the transformation rules 

2 1
T gl(T) + 2 . 

There is a natural connection 'VT on modular forms given in the following theorem-definition. 

Theorem 1.4 Given a modular function F of weight k, (F E M k ), the modular connection 
'VT is defined by the formula 

and maps Mk in M k +2 • 

Example 1.1 For example, one can compute the following covariant derivatives of the fundamental 
Eisenstein series 

where, as above, g2(T) := 60G2(T) and g3(7) := 140G3(r.). 

Remark 1.4 While the holomorphic modular forms are of positive weight and are generated by 
modular forms of degrees 4,6, the Jacobi forms can be of negative weight and are generated by Jacobi 
forms of negative weight. 
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Geometric interpretation . 

Jacobi forms are holomorphic sections of a certain line bundle over the quotient space O/.1f; 
care should be taken in considering the orbifold points and cusps for the action of 8L(2, Z), 
but here we shall be slightly cavalier over these (important) details. 
We now describe the line-bundle by displaying the transition functions. 

Letl) be the Cartan subalgebra of the lie algebra 9 and consider the fibration (over 1-£) 'of 
complex crystallographic lattices A + 7A c l). 
Consider the quotient E~ := l)/ (A + 7A): it is isomorphic to a product of l copies of elliptic 
curves of modular parameter 7 (consider the coordinates of l) induced by the fundamental 
roots). We regard E~ naturally as a fibration of elliptic curves over 1-£. 
Now a linear fractional transformation of 7 with integer coefficients induces an isomorphism on 

the fibres of this fibration: namely if T' = ~;:~ with (~ ~) E 8L(2, Z) then the fibres E~ 
and E~, are isomorphic. The explicit isomorphism is given by 

q?T,T' : l)/ (A + 7A) ~ l)/ (A + 7'A) 
x 

X H- q?TT' (x) = d . 
, C7+ 

El 
T 

The group 8L(2, Z) acts as a discrete group on the fiber bundle £:= ,,!, . Over this space we 
1-£ 

consider the family of line bundles Lk,m indexed by (k, m) E Z x N, whose transition functions 
are described hereafter. 
This line bundle is defined over the fibration £ previously introduced. The open cover on which 
the transition functions are defined is constructed as follows; let Ce be the usual fundamental 
domain of the action of P8L(2, Z) on 1-£, namely Ce := {7 E 1-£ : 171> 1, -~ < ~(7) < ~}, 
and let ie := i, Pe := ei7r

"/3 and p~ := e2i7r"/3 the orbifold points at the boundary of (']e: let us 
denote, for any 7 E 8L(2, Z) the transformed fundamental region by C"( (where the point ioo 
is mapped either in itself or on some rational), and accordingly the boundary orbifold points 
by i,,(, P,,(, p~. 
Let Ao,o (7) be the fundamental polymesh of fJ / (A + 7A) namely 

AO,O(7) := {x E l) : Vj = l..l, < x, Pj >E fundamental mesh of C/(Z + 7Z)} , 

where the fundamental mesh is defined as containing the segments [0,1) and [0,7). We con­
sequently define the translated fundamental polymeshes as A).,J1, (7) A + 7J.L + Ao,o (7). The 
trivializing charts of the line bundle Lk,m are the sets 

U"(,).,I-£ := 1r {(X, 7) E UA).,1-£(7)} , 
TEG, 

where 1r : fJ EfJ1-£ ~ (fJ $1-£) /Jf(9) is the canonical projection. We define the transition functions 
for the line bundle Lk,m between the two charts of the orbit space corresponding to (1) . ­
(e, 0,0) and (2) := (7, A, J.L) by 

(k,m) ( ) ( )-k ( cIIxII 2 

9(1),(2) X,7 := C7 + d exp m 2(C7 + d) 
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Notice that they are tensor products of an appropriate power of the pull-back of the canonical 
bundle of 1l and of the line-bundle of classical theta functions over the fibre bundle e previously 
introduced. 

Now one realizes that there is a one-to-one correspondence between the W -invariant sec­
tions of this bi-graded family of line bundles and the Jacobi forms of the corresponding index 
and weight: the correspondence is given simply taking a Jacobi form <p E Jk,m and setting 
u =O. Indeed it follows from the definitions of Jacobi forms and of the above line bundles that 
if <p E Jk,m? then <p(O, x, T) E f(.ck,m)' 

1.3 The generators of the algebra of Jacobi forms for JJ(Al) and JJ(Bl) 

We are going to build some explicit analytic form of the generators of the algebra of Jacobi 
forms for the series Al and B l , but some preliminary formulae do apply also in the general case. 
Contrarily to what happens in the study of polynomial invariants for Coxeter groups, the 
generators we are to build will be essentially unique up to weighted linear transformations; this 
is a feature only of the Jacobi forms of type Al and B l . 

During the construction in the Al case it will appear a natural extension of the representation 
cone to a larger one, Of :) 0, and a natural vector field Z which will realize a recursive 
construction of the remaining generators starting from the lightest: this has to do with the 
weighting operator of Rem. 1.2. In both cases Al , Bll the Jacobi forms will be given by a 
generating function which has some notably resemblances with the generating function of the 
invariant polynomials. 

First of all, in the algebra of Jacobi forms there can be defined two natural operators, one 
linear 1) : J••, -7 J••., and the .Qther bilinear VJ1 : J••, ® J••, -7 J••, , Before we need some 
definitions 

Definition 1.6 The intersection form is the covariant second-rank tensor J obtained by 
inversion of the contravariant tensor J* given by 

J* := ® au - au ® aT + < ax ® ax >* =? J := -du ® dT - dT ® du+ < dx® dx > ; 

its associated Laplace-Beltrami operator is denoted by 

where .6.x is the Laplacian associated to the positive definite metric <, > (proportional to the 
Killing form of fJ). 

The intersection form J is conform ally invariant under the Jacobi group ], namely 

The laplacian L). is not conform ally invariant (contrary to what stated in [KP84] on page 190) 
but enjoys the property shown in next lemma. 
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Lemma 1.1 Let <p(u, X, T) be any (holomorphic) function: we have 

Proof. It is a straightforward computation. D 

This lemma can be used to define an operator on sections of the line bundles £k,m; we do 
this hereafter. 

Definition 1.7 Let cP E J -k,m and 'ljJ E J -h,nj then we define 

We will call the matrix elements m(cpi, CPj), for two arbitrary generators (whose existence and 
properties are stated in Thm. 1.2), the intersection elements. 

In this way we have defined two C-linear maps 1), m of bi-graded modules which are both of 
bi-grading (2,0), i.e. 

1) : Jk,m H Jk+2,m 
m : Jk,m ®c Jh,n H Jk+h+2,m+n . 

We have still to check that the definition is well posed, namely that we have not added any 
singularity; 

Proposition 1.3 For any cP E Jk,m, 'ljJ E Jh,n, we have 1)(cp) E Jk+2,m and sJJC(cp, 'ljJ) E 

Jh+k+2,m+n' 

Proof. We must check that the results of the application of the two operators are still invariant 
Jacobi forms; invariance is obvious and follows from invariance of the intersection form an of 
the laplacian. Also the bigradings of the resulting functions are obvious and follow from Lemma 
1.1. 
We must check that 1) (cp) and m(cP, 'ljJ) are still locally bounded functions of x as £S(T) -4 +00; 
now the Dedekind's 11 has neither. zeroes nor poles in 1i and vanishes as ql/24 at q = 0 (where 
q = e2i7l'1'). Hence, .6. (112kcp) is holomorphic and goes like qf2 as T --+ ioo, so that finally 
TJ-2k .6. (TJ2kcp) is well defined and holomorphic also as T -4 ioo: this proves that 1)(cp) is still 
locally bounded. A similar reasoning also holds for m. 
In passing we notice that 1) ( cp) '/. M. [cp], namely it is never proportional to itself for the reason 
that M2 = {O}; for the same reason m(cp, 'ljJ) ~ M.[cp'ljJ]. D 

The function T and the generators of the algebra J.,., being algebraically independent, form 
a set of coordinates {CP-I := T, CPI, ... , CPl+I} in a neighbourhood of the generic point of the Tits 
cone n; they playa similar role to that of invariant polynomials of Coxeter groups. In the 
case of Coxeter invariants, the contravariant intersection form can be expressed in the local 
coordinates given by the invariant polynomials and we want to perform a similar computation 
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in the context of Jacobi groups. To this end, the operator 9Jt and the intersection elements 
will be very important; we stress that the intersection elements are not the entries of the 
contravariant intersection form in the coordinates {CPft}ft=-l,l, ... ,l+l nonetheless they are useful 
to compute them as we show now. It follows from the definition that 

This formula shows that the intersection elements can be used to compute the intersection ... 
form. 

It appears convenient to introduce a special notation which will shorten formulae; indeed, 
from the above formula we see that it is of advantage to consider the functions 'f/2ki cpi , i = 1.. l+ 1 
as coordinates (indeed, they are still algebraically independent). Therefore we introduce a hat 
operator which transforms a Jacobi form of weight k into a Jacobi form of weight zero but 
with some multiplier system under the metaplectic group; it will be defined by 

Definition 1.8 For any Jacobi form cP E Jk,m, its hat-form is defined by <p := 'f/-2kcp. 

It is clear that the hatted-forms still are section of a line-bundle (since 17 never vanishes on 1£) 

which now has constant transition functions. 

Moreover the hat-operator preserves the index, and it satisfies the identity, rl = <p;j;, for any 

,¢, cP E J., •. 

With this notation we can write 


This means that when we have computed the intersection elements for a set of generators, by 
putting hats over every Jacobi forms (including the modular forms), we obtain the tensor J* 
expressed in the coordinates <Pj, which are locally well-defined on the orbit space; this will 
shorten much of the computations we are dealing with. 

Remark 1.5 The explicit form of the operator f) is rather simple: for any cp E J-k,m we find 

We observe that if the lowest-degree homogeneus polynomial in the Taylor expansion (w.r.t. x) of cp 
is P(x) (possibly depending on r), then the Taylor expansion of f)(cp) begins with Ax(P). 

Analogously we find for cp E J-k,m and 'lj; E J_ f,n that 

VJt(cp, 'I/J) -2i1rmcp fJ,.'I/J - 2i1rJ'I/J orCP 4i1r(k m + J n)gl cp 'I/J+ < dxcp, dx'I/J >'" 

Again, the leading term in the Taylor expansion w.r.t. x is simply < dxP, dxQ >, if P, Q are the 
leading terms for cp, 'lj;. 

Now suppose that we have the generator of J.,. of the minimal weight (the lightest), CPt E J-k/,m 
whose existence is stated in Thm. 1.2: it follows from the above that DCPT E J-kl+2,m if not 
zero; in this latter case one can prove 
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Proposition 1.4 [Prop. 13.3 in [Ka]] The kernel of the laplacian ~ on the space Thm , for 
m 2:: 0 is spanned over C by the theta functions 8 p ,m, where pEA mod mP. 

Therefore if'1J<.pj = 0 then ".,2kj+l<.pj is a linear combination with constant coefficients of the 
theta functions; this could occur because the function ".,2kj+l<.pl transforms under the inversion 
T J--t -~ as a weight l/2 form (with some multiplier system X which doesn't matter in this 

" 

context), and all also the C-linear combinations of theta functions transform asa (multiplet) 
of weight l/2} Jacobi forms (for details see [KP84]). 

Since the leading order in the Taylor expansion w.r.t. x of a generator {actually, of any 
Jacobi form) is an invariant polynomial, then a sufficient condition for '1J<.pl not to vanish is 
that its leading term Pkl (x) is not a harmonic polynomial. In the analogous context of Coxeter 
groups, as one can check directly, for the classical root systems (namely the series A l , 13l , Cl , Dl), 
all polynomials obtained by recursive application of the invariant Laplacian ~x are algebraically 
independent as these examples show (we will use this information later). 

Example 1.2 For Al (see [Bo] planche I), we realize the Cartan sub algebra in C+l with coordinates 
Z1,", Zl such that L~~~ Zj = O. The coordinates x are chosen as Z1 = Xl, Z2 = X2 - Xl ... Zl+1 = -Xl, 

or the coefficients of the vector in the root basis. The W-invariant polynomial of maximal degree I + 1 
can be choosen as 

11+1 (x) := [Ii Zj] . 
;=1 

IEzj=o 


Applying 6.x iteratively we obtain all the polynomials whose degree has the same parity 


To obtain the remaining we notice that, applying the operator L~~\ -Iz; we get the invaria.nt polyno­
mial 

11(x) := [~II Zk] , 
;=1 k:j:.; I

EZj=o 

from which we recover all the remaining applying 6.x . We remark that an alternative definition of 
these polynomials which is completely equivalent (up to multiplicative constants) is the following, 
using a generating polynomial in an auxiliary indeterminate '\, as in 

l+1 
Px('\) := II (,\ + Zj) ,\l+l +P2(X),\l-1 + .. + Pl(X)'\ + Pl+l(X) . 

j=l 

It is useful for what is corning to rewrite the same polynomial in an equivalent form which better 
generalizes to the case of Jacobi forms. 
To do this let us remark that the Weyl group of Al is represented as the permutation group of I + 1 
elements acting on C+l with coordinates z}, .. , Zl+l, restricted to ~ := {I: Zj = a}. Now there exist 
a unique (up to scalar) holomorphic vector field in Cl+1 which is orthogonal to 'E and Weyl invariant, 
namely 

l+1 a 
Z:= Laz.. 

j=l ; 
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This means that it is a derivation on the algebra of W invariant extended polynomials (namely all 
symmetric polynomials in the indeterminates Zl .. Zt+1). We can recover the invariant polynomials for 
At as 

Notice that 

(5) 

which follows from the fact that ~z = Ll. x + (l + l)a~: this will hold true, mutatis mutandis, also for 
the Jacobi forms. 
As for Bl, Ct ([Bo], planches !I,!II) , they are realized in C and the highest degree invariant polynomial 
can be chosen as 

l 

P2l(X) := II (Xj)2 , 
j=1 

and the Laplacian is just the usual one in Cl . Then it is an easy computation to show that the 
invariant polynomials 

2-k(~x)kP2l(X) 

are non-zero and algebraically independent. Notice that Bll Cl have the same invariant polynomials 
because their Weyl groups are isomorphic and their action actually coincides in this realization; in 
fact [Bo] both Weyl groups act by permutation of the Xi and independent change of signs and are of 
order 2llL 
Again we introduce the generating polynomial in two forms as we did for Al 

l

II ("x + XI) = "xl + P2(x)"xl-1 + ... + P2l- 2(X)"x + P2l(X) 
k:::::l 

Px(>') == e~l>x. (J](Xj)2) - (>. (6) 

As for Dl we have exactly the same construction as before but starting with the highest polynomial 

l 

P2l-2(X) := L II (Xk)2 
j:::::1 ki=j 

and adding the middle degree A= Il~:::::1 Xj, which is invariant because theWeyl group of Dt acts by 
permutations of the Xj and by change of an even number of signs (and hence has order 2l- 1Z1). Notice 
that D.xPl = 0, namely it is a harmonic polynomial. 

In a completely similar manner we can build the Jacobi forms starting from the lightest gener­
ator (f-t highest degree polynomial) as we see hereafter. 
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1.4 The root system of type Al: fundamental Jacobi forms. 

In the case of A it follows from Thm. 1.2 that the fundamental Jacobi forms 'Po, 'P2,", 'Pl+1 
" belong to the spaces (we labelled the forms according to minus their weight) J-I-.1+k,1 for 

k = l + 1, l - 1, ..0. 

If we realize the Cartan subalgebra ~ of Sl'+1 as in [Bo], planche I, then Wirt~miiller [Wi92] 

found that the lightest generator (which corresponds to a maximal degree generating polynomial 

in the setting of the corresponding Coxeter group) is given 


E J-l - 1,1 , 

where the function a is defined by 

B1 (v, T) _ 1 B1(v,T) _ O( 2)
a(v, T) := B' ( ) 3 - V + V , 

1 O,T 21f n(T ) 

81 being the Jacobi theta function. It enjoys the following property (from the properties of 8}, 
see e.g. [BaD 

BTa(x, T) = 4~ B;a(x, T) - 3g1a(x, T)
Z1f 

a( -v, T) = -a(v, T) ; a(v + 1, T) = -a(v, T) ; a(v, T + 1) = a(v, T) 

a(v + T, T) = _e-2i7rv-i7rT a(v, T) ::::} a(v + nT, T) = (_I)n e-2i7rnv-i7rTn2 a(v, T) ; 
2 

( 

1) 1. uVa -, - = -e~7rTa(v,T) , (7)
T T T 

We can obtain the Jacobi forms of weights l + 1 - 2k by recursive application of 1). To obtain 
the remaining we define the function 

l+1 
'Pl(U, x, T) := L a'(zk, T) II a(zk' T) . 

k=1 ji=k 

It is a straightforward exercise to show that this is a Jacobi form of weight -l. 
Therefore we can now build the remaining Jacobi forms for Al of weight -l + 2k by application 
of 1)k as in 

Proposition 1.5 A'system of generators for the algebra J.,. of the Jacobi group Jr(AI ) is given 
by 

'Pl+1-2k := 1)k('Pl+1) 
'Pl-2k := 1)k ('Pt} , 

where <Pl+l and <Pl have been defined above. 

Any other set of generators is a weighted linear combination of these with coefficients in M•. 
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Proof. Since we already saw that these are Jacobi forms belonging to the spaces J- l - 1+2k ,1 

and J- l+2k ,1 we only have to show that they are algebraically independent: but this is promptly 
seen by looking at the lowest term in the Taylor expansion w.r.t. x for 

2i1ruCPl+1-2k e (Llk (Pl+1(X)):t- O(llxW-2k)) 
CPl-2k = e2i7ru (Llk (Fl(x)) + O(llxW-2k-1)) 

and this suffices to show their algebraic independence. . . 
As for the second assertion, since any other set of generators must have index m = 1 then it 
must be at most linear in these generators, and if we want that they have definite weights, the 
combination must be actually a weighted one. 0 

Remark 1.6 In the setting of Coxeter groups, the set of generators of the algebra of invariant 
polynomials is uniquely specified up to weighted polynomial transformations; on the other hand, here 
we can only perform linear transformations with coefficients in the modular forms. 

We can describe these forms much more concisely with the aid of a generating function. In order 
to show how to build it, first of all we consider the enlarged space (u, z, 7) := (u, Zl, ",Zl+l, 7) E 
0' := C EB Cl+1 EB 1-£ and the following vector field 

1+1 ) 

( 4= ZjZ := Z - 4i7r gl(7)E , .. 
J=l 

where, as before, Z := L~:; 8~j' 

Lemma 1.2 The generators of the algebra J.,. are given by 

Followingly, they are the coefficients of the generating function 

Proof. We extend the action of the Jacobi group.1f to the enlarged space in such a way that the 
complex crystallographic Weyl group acts -exactly as before- by permutation of the coordinates 
and translation by the root lattice, while the metaplectic group acts by 

cllzll2 z a7 + b)
(u, Z, 7) 1---+ (U + 2(C7 + d) , (C7 + d)' C7 + d ' 

2where the Killing form has been extended to the obvious ds2 = L~~~ dzj • We realize that 
the vector Z is conform ally invariant of weight +1 (namely it increases by one the weight of 
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an extended Jacobi form); this means that if cp(u, z, ,) is an invariant function of the extended 
Jacobi group, then (setting p:= (l + 1) 2:i+1 

Zi = p(z)) 

. p ) [( Ilzl1 
2 1)]ZZ - 4Z7r--gl(,)E cp u - --, -, -- = ( l + 1 2, , , 

2i7r pI. . p [rJ' (-1/') 1 1 ] =---(Ecp)(*) + (Zcp)(*) - 4z7r - - - - (Ecp)(*) = l 1 , , l 1 rJ( -1/,) ,2 2, 

= ~ [(Z ~ (~) rJ'(-l/')E) cp] (*) . 
, l+l P , 1](-1/,) 

One may ask why we put a term proportional to p = (l + 1) 2:;+1 zi since in the end we want 
to restrict to p = 0: the reason is that when we apply more than once the operator Z and do 
not include the term we get a non Jr-covariant result as we see in this 
Counterexample. Consider the push-forward under the map (5 of the second iterate of Z: 

where * stands for the point (u - 1I~12 , ~, ~) , and we see that even restricting on p 0 we get 

We see that the vector Z commutes with E, hence preserves the index; we have a natural 
Jacobi form on the enlarged space which is simply e2i7ru I1~:; a(zj). Since the conform,al weight 
of Z is +1 we can write alternatively the fundamental Jacobi forms by means of the simpler 
formula 

'P1+l-k(U, x, 7) := [Zk (e2i1rUDa(Zj)) ] . 

II: Zj=O 

We should check that with this definition they are not algebraically dependent, but again this 
is obtained by looking at the lowest order in the Taylor expansion w.r.t. x. This proves that 
the functions defined in the Lemma are a set of generators. 

Next, in analogy with the case of the Weyl-invariant polynomials, it is useful to introduce 
the generating function, which obviously has the form 

by eVz we mean the flow generated by Z on the extended cone [2'. 0 

We remark that the series does not stop, but, by virtue of the structure of the algebra 
of Jacobi forms, the higher terms are polynomial combinations of these with coefficients in 
M•. We will resum the series afterwards, while now it is useful to write down explicitly the 
generating function; to do this we must integrate the flow of Z on, [2'. We could perform this 
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straightforward computation in a direct way, but it is interesting to point out that Z is a 
covariantly fiat vector for a suitable fiat metric on T(n') (the tangent bundle). This metric 
extends the intersection form of T(n) under the natural embedding 0, t-.t nf and it is worked 
out in the following section. After finding the flat coordinates of this extended intersection 
form, we will have also the integration of the flow of Z by shifting the coordinate along Z. 
The extended intersection form will be used later to compute the intersection elements. 

. . 
Extension of the intersection form . 

We are to build a metric on T(n') which extends the intersection form on Tn; we ask the 

following conditions on the extended intersection form: 


i) the extended metric must be fiat; 

ii) it must coincide with the previous one when restricted on the hypersurface L:;!:; Zj = O. 

To this end we introduce the coordinates on C1+l as 

Zl Xl + p 

~~.= X2 - Xl + P 

{ 
Zl+l = -Xl + P 

In a concise form we have z = L:~=l Xia'/ + p[l, 1. .. , 1]: in the following we will often write 
Zi(X,P) or Zi(X) := Zi(X, 0). 

lIn these coordinates the fiat metric L:1+ dz; becomes 

dZ2 =< dx, dx > +(Z + l)dp2 . 

The most easy form for the extended metric suitable for our purposes is 

3= -du ® dr - dr ® du + dZ2 + pB(r)(dp ® dr + dr ® dp) + p2 B'(r)dr2 

One can check directly that the curvature vanishes for any choice of the function B(r) (whose 
explicit form will be fixed to our convenience later), but it is sufficient to introduce the new 
coordinate 

and the metric becomes 
J -d8 ® dr dr ® ds + dl2 

. 

If we choose 
2 

B (r) := - l + 1gl (r) , 

we obtain that the previously introduced vector field Z in the coordinates (8, X,p, r) now reads 

1+1 a 2 
Z = '" -8 - -Z-gl(r)p8u = 8p •L.-J z· +1j=l J 
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The vector field 7 aT of these coordinates reads, in the old ones u, Z, 7 as 

p2 , 
7 = - l + 1 (gl (7 )) au + aT , (8) 

and the extended intersection form ')* reads 

__ l+l a a 

')* = -7® Z - z® 7 + "'- ® -. (9)


L...J az' az'j=l J J 

Now we can integrate easily the flow generated by Z simply shifting p with constant s; after 
these computation we can rewrite the generating function of the Jacobi forms as in 

Proposition 1.6 The generating function can be written as 

It follows from the transformation rules of 0: that the generating function enjows the following 
properties under the Jacobi group: 

2 

<I> (u - IIxl1 ~ V -~) = 7-1- 1<I>(u x 7V 7)' , , " ,27 7 7 

<I>(u, x, v, 7 + 1) = <I>(u, x, v, 7) 

<I> (u+ < JJ, x > +iII JJ II2, x + TJJ + t, v, 7) = <I>(u, x, v, 7) 

<I>(u, x, v + 1,7) = (-l)l+l<I>(u, x, v, 7) 

<I>(u, x, v + 7,7) = (_e-2i7rV-i7rT)l+1 <I>(u, x, v, 7) . 

Remark 1.7 The function v-l-1~u,X,T(V) is an invariant function of index 1 on the total space of' 
the line-bundle as in remark (1.2); notice that it has a pole of order 1+ 1 in v as a consequence of 
the fact that the spectrum of the weighting operator K on the subspace .If.,1 is -l-l, -l, ..., -2,0,1, .... 

1It will be useful later to consider the function ..\(v) := 0-- - 1(v )~U,X,T(V) = a- l - 1(v)e2i7rU rr~;:A a (Zj (x, v)), 
which has the same singular tail (in v) but is also invariant under the complex lattice Z + TZ. 

1.4.1 The generating function for At: resummation of the series. 

As we saw, the first l + 1 coefficients in the taylor expansion w.r.t. v of the extended Jacobi 
form 

I l+l 
2

2i7ru-2i7rv (l+1).!L IT ( ( ) + )e .,., 0: Zi X V,7­

k=l 
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provide us with the desired fundamental Jacobi forms. Unlikely to the case of Coxeter invari­
ants, this generating function is not just a polynomial in the auxiliary variable (in this case 
v) but a full series. It is therefore useful to resummate this series in order also to analyze its 
coefficients. 

We realize that the generating function is a classical theta function belonging to Thr' for­
the lattice of Al depending on the parameters v, 7. Since we know from Thm. 1.2 and 1.1, that 
the Jacobi forms span Thr' we can write the following equality 

l+1 
<p(s, X, v, 7) = e-2i1r(l+1)v291(T) L Ck(v, 7)'Pl+1-k(S, x, 7) 

k=O 

and we must find the coefficients Ck (V,7). If we analyze the modular properties of <P, we 
promptly find that the coefficients Ck (V,7) are Jacobi forms of weight -k for the lattice 
Cmod 2(Z + 7Z), namely 

Ck(V + 1,7) = (-1)l+1Ck(v,7); 
Ck(v + 7,7) (_1)l+le-2i1rv-i1r(1+1)TCk(V, 7); 

Ck (~, -~) = T-kei?r(l+W: Ck(v, T) . 

The formula which describes concisely the generating function is contained in the 

Theorem 1.5 Up to normalization, the generators of the algebra of Jacobi forms of type Al 
already defined recursively in Prop. 1.5, are given by the generating function 

. . 2 l+1 l+1 (-1 )l-l-k 
<PU,X,T(V) := e221ru-221r(l+1)V 91 II a(Zi(X) - v) = (Tl+1(v) L (l- k)! p(k-2)(V)'Pk(U, X, 7) = 

j=1 j=O 

1 p(v) p'(v) p(l-1)(V) ) 
1 P(Z1) P'(Z1) p(l-1) (Z1) 

det . . 
( · . 

1 1 
-1 i p(zz) p'(zz) p(l-i) (Zl) l+1() II+ ( ( )) 

l! P(Zl) p'(zd P(l_2)(Zd) (J v j=O a Zj x (10)(1
1 P(Z2) P'(Z2) p(l-2) (Z2) 

det . . · .· . 
1 p(Zt) p'(zz) p(l-2) (Zl) 

Proof. We recall a classical formula which can be found in [Du93] pag. 199. If Ei+1 Zi = 0 
then 
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Expanding the determinant w.r.t. the first row of the determinant In the numerator and 
rearranging terms we promptly get 

l+1 [(_1)1-1 ] [(_I)l-2 ]
e2i7rUrr a(Zi(X)-V)= l! al+1(v)pCl-1)(v) CPl+1(X)+ (l_I),al+1(v)p(l-2)(v) CPl(X)+ 

1 

+ ... + [al+1(v)p(v)] CP2(X) + al+1(v)cpo(x) = 

:= CO(V)CPl+1(X) + C1(V)CPl(X) + ... + Cl- 1(V)CP2(X) + Cl+1(V)CPO(X). 
l)l-l-k 

Ck(v):= 
(U_k)! al+1(v)p(l-1-k) (V) (11) 

In this formula the coefficients of the fundamental Jacobi forms are chosen in such a way that 
kthe leading term in the v expansion in front of the Jacobi form CPl+1-k is v . 

In order to be sure that these CPk are really the Jacobi forms we are looking for, we first notice 
that they have no singularities because the LHS in (11) is regular and the coefficients Ck are 
linearly independent. 
Moreover since the coefficients Ck do satisfy the transformation rule 

and the LHS is of weight - 1 under the map x i---t ~, v i---t ~, r i---t - ~, it follows by 
counting the weight that CPk is of weight -k as well. We now have to check that we exactly 
resummed the series in Prop. 1.6: first of all notice that p(v) = + regular and hence for 
k = 0,1,2, ... , l - 1, l + 1 we find 

p(k) (v) = (_I)k k!V-k- 2 + regular ,ij. 
e-2i7r(l+1)v291Ck(V, r) {V-l- 1+k + 0(1)} (V l+1+ 0(Vl+3)) = vk + 0(Vl+1) 

and therefore 

1,2, ... ,l-l,l+1. 

This proves that we actually gave the resummation of the previous series and that the above 
functions CPk are indeed the searched Jacobi forms. 0 

Remark 1.8 As in the case of the generating function for the invariant polynomials (eq. 5) we have 
e2i7r(Z+ 1)vfor the "gauge transformed" function P (v) := 

2 
91 ~ ( V ) (see next section ) 

(12) 

where we have put a subscript to the operator 'D to stress on which variables it acts. This formula 
follows from the fact that (recall z z (x, v) ) 
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which is a consequence of the properties of a(z, T), But now, expressing the Laplacian in the coordi­
nates x, v we get 

2
 
- ( 1 ( )
O=1)(P(U,Z,T)) = -4i1rg1+ l+18v2 P(u,z(X,V),T)+1)U,je,T(P(U,Z(X,V),T)) , 

which proves eq. 12. The comparison with the formula 5 has to be made considering the limit (genus 
olimit) 

. .lim E-
l+1 (Eq.12)w ex T(EV) (Eq. 5) . 

E-+O ,l 

The formula 12 can be written in a very concise form; recalling that P(v) L~~~ Cl+1- k(V, T)I.Pk (u, x, T), 
we have 

1+1 
fJp = L [1) (Cl+ 1- k) I.Pk + Cl +1- k1) (I.Pk)] , 

j=O 

w here we have defined 

1)(C ) '= -4i1r 'n- 2k- 1a ('n2k+1C) + _l_a?ck ' " T " k l + 1 v k· 

1.4.2 Computation of the intersection form with the generating function 

In this paragraph we compute the generating function of the matrix elements of the intersection 
form in terms of our fundamental Jacobi forms. This computation is the translation in the 
present setting of the analog formula by Saito, Yano and Sekiguchi for the polynomial invariants 
in [SYS80]. 
To simplify the computational steps we will consider the functions 

l+1 
2

2i1l"U II () e2i1l"(l+1)V g1(T) n.. (v)P(U, Z1 ...Zl+1 ) := e a Zi '!:' 


1 


'(v) '.= (flO + tI1(V)(fl2 1,() + + (_1)1-1 (1-1)() -1-1( )P( ) 
A T' 0.... T' -

2 
P V <P3 ... . [' 

. 
P v 'Pl+ 1 = a v v, (13) 

with no particular relation between the Zi'S, The first one is clearly related to the previous 
generating function @ by a gauge transformation 

l+1 
2

P (u, z(x, v), '/) := e2i
1l"(l+1)v :;-

I 

@(u, x, v, T) = e2i1l"u II a (Zi(X, v)) . 
i=1 

We now prove the 

Theorem 1.6 The intersection elements 9J1( I.Pk, 'Pj) are recovered from the generating function 

1+1 (-l)k+ j 
0 

"" p(k-2)(v)p(J-2)(V')9J1('Pk 'Po) = 
~ (k - 1)!(j I)! ' J 

k,J-O 

= 2i1r (][)I.).(V ).(v') + ).(v)][)I.).(v')) - I ~ 1X(v).' (v')+ 
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+~ p'(v) + p'(v') ('x(v)~'x(v') _ 'x(v')!£,X(v)) , (14)
2 p(v) - p(v') dv' dv 

where lIJ);'x(v) := L:~~1 «(j~~~t lIJ)(pU-2»)(V) 'Pi (see appendix for the definition of ]))). 

In practice, to find the coefficients rot('Pk, 'Pj) we have to multiply both sides by p(v) - p(v') 
and compare the Laurent expansions w.r.t. v, v' (see example for A2 later). 

The proof of this short formula involves many steps and lemmata. 

Lemma 1.3 For the extended intersection operator 9J1 we have 

e2i1l"(l+1)(v2+v'2)91 (r)9J1({P(v), {P(v')) = 

= 2i1f(1 + 1) V'7 (v -,)')p(V)p(v') + 0.' t-v:; {P(v)dd, P(v') - P(v')dd P(v) lJ~ (15) 
av-v av-v v v 

Proof. The extended intersection form is given by (see formula (9)) 

__ l+1 a a 
J* = -T®Z-Z®T+ "-®-,

~az' az'j=1 J J 

and the extended intersection operator rot is defined accordingly as 

Since the "gauge-transformed" vectors Z and T (the latter being defined in (8)) are 

we have that for the function P(v) := P (u, z(x,p + v), T) := Pu1z;r(v) (where we consider the Zj 

unconstrained, and v a parameter of deformation) the gauge transformed intersection element 
reads 

We now compute 

, l+1 .... 

Ihs of (15) = -2i1f71-21-2 [p(v)o, (712/+21'(v')) +p(v')o, (712
l+2p(V))1+L o:P(v) o~ p(v') = 

. 1 t 'I. 

= _~ ~ (a"(Zi) + a"(Wi) _ 2a'(Zi)a'(Wi)) P(v)P(v') + 4i7r(l + 1)g1P(v)P(v') , 
2 1 a(Zi) a(Wi) a(Zi)a(Wi) 
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where Zi := Zi(X,P+V) and Wi := Zi(X,P+V'). We now must analyze the terms in round brackets: 

using the formulae in Prop. A.2, the intersection form becomes (recall that Zi - Wi = V - v', 

V i = 1..l + 1) 


8 a (v - v')] a' (v - v') {d d}Ihs of (15) =2i1T"(l + 1) r ( ) +2g1 P(v)P(v')- ( ) P(v')-P(v)-P(v)-P(v') =[ a v - v' a v - v' dv dv' 

= 2i1T"(l + 1) "\7 r a (v - v')P(v)P(v') + a' (v - v') {P(v)!£P(v') _ P(v')~P(v)} . 
a (v - v') a (v - v') dv' dv . • 

This ends the proof of lemma. 0 

Although vEY concise, this formula gives the intersection elements of the extended intersec­

tion operator 9J1: this is insufficient to our purposes since we want to analyze the intersection 

operator 9J1. 

In order to find the intersection elements 9J1('Pj, 'Pk), we have the further lemma. 


Lemma 1.4 For the intersection elements of 9J1 we have the formula 

L Ck(v )Cj (v')9J1( 'Pl+1-k, 'Pl+1-j) = 
k,j 

V'rO:(v - v') ) (') 0:' (v - v') { () d (') ( ') d ()}
= 2i7r(l + 1) ( ') P(v P v + ( ') P v -d' P v - P v -dP v +o:v-v o:v-v V V 

- L 9J1(Ck(v) ,Cj (V'))'Pl+1-k'Pl+1-j , , (16) 
k,j 

where Cl (v) are defined in (11) and we have set for short 

9J1(Ck(V),Cj (v')) := -2i7r (Ck(V)T7- 2j ar (T7 2jCj(V')) + Cj(v')n-2ka r (T7 2kCk(v)) )+l ~ 1 C~(v)Cj(v'). 

Proof. From the definitions, by a straightforward rearrangement of terms, we have 

e2i7r(l+1)(V2+VI2)919J1(<I>(V) , <I> (v')) = L Ck(v)Cj (V')9J1('Pl+1-k, 'Pl+1-j)+ 
k,j 

+ L9J1(Ck(v),Cj(V'))'Pl+1-k'Pl+1-j, (17) 
k,j 

where we have set for short (as in the statement of lemma) 

9J1(Ck(v),Cj (v')) := -2i1T" (Ck(v)".,- 2jar (".,2 jCj (V')) + Cj (v')".,- 2kar ("., 
2kCk(v))) + 

+-lC~(v)Cj(v').1 
+1 

We can now recast eq. (17) using eq. (15) into the formula in the statement of the lemma, 

which is now proved. 0 


Proof of Theorem 1.6 We use the function "\(v) defined here below 

1,( ) (_l)l-l (l-1)() -l-l( )P( )( ) ( ) - V 'P3 + ... + P = a v,,,\ v := 'Po + P V 'P2 2P l! V 'Pl+ 1 v 
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Rewriting the formula in Lemma 1.3 for this A(V), we have 

e2i7r(l+1)(v2+vl2)919Jt( <f?(v), <f?(v')) 

a l+1(v )al+1(VI) 

= (l + 1) {2i11" VTa(v v') _ a/(v - v') [a/(v) _ a/(vl)]} A(V)A(V')+ 
a(v - VI) a(v VI) a(v) a(v') 

, v rI 

:=Q 


a'(v - v') ( d I d )
I+ ( ) A(v)-d,A(V) - A(V )-dA(V) . (IS) 
a v - v' v v 

On the other hand we can compute2 , recalling the definition of the modular connection V~ and 
the elliptic connection ]JJ). defined in Appendix, Prop. 33, 

'" mt(Ck(v) ,Cj(v' )) 

L-t. a l+ 1(v )al+ 1 (VI) <Pl+1-k<Pl+1-j = 

k ,J 


aa (v) aa (v') ] 
= -2i11" (V;A(V)A(V' ) + A(V)V;A(V')) - 2i11"(l + 1) [4g1(7) + :(v) + :(vl ) + 

+ I ~ 1 [X(V) + (I + 1) :i~~ ),(V)] [),'(V') + (I 1) :i~:~ ),(V')] = 

= -2i11" (V;A(V)A(V') + A(V)V;A(V')) + 

=-Q by means of eq. (34) 


-(l I)T[s" () 2" (OTa(V) .... OTa(v
l
)) _ a/(v')al(v)]' '( )'( ')

+ 't11"g1 7 + '1,11" a(v) + a(v ) a(vl)a(v) A v A V + 
' 

+_I_A' (v)A'(v' ) + al(v) A(V)A'(V' ) + a'(v' )A(V')A'(V) = 

l + 1 a(v) a(vl 

) 


= -2i11" (V;A(V)A(V') + A(V)V;A(V')) + (l + I)QA(v)A(v' ) + _1_A'(v)A'(v')+
l+1 

+ a'(v) A(V)AI(V' ) + a'(v' ) A(V')A'(V) = 

a(v) a(v1

) 


= -2i11" [A (v)]JJ)· A(V' ) + A(v')]JJ)· A(V)] + (l + I)Q A(V)A(V') + _1_A' (v)A' (v')+
l+1 

2We shall use the notation V:A(V) and D-A(V) understanding them as 

namely the modular and elliptic connections are supposed to operate only on the functions depending on v. 
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a' (v) a' (v')] ( d, , d )+ [ a(v) - a(v l ) A(V) dV,A(V) - A(V) dvA(V) . 	 (19) 

Therefore we finally find (for compactness we define p(-2)(V):= 1 and p(-l)(V):= 0) 

~ (-I)k+
i 

(k-2)( ) U-2)( ')VJt( ) (18) (19) = ~ (k - 1)!( . _ I)! 80 	 v 80 V 'Pk, 'Pj 
k,J=O J 

= 2i7r (llJ). A(v )A(v') + A(v)]))· A(v')) + 

a' (v - v') a' (v) a' (v') ( d , d ) 1 I " + ( ') - -(-) + -(') A(V)-d,A(V) 
I 

- A(V )-dA(V) - -l-A (V)A (v) (20)av-v av av v 	 v +1 
, v J 

=((v-v')+((v' )-((v) 

From the classical pseudo-addition formula [Ba] 

((v - v') + ((v') _ ((v) = 	~ 80' (v) + 80' (v') , 
2 p(v) - p(v') 

we can finally prove the theorem. 0 

Notice the resemblance of eq. 15 with the formula worked out in [SYS80] by Saito, Yano and 
Sekiguchi in the case of the finite Weyl group Al : in that case they had P(v) = TIi+1 

(Zi - v) 
and the formula was 

l+l f) f) 	 1 {d 	 d}I: ~P(v)~P(v') = -,- P(v')-dP(v) - P(v)-d,P(v') 	 (21) 
i=l U Zi u Zi V 	- V V V 

We can realize that eq. 15 is an elliptic deformation of eq. 2l. 
Indeed, under a suitable limit the former formula goes into the latter 

2lim €-2l [e2i7r(l+I)(V +v'2)91 VJt (<P(v), <P(v'))] . RHS of eq. 21 . 
€-+o (u,z,v,v')t-+(€U,€Z,€V,€V') 

Example 1.3 The case of A2 In this example we compute explicitly the intersection form in the 
coordinates <P-I T, <PO = <Po, (ji2 = TJ4<p2, <ii3 = rl<p3; this result will be useful in the computations 
for G2 . 

Using the generating function in Thm. 1.5 one can compute explicitly the Jacobi forms to be (recall 
that we have Zl = Xli Z2 = X2 - Xl; Z3 = -X2) 

26 




where we have used some classical formulae in dealing with the p functions [WW]. 
We now compute the elements 9Jli,j := 9Jt(<Pi,<pj) since we are going to use them for G2 later. Using 
formula (14) and setting <P-l := T we find 

0 -2i7r<Po -2i7r<P2 -2i7r<P3 

1 2 2 1 1 2 3 2 1 2 5- 2i7r<po 24g2 <P3 -e;92<PO<P2-293<P2' "493<P3 - 392<P2 -12g2 <P2<P3 
(22)9Jt(<Pi, <pj) = 

3 2 22i7r<P2 4'93<P3 192<P2 ~92 (<P3)2- 2<PO<P2 -3<P3<PO 

- 2i7r<P3 - 1
5
2g2 <P3 <P2 -3<P3<PO ~ (<P2)2 

1.5 Jacobi forms of type G2• Saito's flat invariants. 

The Cartan subalgebra for G2 is realized in [Bo], planche IX as the subspace of C3 such that 
ZI + Z2 + Z3 0; the root lattice is the same as the one of A2 and the Weyl group is the dihedral 
group of order 12. It can be seen that W(G2)/W(A2) ::::: Z2 and it is generated by the involution 

6 : (ZI' Z2, Z3) I--t (-Z3, -Z2, -zd . 

The J aco bi forms we have to build are 

'Po E JO,l; 'P6 E J-6,2 . 

They can be built directly as follows: 

1. 	 As for 'P6 we can take 

'P6(U, x, T) := 2e4i ..... II
3 

O?(Zj, T) = ~ ('P~A2)r E 1-6,2 

j=1 

namely te square of the lightest Jacobi form for A2 , which is clearly invariant under the 
involution 6 defined above. 

2. 	 As for 'P2, 'Po one can check that the same Jacobi forms which work for A2 do work for 
this case (we only have to check invariance under the extra involution 6) in fact we have 
for Zl + Z2 + Z3 == 0, 

2i1!'U ( ) ( ) ( )p'(zd - P'(Z2)
'P2 (u, X) = e a Zl a Z2 a Z3 () () == 

P ZI - P Z2 
== -2e2i1!'Ua (ZI)a(z2)a(z3) [((Zl) + ((Z2) + ((Z3)] 

'Po(u, x) == e2i1!'Ua (ZI)a(z2)a(z3) P(ZI)P'(Z2) - P'(ZI)P(Z2) == 
P(Z2) - p(zd 

2ie ..... a(zda(z2)a(z3) {~[P'(ZIl + P'(Z2) + P'(Z3)] + 

+~ [((zd + ((Z2) + ((Z3)] (P(Zl) + P(Z2) + P(Z3))} , 

and since both are product of two antiinvariant functions, they are invariant under 6. 
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This identification allows us to compute the Jacobi invariant intersection form VJt since it is the 
same as for A2 being the Weyl invariant inner product the same [(dzd 2 + (dz2)2 + (dz3 )2]l 3=Ol+Z2+ 

z Z 

in both cases. Therefore we can easily compute the intersection elements VJt(cpj, CPk) out of those 
computed for A2 in eq. (22) and find the following expression for the intersection form in the 
coordinates T =: ~,cpo, C/i2, <;i6 ~where the hat on the Jacobi forms are given in Def. 1.8) 

J*(d(IPi),d((jij)) = 
2' -- 40 - 'l7rcpo11- 2' -- 4 4' - 4 

2' -- 4 1 -2- 1----- 1--2 3-- 1---2 

- 'l7rCP211- - 'l7rCP611­

-	 5---­'l7rcpo11- 12 92 CP6 692CPOCP2 - "293CP2 "293CP6 - g92CP2 -692CP6CP2 
114 (23)3--- 1---22' -- 4- 'l7rCP211- "293CP6 g92CP2 92<;i6 - 2cpoC/i2 	 -6<;i6cpo 

4---2- 4i7r<;i611-4 5 -----	 -6<;i6cpo-692CP6CP2 	 gCP6CP2 

Notice that the matrix is linear in the generator CP6: this is obvious when one counts the indices 
of the matrix elements and it is connected with the fact that G2 is a "codimension one" case 
in the sense of [Sa90]. 
The matrix QO J* (which is the tensor J* in Saito's notation) reads 

uC{)a 

0 0 0 - 4i7r11-4 

1 -2 3- 5-­0 1292 "293 6 92CP2
8 J* _ 4 

8<;i6 - 11 3­0 "293 92 - -6cpo 
5---	 4--2- 4i7r11-4 -692CP2 -6cpo gCP2 

It follows from Saito's paper [Sa90] that this tensor defines a contravariant metric whose co­

variant form is fiat; one could now try and look for the fiat coordinates of this metric (the "fiat 

theta invariants"). 

We are in a position to give the fiat coordinates associated to this second flat metric. 

In order to find them we must integrate the geodesic equations; it is a rather muscolar though 

non completely straightforward exercise for which it is very helpful the paper [Sat93]. Hereafter 

we report only the result. 


Proposition 1.7 The flat coordinates of Saito's metric are T, tIl t 2 , ts, given in the following 

system 


'Po (2'1l-j22-2/3 ~~ (F; (T)tl + F~ (T )t2) 

C/i2 = (27r)22-2/3112(Fl (T )t1 + F2 (T )t2 ) 


32 
__ , 	 ---2 1 -2---- 3 - ---2 
'P6 = t6 - 4Z1Tgl tl t2 + 2117r12 g3'Po - 2117r12 g2 'PO'P2 + 2137r12 g2g3'P2 , 

where the two functions Fl,F2 are given, in terms of the modular invariant 

dz -F27 114 _ 2 
dT = 2(27r)66i7r 92 , 
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by, 

In these coordinates Saito's metric becomes, 

o 
o ~2 -~i7r) 

(24)-2 0 0 . 
o 0 0 

The fiat coordinates show up a nontrivial monodromy around z(r) = 0,1; these points both 
correspond to the elliptic curves where 92 = 0, namely the symmetric tori. 

1.6 The root system of type Bl : Jacobi forms 

The Jacobi forms for J(Bd can be constructed in a similar but easier way as those for J(Al)' 

Similar computations leading to the generating function for Al , took us to the following 

Theorem 1.7 The generating function 

P(v) := e2i1ru II
l 

a(v - xi)a(v + Xi) := 
i=l 

p(21-2) (v) 21 p(21-4) (v) 2l 21 
(2l _ I)! 0: (V)<P2Z(X) + (2l _ 3)! a (V)<P2l-2(X) + ... + a (v)<Po(X) = 

1 p(2l-2) (v) ) 
det : : 

( 
1 p(21-2) (Xl) 21 III 2 

1 P(2l-4)(Xd) a (v) j=l a (Xj) = 

det ~ ~ 
( 1 p(2l-4) (Xl) 

- <P2l(X) + V2<p2l_2(X) + ... + V2l<pO(X) + O(V2l+2) , (25) 

gives a basis of generators for the algebra of Jacobi forms of type Bl . 

Any other set of generators is a weighted linear combination of these with coefficients in 
M .. 

Proof. We must show first of all, that the functions defined by the formula have all the prop­

erties of smoothness. This follows from the fact that the ratio of determinants is a holomorphic 

function of all its variables without poles. 

In order to show the properties of invariance, consider now the elliptic function 


1 p(v) p"(V) ... P(2l_2)(V)) 
1 p(xd p"(xd . .. p(21-2) (Xl) 

F(v) := det 
( 

1: 

P(Xl) p" (Xl) p(2l-2) (Xl) 
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Since only even derivatives of the p functions are involved, this is clearly invariant under the 
change of sign of any between v, Xl, .. xl. As a function of v it has a pole at v = 0 of order 2l 
and hence it has as many zeroes; it is clear that these are situated at ±XI, ... ,±Xl. The same 
holds clearly for the variables Xi therefore if we express it by means of the function a [WW] , 
considering the antisymmetry we must have 

F(v) ex: n:=l u( v Xi)a(v + Xi) rri<j a(Xi - Xj )a(Xi + Xj) 

a 2l (v) rr!=l a2l (Xi) 

Therefore we can compute 

Expanding the LHS w.r.t. the first row of the determinant in the numerator and multiplying 
both sides by 

e2i1T'u+2i1T'~(llxI12+2lv2) a 2i (v) rr~ a2(Xi) we obtain exactly the formula (25). 

As for the second statement, the proof is exactly as in the case Al • 0 

Notice that, up to a normalization, all the Jacobi forms can be recovered by applying the 
operator 1) to the lightest one 

l 
l 

CP2l(U, x, r) = II(Xj? + O(l/x ll 2l
+ )

j=l 
and hence for any b = 1..l the Jacobi forms CPl-b := 1)b (cpt) do not vanish identically because 

their leading term is L\~ (rr~=l (Xj)2) :f= O. This gives the whole basis of fundamental invariant 

Jacobi forms; moreover (as in the Ai case) any other basis is obtained from this one by a 
weighted linear transformation with coefficients in M •. 

Proposition 1.8 The formula 

defines a basis of Jacobi forms which is equivalent to that in formula (25). 

Proof. It is clear that, as a function of v, this is the same generating function because it has the 
same poles and zeroes, but the fundamental Jacobi forms ¢2j are weighted linear combination 
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of those defined previously; indeed, expanding the product we obtain the Jacobi forms as the 
coefficients in front of powers of p(v) while in the former formula they were the coefficients in 
front of even derivatives of p (recall that even derivatives of p can be expressed as polynomials 
in p). 0 

Although this is a more compact formula, the previous one is more effective in actual compu­
tations of the intersection elements; indeed in the next paragraph the intersection elements will 
be computed only for the first basis of Jacobi forms. However this formula for the generating 
function is the closest to the classical one (6) as one can compute that 

l 

P(v) = exp (v21)) II [e2i7rUa2(xj)] , 

j=1 

which follows from the formula (coming from the case AI) 

Remark 1.9 Although the Weyl group of Cl is the same as the one of Bll the affine Weyl groups 
(namely the complex crystallographic lattices) are different: indeed the root lattice of Bl is simply 
Zl while the one of Ct is (Z1' .. , Zl) EZl such that 2: Zj E 2Z. There follows in particular that the 
normalization of the invariant Killing form to 2 for the shortest roots, is different: in this realization 
of the Cartan subalgebra (which follows the corresponding planches in [Bo]) the Killing metrics are 
ds2 := 22: dXj 2 for Bl and !ds2 = 2: j dXj 2 for Cl. 

A consequence of this fact is that if <p(u, X, T') E Jl;! then <p(2u, x, T') belongs to Jl~I~. This 

amounts to saying that the algebra J~~d of Jacobi form for Bl is isomorphic to a subalgebra of J~~d 
and the isomorphism doubles the index. 

Now, from [Wi92], we know that the generators belong to the spaces 

<Po E JO,I; <P2 E J-2,1; <P4 E J-4,1; <P2k E J-2k,2, k = 3 ... l. 

The isomorphism which injects J!~L) y J~~d allows us to identify the l 2 generators of index 2 for 
the Jacobi algebra of type Ct as the images of the corresponding generators of B l • 

1.6.1 Computation of the intersection form with the generating function: Bl 

As we did in the Al case, we can now exploit the generating function to compute the intersection 
elements VJt2j ,2k := VJt('P2j, 'P2k); again the computational details are quite cumbersome but the 
result is a remarkably simple formula which -again- is in deep analogy with the corresponding 
formula for the invariant polynomials in [SYS80]. The result will be a generating function in 
two variables for the elements VJ12j ,2k and is contained in Thm. 1.8. 

The intersection form for the Jacobi group of type Bl reads 

l 

J := -du ® dT - dT ® du + 2 L dXj 2 , 

j=1 
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where (following [Bo] planche II), we have realized the eSA of Bl as the vectors x := (Xl, ,." Xl) E 
Cl 

; notice the normalization of the Weyl invariant inner product. 

Theorem 1.8 The intersection elements VJl(<P2i, <P2j) are recovered .from the generating func­
tion 

l p(2k) (v') p(2j) (v) 	 .• I I. 

~	 (2k 1)1 (2j _ 1)!VJl(<P2j' <P2k) = 221r ['\(v)JD) '\(v ) + '\(v )JD) '\(v)] + 
J,k-O 

+2 (p(v) 1 p(v')) {p'(V')A(V) d~,A(V') p'(V)A(V') :v A(V)} . (26) 

Proof. We compute 

VJl (P( v), P(v')) := '11-8l ]* (d ('114lp( v)) ,d ('114lp(v'))) 

1 l 8 8 


= -2i1r'114l [P(v)8r ('114lp(V')) +P(v' )8r (1]4lp(v))] + -2 L -8.P(v)-8.P(v') 
1 	 X~ X~ 

= 	 ~ l (all(v - Xi) + Ct"(V + Xi) + a"(v' - Xi) + a"(v' + Xi) a'(v - Xi)a'(V' - Xi) 
2 ~ a(v - Xi) a(v + Xi) a(v' - Xi) a(v' + Xi) a(v Xi)a(V' Xi) 

_ a'(v + Xi)al(V' + Xi) _ a'(v - Xi)a'(V' + Xi) _ a'(v + Xi)al(V' - Xi)) P(V)P(V )+
'a( v + Xi)a( v' + Xi) a( v - Xi)a( v' + Xi) a( v + Xi)a( v' - Xi) 

+8i1rlglP(v )P( v') = 

~ [2' 8ra(v v') 2' 8ra(v + v')
=L...t 21r + 21r + 
i=l a(v VI) a(v + VI) 

_~ (al(v - v') a'(v.+ VI)) (al(v - Xi) + a(v + Xi)) + 

2 a(v - VI) a(v + VI) a(v - Xi) a(v + Xi) 


+~ (al(v v') _ a'(v + VI)) (al(VI - Xi) + a(v' + Xi))] P(V)P(V' ) + 8i1rlglP(V)P(v' ) 
2 a(v - VI) a(v + VI) a(vl - Xi) a(v' + Xi) 

=2i1rl [\7ra( V v') + \7ra( v + VI)] P(v )P( V')+
a(v - VI) a(v + VI) 

1 (al(v - v') _ a'(v +Vl)) P(V)~P(V') ~ (al(v v') + al(v +Vl)) P(v')~P(t(J27) 
2 a(v - VI) a(v + VI) dv' 2 a(v - VI) a(v + VI) dv 

Remark 1.10 Notice again the resemblance of eq. 27 with Saito's formula [SYS80] in the case of 
the finite Weyl group Bl (here P{v) = IIi ({xd 2 - v2)) 

2~ 8~t(v) 8~i P(v') (v')2 ~ (v)2 {P(v')v :vP(v) - P(V)(V')2 d~'P(v')} . (28) 

We can actually obtain Saito's formula with the limit 

lim €-4l+2 [9J1 (Px (v), P x (v'))] u x V V'H-W ex €V €V' = RHS of eq. 28 . 
e-+O 	 ' , , , '" 
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Again, we can recast equation (27) into a more useful form using the function 

I 8O(2j -2) (v) -21 I, 

A(V) 
 L (2' _ I)! 'P2j =: a (v) L Cj (V)'P2(I-j) . 

3=0 J 3=0 

First of all, since a-2l(v)V~a2l(v) = V~ + 21"V~~\v), then a straightforward computation gives 

VJt(P(v) ,P(v')) - L
l 

Ck(v')Cj(V)VJt('P21-2j, 'P2l-2k) 

j,k=O 


= -2i7r L (VrCk(V')Cj(v) + VrCj(v)Ck(v' )) 'P2l-2k'P2l-2j = 

k,j 


= - 2i1l'a21 (v' )a
21 (v) { [>.(v') V;>'(v) + >.(v) V;>'(v')1+ 21 (V~~V\~/) + V~~S)) >.(v' )>.(v)} . 

Using now formula (27) for VJt(P(v) ,P(v')), we can finally compute 

8O(2j ) (v) 8O(2k) (v') 

~ (2] - I)! (2k _ 1)!!m('P2k, 'P2j) = 

J, 

= 2i7r [A(V)V;,x(v') + A(V')V;A(V)] + 
+2i7r1 [2 Vra(v') + 2Vra(v) + Vra(v v') + Vra(v + V')] A(V)A(V')+ 


a(v') a(v) a(v-v l
) a(v+v') 


a'(v - Vi) [a/(vl) a'(v)] a'(v + v') [a/(vl) a/(v)]} I 

+1 { a(v _ VI) a(v') - a(v) - a(v + VI) a(v') + a(v) A(V)A(V)+ 


+~ [a/(v - v') _ a'(v + v')] A(V)~A(V') _ ~ [al(v - v') + a'(v + V')] A(V')~A(V) 
2 a(v - VI) a(v v') dv' 2 a(v - VI) a(v + VI) dv 

= 2i7r [,x(V)V;A(V') + ,x(V')V;A(V)] + 

+~ [a/(v - v') _ a/(v + VI)] A(V)~A(V') _ ~ [a/(v - v') + a'(v + VI)] A(V')~A(V) = 
2 a(v - VI) a(v + VI) dv' 2 a(v - VI) a(v + VI) dv 

l 

= 2i7r [A(V)JI))-,x(v') + A(V')JI))·A(V)] + -2
1 [div-VI] _at + VI] + 2a'((v ))] A(V)~A(V')+ 

a v - v' a v + v' a v' dv' 

_~ [a'(v - v') a/(v + i/) _ 2a/ (v)] ,x(V')~A(V) 
2 a(v-v' ) a(v+v') a(v) dv 

1 d = 2i7r [A (v)JI))- A(V') + A(v')JI))- A(V)] + 2 [((v - v') - ((v + v') + 2((v' )] A(V) dvIA(V' )+ 

-21 
[((v v') + ((v + v') - 2((v)] A(V')dv 

d 
A(V) . 

To write this in the final form we use the classical formula (see [WW] pag.458, example 18) 

~ {8O/(U) + 8O'(w) _ 8O'(v) + P'(w)}-((w - u) + ((w - v) + ((v) - ((u) 
2 8O(u) - p(w) p(v) - p(w) , 

which allows us to complete the proof by substition. 0 
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2 	 Relation between Jacobi groups and Frobenius struc­
tures on Hurwitz spaces 

In this second part we will identify the Jacobi group of type Ai with the monodromy of a 
suitable Frobenius structure'; the identification will be based on the explicit formula for the 
generating function of the Jacobi forms. 

In order to be self-contained as far as it is possible, we recall the due definitions of the 
objects we are going to use, namely Frobenius manifolds on one hand, Hurwitz spaces on the 
other and explain how it is possible to give Hurwitz space a structure of Frobenius manifold, 
following [Du93]. The main result of this part can be expressed as follows: 
the quotie~t space OjJ(Al ) is naturally isomorphic to the moduli space of elliptic functions of 
degree l + r with only one pole. 

This identification will appear explicitly and allows us to build a structure of Frobenius 
manifold over a suitable covering of this space; this covering branches around a divisor in OJ] 
defined by the zero locus of the lightest Jacobi form. 

Before entering the detail we give an account of the necessary mathematical objects. 

2.1 Frobenius manifolds 

We recall the basic definitions and properties of a Frobenius manifold. 

Definition 2.1 A Frobenius- algebra A is a unital, commutative, associative (C) algebra 
endowed with a invariant nondegenerate bilinear pairing 'f/(0, 0) : A ® A -+ C, in the sense that 

1](A· B,C) = 'f/(A,B· C) VA,B,C EA. 

It follows that 1](,) is symmetric, for 1](A, B) = 'f/(1, A . B) 1](1, B . A) = 1](B, A). 
The notion of Frobenius manifold is now the following 

Definition 2.2 A Frobenius manifold M is a smooth manifold which is endowed with a 
structure of Frobenius algebra in the tangent space at each point (and henceforth a nondegenerate 
symmetric tensor 'f/(,) of type (0,2) and a (0,3) (symmetric) tensor of the structure constants 
g(X, Y, Z) := 1](X, Y . Z)) and the following properties hold: 

1. 	 the Levi-Civita connection defined by the metric 1](0, 0) is fiat; 

2. 	 the unit vector field 1 is parallel, namely \7xl = 0; 

3. 	 the (0,4) tensor of its (covariant) derivatives Cvxg) (Y, Z, W) is completely symmetric; 

4. 	 there exist a vector field E. (the Euler vector) which is covariantly linear C'v\7)x,yE 0, 
VX, Y E r(TM), and 

(a) [E,l] = -1; 
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(b) 	 (LE1])(X, Y) E1](X, Y) - 1]([E, X], Y) - 1](X, [E, Y]) (2 d)1](X, Y) ; 

(c) 	 (LEg)(X, Y, Z) = E(g(X, Y, Z))-g([E,X], Y, Z)-g(X, [E, Y], Z)-g(X, Y, [E, Z]) = 
(3 - d)g(X, Y, Z); 

namely the E generates conformal rescalings of the metric and of the Frobenius structure. 

5. The (4, 0) -tensor (\1g) is totally symmetric} or equivalently 

(\1g)(X, Y, Z, W) := (\1wg) (X, Y, Z) = (\1xg)(W, Y, Z) . 

Observe that since E is a conformal Killing vector field it must satisfy also div(E) = _ (2~d) ; 
moreover it follows from the above axioms that 

[E, X . Y] - [E, X] . Y - X . [E, Y] = X . Y . 	 (29) 

On 	the spectrum of E we have 

Lemma 2.1 If the grading operator Q := VE is diagonalizable, then the Euler vector can be repre­
sented by 

n 

E = L (( 1 - qi )ti + ri) 8i (30) 
1 

for suitable constants qi, ri and suitable flat coordinates ti. 

Notice that, up to a translation in the fiat coordinates, we can then recast the Euler vector in 
the form 

n 

E = L (1 qi)ti8i + E ri8i . 

1 ilqi=l 

Remark 2.1 The flat coordinates ti's which diagonalize the grading operator VE are unique up to 

linear transformations which do not mix coordinates with different scaling dimension. 

Moreover notice that 1 is an isotropic vector for 1] except in the case d = 0; indeed (2 - d)1](l, 1) 

(£E1]) (1,1) = E1](l, 1) - 21](£E1, 1) = 21](1,1). 


We now define the scaling exponents as 


Definition 2.3 A function rp : M -+ C is said to be quasi-homogeneous of scaling exponent 
d<p if it is an eigenfunction of the Euler vector, 

This means that the coordinate functions ti defined before are quasihomogeneous with scaling 
dimensions di = (1 qi)' 
We now give the 
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Proposition 2.1 The structure constants tensor g(X, Y, Z) is the third covariant derivative of 
a locally well defined function F (called Free energy), 

g(X, Y, Z) 	= (\7\7\7F)xyz . (31 ) 

Moreover this function is almost-quasihomogeneous of degree dF = 3 - d, namely quasihomo­
geneous up to a function in the kernel of \7\7\7 (i.e. a function which is at most quadratic in 
local fiat coordinates) 

Proof. Since \79 is completely symmetric, the proof of existence of the local function F follows 
easily in fiat coordinates. 
From (£Eg) (3 - d)g it follows (using £E 0 \7 = \7 0 £E) that 

\7\7\7 ((3 d)F - E(F)) = ° . 
The proof is thus complete. 0 

2.1.1 Intersection form 

Since the invariant metric Tl gives a isomorphism between the tangent and cotangent bundle, 
we can define a Frobenius structure on the cotangent bundle as well, which we will indicate 
again as W· a, for w, a E r(T*M). 

Definition 2.4 The intersection form is the bilinear pairing in T*M defined by 

(w, a)* := 	(w· a) (E) . 
'--v--' 
Ef(T* M) 

One can prove that it is almost everywhere nondegenerate, hence it defines a new "metric" 
(denoted by J(,) as its associated (2,0) tensor) On the tangent bundle: one can show that 
[Du93] 

Proposition 2.2 The metric J(,) is fiat and moreover VA E C, the _contravariant metric 
G*(A) := Tl*(,) + XJ*(,) is fiat as well and the contravariant connection \7(.A) on forms is given 
by Vp.) := V(l1) + AV(J), where V(l1) and V(J) denote the contravariant connections (acting on 
one-forms) of the metrics Tl and J respectively3 The family of metrics G* (A) as A varies, is 
called a fiat pencil of metrics. 

3By contravariant connection on one-forms of a metric 9 over a manifold M we mean the map 

\7 : 	 T* M ® r(T*M) -+ r(T*M) 
~ ® Q -+ \7{~Q , 

where \7 is the Levi-Civita connection and ~tt is the vector associated to ~ by means of the isomorphism given 
by the metric. 
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Properties and relations. There are some differential relation between the two metrics, as 
it is shown hereafter; these relation allow to reconstruct the invariant metric ry and the free 
energy from the knowledge of the intersection form and the unit vector field as we will see. 

Lemma 2.2 We have L19 = V19 O. 

Proof. For any X, Y, Z E f(TM) and from the definitions (recalling that VI == 0) we find 

(£lg)(X, Y, Z) == 1 (g(X, Y, Z)) - g([I, X], Y, Z) - g(X, [1, YJ, Z) - g(X, Y, [1, Z]) == 
== (V1g)(X, Y, Z) == (Vzg)(X, Y, 1) (Vzry)(X, Y) O. 

o 
Hence we find 

Lemma 2.3 We have, for any x, y E r(T*M), 

r((x, y) = (L1J*)(X, y) . 

Proof. Let X, Y denote the dual vectors to X,Y (which are covectors) (explicitly x(e) ==: 
ry(X, e)), we find (recall 'J*(x, y) :== g(X, Y, E)) 

=VIX VIY 
~ ~ 

(£I'J*) (x, y) == 1 (g(X, Y, E)) -g([I, X], Y, E) - g(X, [1, Y], E) 

~(X, Y,E) + g(X, Y,~ == ry(X, Y) ==: ry*(x,y) . 
=0 =1 

o 


Lemma 2.4 The functions Gij := J*(dti' dtj) are homogeneous of degree dij = (1 + d) - qi - qj. 


Proof. Recalling that [E, ~i] == (qi - 1) a~i we find 

E((dti,dtj)*) == E (g ((dti)#, (dtj)#,E)) == (£Eg) ((dti)#, (dtj )#,E) + 
+g ([E, (dti )#), (dtj )#, E) + 9 ((dti)#, [E,(dtj)#], E) == (**) . 

We now recall that (from £E(ry-l) == (d - 2)ry-l) we have, for an arbitrary W E f(T* M), 

[E, w#] == (d - 2)w# + (£E(W))# , 

and hence [E, (dti )#] == (d - 2 +1- qi)(dti )#. Therefore we can complete the chain of equation 
(**) as follows 

o 

Lemma 2.5 We have 
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Proof. Recalling that 
J* (dti' dtj) = (\7\7\7F) (dti)#(dtj )#E 

and that ['cE, \7J 0 we find (for brevity we denote (dti)#, (dtj)# by I, J respectively) 

(\7\7\7 F)EIJ = \7E\71\7J F = E(\71\7JF) = 'cE(\71\7JF) + \71E,I] \7JF + \71\7[E,J]F = 

= 'cE(\7I \7JF) +(d - 1 - qi + d - 1 - qj)\71\7JF = (1 + d qi - qj)\7(dti)# \7(dtj)#F . 
~ 
=(3-d)V I V J F 

o 

2.1.2 Reconstruction 

Let us suppose we are given a Frobenius manifold M and we know only the scaling dimensions 
d, ql, .,', qn, the Euler vector field E, the unit vector field 1 and the intersection form J(,); then, 
from the previous lemmas we have as a corollary that we can uniquely reconstruct the full 
Frobenius structure by setting 

1]-1 := 'c1 (J*) 

and finding the fiat coordinates of 1] as homogeneous functions and then find the structure 
constants by imposing that 

(32) 

Of course this procedure goes through if qi + qj #- d + 1, Vi, j = l..n, otherwise there may be 
some obstruction or ambiguity in the construction of the free energy F; this is the only effective 
way to find the free energy in many actual examples as we shall do for G2 later. 

2.1.3 Monodromy group of a Frobenius manifold 

Both metrics 1](X, Y) and J(X, Y) are fiat and it is natural to study their mutual relations. 
Since J comes from the inversion of al~ost everywhere non degenerate bilinear pairing of the 
cotangent bundle, it is defined almost everywhere, namely outside the locus ~ where the 
determinant of J* : T*M -+ T M vanishes, 
Now the fiat complex manifold, (M/~, J) is not simply connected and hence we have a nontrivial 
holonomy group at any point, which is a discrete subgroup of O(n, C), 
To be more specific let Y1, .. " Yn be the fiat normal coordinates at Po E M (fixed and outside 
~) of the intersection form J, and express them as functions of the fiat coordinates t l , .. " tn of 
the invariant metric T/; since J degenerates on ~, its Christoffel symbols (which enter in the 
equation defining the fiat coordinates Yi) have singularities on~, As a result, the germs of 
functions Yi(t1 , .. " tn) will be in general multivalued for loops around the discriminant, This 
implies that the result of a non-contractible loop 7 around the discriminant will be a linear affine 
transformation of the Yi'S whose linear part is clearly an J-orthogonal transformation: it is also 
clear that the correspondence which associates to each noncontractible loop 7 E 11"1 (Po; M /~) 
this linear affine transformation of the coordinates Yj is a group homomorphism, This map 

M : 11"1 (Po; M/~) ---+ Aff(J, n) 
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T H-M" 


is a group homomorphism from the fundamental group of Mj~ onto a (discrete) subgroup of 
the affine transformations of the functions Yi'S: the image under -M of the fundamental group 
'lrl(PO; Mj~) is called the monodromy group of the Frobenius manifold. 

Viceversa one could ask to solve the inverse problem, namely that of finding a Frobenius 
manifold whose monodromy group is a given discrete group of affine transformations preserving 
a (nondegenerate) bilinear form J: this is actually the problem that motivated this study. 

2.2 Hurwitz spaces and Frobenius structures 

In this section we rephrase the contents of [Du93], Lecture 5, and adapt the notation to the 
present purposes. 

Hurwitz spaces are moduli spaces of certain meromorphic functions on algebraic smooth 
curves of fixed genus. Hereafter we give a short account of their structure and definitions and 
later we explain how there can be defined Frobenius structures. 

Let C be a compact Riemann surface of genus 9 and let ,x : C -+ Cpl of degree N; 
we moreover fix the type of ramification over the point at infinity 00 E Cpl assuming that 
,x-1(00) == {OOO,ool, ... ,OOm E C} and that the respectiv~ degrees at these points be no 
1, nl + 1, ... , nm + 1. 
These data (namely the genus g, the number of sheets and the ramification at infinity) fix 
uniquely the total number of ramification points in C, say {PI, .. , Pn, 000, .. , oom}; by means of 
the Riemann-Roch theorem we find (notice that we must have N m + 1 + no + ... + n m ) 

=2g-2 =-2 =n+no+···+nm 
~~ .--"-... 
deg(Kc) == N deg(Kcpl) + deg(B) =} n = 2g + no + .. + nm + 2m . 

Therefore the smooth (i.e. non-orbifold) part of the moduli space Mg,mi{nj} of these data has 
dimension n. 
As parameters for the point in this space we can take (UI, ... , un) := (,x(Pd, ... , ,x(Pn)) E 
(CPl) xn; Summarizing 

Definition 2.5 The Hurwitz space Mg,m;no, .. ,nm is the moduli space of curves C of genus 9 
endowed with a N branched covering ,x of Cpl, ,x : C -+ Cpl with m + 1 branching points over 
00 E Cpl of branching degree nil + 1, v == O..m. 

In this kind of spaces the usual notion of equivalence involves also the quotient by the diffeo­
morphism group of the target space (here CPl) [Na84], but for the present purposes we will 
consider the (trivial) principal bundle with structure group the diffeomorphisms of CP1 which 
fix one point (the infinity); this simply means that in the kind of spaces we are considering 
the notion of equivalence involves only the diffeomorphism group of C and moreover the affine 
group C* )t;1 C acts on the functions A as a,x + b, for a E C* and b E C. For the sake of clarity 
we specify the relevant notion of equivalence: 

Definition 2.6 Two pairs (~t,,x) and (0,:\) are!lurwitz-equivalent if there exists an ana­
lytic isomorphisms -a : C -+ C such that A 0 -a = ,x. 
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In the following we will use a covering of the Hurwitz spaces which we now describe. 
First of all notice that, since we are actually considering curves of genus 9 with m + 1 marked 
points, for2g +m +1 2: 3 the curve C is stable, that is the group of automorphisms is discrete; 
for 9 2: 1 the covering of their moduli space is accomplished considering a symplectic basis of 
cycles in the homology of the curve4 . 

We have also to consider the points 001.1, v = O..m: therefore, for each of them, 001.1 we fix a 
local uniformizing function, namely a function Wv such that Wv nv+l = ). in a neighbourhood of 
001.1' Summarizing 

Definition 2.7 The covering space Mg,m;no ...nm is defined as the sets oj genus 9 curves with 
m +1 marked points endowed with a symplectic basis in the homology and aN-sheeted covering 
). oj Cpl with a fixation oj local uniJormizing coordinates {wv } J 

Ai'u,mjno ...n := {(C,).;wo, .. ,wm;{al ..ag,b1 .. ,bg})}m 

2.2.1 Frobenius structures on Mg,mjno ... n rn 

Over the space Mg,m;no ...nm we consider the coordinates Ul, .. ~, Un as spanning a semisimple com­
mutative, associative, graded and unital algebra in the tangent space, with {Ui = ).(Pt,) Id).(Pi)} 
as local coordinates. Explicitly the algebra structure is as follows (setting 8i := a~i) 

1. Multiplication: 8i . 8j = bij8i ; 

2. Unity: 1 := L~ 8i ; 

3. Euler field E := L~ Ui8i. 

In order to obtain a Frobenius structure we must define an invariant inner: product such that 
the resulting metric is flat and satisfies all the axioms of Frobenius manifold. 
For anyone form 0 E f(T*M) we can define an invariant inner product as 

< X, Y >n:= O(X . Y) 

which is nondegenerate provided that 0 nowhere vanishes. There is a natural way to build one 
forms on the Hurwitz space starting from a representative as follows. Let Q be a quadratic 
differential on C (i.e. Q E f(T*C ® T*C)) and set 

n Q 
OQ := L dUi rffiB d)' 

1 t 

Notice that this definition of the one form nQ is independent of the representative and also 
invariant under the structure group (here simply the affine transformations of the plane): in 
fact, if {) : C-+ C and>: = a). + b, then Ui := a). 0 {) + b = a Ui + b, Q= {)*Q, therefore 

n _ Q n QL dUi res -;:;:: = L dUi res d \ , 
1 Pi d)' 1 Pi /\ 

4We recall that this amounts to choosing 2g cycles {aI, .. , ag, b},,., bg} which have intersection number ai'aj = 
bi . bj = 0 and ai . bj Dij. 
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and hence the definition is well posed. 
It is clear that if the differential Q is dA-divisible, namely if it has the form ¢ ® dA and ¢ is 
holomorphic on the zeroes of dA, then the corresponding differential on the Hurwitz space is 
zero; this allows for an enlargement of the class of quadratic differential that we can use. In 
fact we can consider the larger class of quadratic differentials on the universal covering of the 
curve C which have the property that their continuation along a closed curve 'Y C C is changed 
by a dA-divisible differential, namely 

One can consider quadratic forms Q which are squares of a differential ¢ of certain type, namely 
Q = ¢ ® ¢: these differentials ¢ are called primary differentials. The types that lead to 
Frobenius structures are listed below 

1. 	 An Abelian differential of the second kind5 with poles only at the poles of A, 000, ... , OOm 

with orders less than nv (in such a way that PZ,¢ has no residues there) and such that 

= 	0, i = 1..g . f. 	4> 
J 

(Such differentials are said normalized) 

2. 	 An Abelian differential of the second kind of the form 

m 

¢.. ~ 	LDkOk 
k=l 

where Ok are normalized Abelian differentials of the second kind with only one pole at 
ook 

Ok = 	-dA + regular terms near OOk . 

3. An Abelian differential of the third kind 

where Pk are normalized Abelian differentials of the third kind and simple poles at OOk 

and 000 of residues +1 and -1 respectively. 

4. 	 A multivalued normalized differential (namely a differential on the universal cover of C) 
with increment along one of the b-cycle, say the j-th, of the form 

50n a curve C the Abelian differentials (namely the analytic one forms) are said to be of the first kind if 
it is holomorphic everywhere, of the second kind if it has only poles without residues and of the third kind 
of there are poles with residues. 
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5. Any differential of the first kind, which can be written for convenience as 

9 

¢= LCjWj 

j=l 

where the holomorphic differentials Wj are the Poincare' duals to the b-cycles, namely 
fak Wj 6jk. 

In [Du93] it was showed that any quadratic form Q = ¢ ® ¢ where ¢ is one of the above primary 
differentials gives rise to a Frobenius structure, namely to a flat invariant metric rJ along the 
lines we drew before, namely 

(8 8) n ¢®¢ (8 8)rJ - - = res--dui _.­
au·' au· L p. dA. au· au· 

~ J i=l t ~ J 

In order to build the superpotential of this Frobenius structure we take A. considered as 
a function on the universal covering C (namely a multivalued function) by considering it as 
depending on the multivalued coordinate 

v(P):= i P 

¢, 
000 

where the principal value prescription (if necessary) is understood in this integral. The necessity 
to consider A. as a function of v is that we need to make differentiations of A. along the moduli 
space and it must be clear which is the (local) coordinate w.r.t. make the differentiation. We 
cite the Theorem to be found in [Du93] and which we will use later. 

Theorem 2.1 For any primary differential ¢ the corresponding invariant metric rJ¢ along with 
the canonical multiplication rules in the coordinates Ui, endows the Hurwitz space Mg,m;no .. n m 

with a structure of Frobenius manifold. 

The flat coordinates of the invariant Frobenius metric rJ are the n = 2g + 2m + no + ... + nm 
coordinates 

res(wlI)a V dA.; v = a..m, a = l..n ll ; 
00 11 

- res A. dv = - res A. ¢; v l..m; 
0011 00 11 

J l..g, 

and the nonzero entries of TJ in these coordinates read 

1 
rJtll;a,tp.;b = n + 16jL1I6a+b,nll+l 

ll 

1 
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In order to identify the remaining objects in the framework of Frobenius manifolds, we notice 
that 

Proposition 2.3 [Remark 5.3 in [Du93]] The intersection form associated to the Frobenius 
structure specified in Theorem 2.1 is given by 

The fiat coordinates of this metric are the described by the same formulae as above with the 
substitution A ~ log(A) and with the t1.l;a changed into the 

Remark 2.2 If we have any other set of Hurwitz moduli and we consider derivations w.r.t. these 
ones, we find 

'J(8 8') = '"'" res 8)"dv ® 8')"dv = '"'" res 8 (log()..)) dv ® 8' (log()..)) dv . 
, ~ d'\=O ).. d)" ~ d'\=O d (log()..)) 

Proposition 2.4 Scaling dimensions The scaling dimensions of the fiat invariants of T} are 
given by 

1/ = 0, .", m; a = 1, .. " n1.l ; 

1/ = 1, ... , m ; 
j=l, .."g. 

Proof. The proof is immediate considering the expressions of the invariant and noticing that 
the Euler vector field is a rescaling in the variable A, leaving unchanged the primary differential 
dv,D 

In the following section we apply this general theorems to the case of genus I, 

2.3 The space M1,o;l as orbit space of Jf(Al ) 

In this section we build a Frobenius structure over the Hurwitz space MI,oil (or better its 

covering Mt,o;z); now C is a torus and the superpotential A has only one pole 000 of degree l +l. 
Applying the general theory we shall identify the flat coordinates of the intersection form and 
find the monodromy group of the resulting Frobenius manifold: it will turn out that this is the 
Jacobi group of type AI, ](Al) and that the moduli of the superpotential -when expressed as 
functions of the fiat coordinates of the intersection form-, are the generators of the algebra of 
Jaco bi forms J.,. (see formula 11). 
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We call 7 the modular parameter of the torus C and we think of it as C/(Z + 7Z). It is 
useful to use the Weierstrass uniformization, realizing the torus C(7) as the affine curve6 

y2 = 4X3 
- 92(7)X - 93(7) 

X = p(v) ! y = 50' ( v) . 

The point 000 can be chosen (modulo the diffeomorphisms of the torus) as the point v = 0 of 
C/(Z + 7Z). Since A must be a meromorphic elliptic function with a pole of order l + 1 at 
v = 0 mod Z + 7Z, it follows that the most generic form is (using a convenient normalization 
of the moduli) 

l+1 (-1 )l+1-i . 1 1 1 1

A(v) E (l- ')' p(l-l-J)(V)'Pl+l_i = l+1 'Pl+1 + ['Pl + l=l'Pl-l + .. , + 2'P2 + 0(1)


'0 J. v v v v
J= 

8A _ (-l)k (k-2)() 

. - 8'Pk - (k - I)! P v, 


where we numbered the coefficients 'Pk according to the order of the pole and we have set, for 
notational brevity, 50(-1) (v) =0, 50(-2) (v) =1. 

From the modular properties of 50 it follows that the parameters 'Pk transform as modu­
lar forms of weight -k under SL(2, Z): indeed by assumption the superpotential has to be 
independent of the isomorphism class of the torus namely, 

A(V/7) = A ( v Ia7 + b) ,
c7+d c7+d 

We observe that the moduli 'Pi's are equivariant and we anticipate here that they will be 
identified with the fundamental Jacobi forms. At this stage they are simply some parameters 
which play the same role as the Jacobi forms in formula (13), but the identification will be 
complete in Thm. 2.2. In view of this identification we shall occasionally call them "Jacobi 
forms" by an abuse of language. 

The primary differentia:l we will use is simply the holomorphic differential ¢ = dv and 
hence A will be the superpotential of our Frobenius manifold as a function of the multivalued 
coordinate v on the torus (hence as a function on the Jacobian of the torus), 
Let us analyze the structure: 

1. The parameters 'Po, 'P2, ,." 'Pl+1 and the modular parameter 7 =: 'P-l are local coordinates 

6In this section we use a slightly different definition for the Weierstrass functions, namely 

2 . 2 () 81 (v, r) 2 . 2 ()a(vlr) := e- t?TV gl T = e- t?TV gl T a(vlr)J 

81 (0, r) 
d 

((vir) := dv log (a(vlr» 

d 1 (1 1)
p(vlr) := - dv ((vir) = v2 + L (v + m + nr)2 - em + nr)2 

m 2 +n2 :;.!:O 
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of the Frobenius manifold M := MI,o;l and the invariant metric 'fJ(,) is given by 7 

8un8un dv(8 8)'fJ-- --res-­
8CPi' 8cpj L 8CPi 8cpj V=Vn A' (v)

N(vn)=O 

i,j = -1,0,2, ... ,l + 1 . 

'f p(i-2)(v)p(j-2)(v) 11" f . ( 11 h hFor i, j = O..l + 1 the unctions )/(v) are e IptlC 'unctIons reca t at we ave 
set go(-2) =1 ; p(-I) =0) and hence the sum of all residues in a fundamental mesh is 
zero: therefore we can compute the residues at the points defined by )..' = °by computing 
the residue at v = °with opposite sign, (we suppress the v dependence to shorten the 
formulae) 

8iA 8 j Adv 
'fJ () -~~g A' .8 i ,8j = 

A different problem is to compute the matrix elements where i = -1 ( CP-I := T) for in 
this case the function 8r A is not an elliptic function, but we can compute the residues for 

l I 
• ( _ • ) 1 a'(v) I ('r/' L+ , ('-2) 1 a'(v)

l[J) A v) = V A(V - -.-A (v) = 8r A v) - - 2J pl (v)cp' - -.-AI (v) = 
r 22~ a(v) 'r/ j=O J 22~ a(v) 

=: 8r A(V) + E(v) + ,(V)A'(V) 

(which is elliptic: notice that E is elliptic). Hence if F(v) is any elliptic function with a 
pole only at the origin, we find 

The computational advantage is that we have converted a sum over residues which we do 
not know where are situated, into a single evaluation at a fixed pole. Along these lines 
we can compute 

7The formula follows from the Jacobian of the parameters Ui in terms of the moduli i.pk as follows: the 
defining equation of the u's are 

and upon differentiation w.r.t. i.pk we get 
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a' (v) 1 
res [ 2' () 8kA(v) dv ,v=o 27r0'. V 

where, in the last equality, the term with (8T A(V)8kA(V))/A'(V) <X (8T A(v)p(k-2)(V)) /A'(v) 
has disappeared because it is regular at v 0 fork = 2.. l + l. 

In order to compute 17(8_I, 8_1) we use a similar trick 

2. The multiplication is defined as 

Again, if all indices are nonnegative we can evaluate the residue at zero changing sign; as 
for the remaining cases we get, after computations similar to those of before, 

'1)( 8 i , 8j . 8k) = ~~g ( 8;A 8k~,8kA dV) 

'1)(8_1> 8;· 8 j ) = - ~~g { B;; 8;A 8 j Adv + "/ 8;A 8 j Adv } 

17(8_1,8_1 .8i ) = - ~~g { (28T A+ 7A')8i AdV} 

'1)(8_1> 8_1 .8_1) = - ~~d 3,,/ (BTA)2dv +3r eTA x dv + ,,/3 (A,)2 dv } . 

Applying Theorem 2.1 we find 

Proposition 2.5 The flat coordinates of the invariant Frobenius metric 'TJ are (the principal 
values prescriptions are understood in the integrations) 
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ta .- ~~g (v A-Tii(v) dA (v)) ; a = 2.. l + 1; 

0 0 0·· ·0 0 
_1 0 0 0- --0 02i?r 
0 0 0 0 .. -0 1 

rJ( at, at) = 1+1 

o 
o III o· .·0 0 

While the flat (local) coordinates of the intersection form are the zeroes of A(V), T and u := 

2i?r fa log(A)dv. 

Notice that the second Jacobi form 'P2 is always a quadratic polynomial in the flat coordinates 
t2, ... , tl+l and the lightest Jacobi form 'Pl+l is a power of the coordinate tl+1 as we now prove. 

Corollary 2.1 The second Jacobi form 'P2 satisfies 

while for the lightest one 'Pl+l we find 

'Pl+l = (-l - l)-(~+l)(~I+DI+l _ 

Proof. The second statement is easily proven by computing the residue 

As for the first statement, we introduce the local coordinate z = (A)-Z+l
1 

(choosing one branch 
of the root), and hence find (A = zl~l) 

tj = res (VA frt dA) = -(l + 1) res (v zj-l-3 dz) , j=2, ... ,l+1,
v=o z=o 

where we implicitly solve the equation A(v) = zl~l for vasa function of z; in other words the 
flat coordinates t2, .. , tl+l are the coefficients in the expansion of v 

in which the term in zl+l vanishes because res(VdA) == O. We now compute 
v=o 

l 1
1 L- (l + 1)v2(z)dz 2 
-l1 tj tl+3-j = res 1+1 = - res v dA = 2'P2 ,+ z=o z v=oj=2 
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and this ends the proof. 0 

From this corollary it follows that 

In order to complete the description of the Frobenius structure it is important to express the 
two vector fields 1 and E in these coordinates. 
Recall that the unity vector field 1 in the coordinates Ui )..(Pi ) where ~ are the critical 
points, read 1 = I:!!i a~i' while the Euler vector field is given by I:!:i Ui a~i' We now prove 
that 

Proposition 2.6 The unity vector field 1 and the Euler vector field E in the coordinates 
to, ... , tl+1 read, 

1 E 

Proof. The effect of these two vectors on ).. are of shifting or dilating it, hence they read 1 = ;>. 
and E )..~; now, from Corollary 2.1 it follows that the vector a~l exactly shifts ).., while the 
expression for the Euler vector field comes from the degrees of the flat coordinates as stated in 
Proposition 2.4. 0 

Since the superpotential is invariant under the group SL(2, Z), it follows easily that 

Proposition 2.7 Under a transformation of the modular group with (~ !) E 8L(2, Z), 

the flat coordinates transform as follows : they are invariant under the map corresponding to 

T >--+ T + 1 and under the inversion (~ ~) we find 

' 1to H to =-­
to 

1 1+1 
tl H t'1 tl + i1r- L tj tl+3-j 

to j=2 
, 1 

tj H tj = -tj , j = 2 ... l + 1 
to 

namely, the fiat coordinates t2, ... , tl+1 behave like modular forms of weight -1. 

Proof. The transformation rule for to T is obvious since it is the modular parameter of the 
torus; the one for tl follows immediately once expressing it in terms of the Jacobi form CPo and 
CP2 and from the modular properties of the Dedekind l1-function. As for the transformation 
rule for the remaining, this is a consequence of their definition as residues w.r.t. a weight -1 
form which is v A" d)" (recall that under the inversion the coordinate v on the universal covering 
of the torus is mapped to ~). 0 
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Twisted Frobenius structure 
The Frobenius structure which has been constructed is well defined on M 1,0;l only locally, 

because the diffeomorphism group of the curve C (8L(2, Z) in this case, full modular group) 
acts in a nontrivial way by means of a symmetry (see [Du93] for details on symmetries of 
Frobenius structures). This picture can be interpreted in two ways; we can consider that the 
invariant metric rJ takes values in a suitable line bundle Lover M :;= M 1,0;1; namely we consider 
the Frobenius structure to be well-defined on L ® T M rather that on T M itself. 
Equivalently we can consider the covering space M = MI,o;l and then we get a bona fide 
equivariant Frobenius structure on T M. ­

Notice that the coordinates tj's have to be thought of as coordinates on M in view of the 
branching around the surface 'Pl+l = 0: in fact in the definition of M, the fixation of the 
branching of the root around the infinities makes t'+1 a one valued function. 

2.4 Free energy 

To complete this study we must give the structure constants of the bundle of Frobenius algebras 
on the tangent bundle of the manifold; in principle this could be done by changing coordinates 
from the 'Pi's to the ti's, since the structure constants form a tensor, but it is more useful and 
satisfactory to express the free energy in terms of the flat coordinates. 
To achieve this goal we compute free energy F by means of the particular bilinear pairing of 
forms which is described in Appendix A.5; it is proven it [Du93] that the free energy for the 
Frobenius structure we have build is given by 

F .-·- 2"
1 

< vd)..,vd)" > 

where we use, in the notation of the cited appendix, <P W = vd)". In order to find all the due 
constants we first notice that no logarithmic polydromy is present in this differential; hence we 
are to find the coefficients Ck Cip,k in the notation of the appendix): we already know the 
first l, which are (up to a constant) the flat coordinates t2 , ... , t" In order to find the remaining 
we have to write the expansion of the differential around the infinity point 000 in terms of the 
local coordinate z := ()..)- and therefore we must expand v as a function of z by means of 
the inversion formula 

1 1 (t t 2 t l l+2 21+1 0 ( 21+2)))..(v)=- =}v=v(z)= l + 1 l+1z + 1 Z + ... + 2Z + Coz + ... + C'-l Z + Z ,zl+l 

where we have numbered the coefficients in a convenient way for the following application. 
Plugging into the formula we find 

v d)" = v(z)d (Z-l-l) = (l + 1) v~~ dz = 
z 

[t,+lZ-l-1 + t,z-l + ... + t2z-2 + Co + ZCl + ... + Cl_IZ 1+ 0 (z')] dz ,'­

where we notice that C-l = 0 because the differential v d)" has no residue. As for the polydromy 
we compute 

vd)" --+ vd)" d)" =} A()") =)..
VH-v+a 
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vd)" ~ vd)" Td)" => B()") _ T).. . 
vr-+v+b 

Finally we can write the pairing 

1-1 1 r 1iii i< vd)..,vd)" >= - LCk-1c-k-2 + -2' vd)" vd)" - ~ )..vd)" + -,- )..vd)".
kk=O + 'l7r a b 2'l7r a 2'l7r b 

To compute the periods in the formula we recall that we have to realize the cycles a, b as paths 
with base-point a zero of )..; in the specific we can think of them as the segments a = [x, x + 1] 
and b - [x, x + T] in the complex v plane (which realizes the universal covering of the torus; 
here x is a zero of ).. in a fundamental mesh) and hence compute 

f v d)" = - f ).. dv = ,fa).. dv C{Jo + 4i7rgl C{J2 =: tl 
~(x) ~ ~ 

i v d)" - -tOtl - 2i7rC{J2 ,i).. dv 
b(x)

i)" dv = T'PO + 4i7rTgl 'P2 + 2i7r'P2 = Ttl + 2i7r'P2 =: tOtl + 2i7r'P2 

(f v d)") (f V d)") = to (t1)2 + 2i7rtl C{J2 . 
~(x) ~(X) 

The other periods give 

1 B().,) v d)" = T 1 v).,d)., = i 1).,2 dv 
~(c) ~(c) J~ 

f A()") v d)" = 1 v)"d)" = -~ ~2 dv 
h(c) h(c) 2 J; 
1 A()") v d)" - 1 B().,) v d)" i 1).,2 dv 
h(c) ~(c) J~ 

= -~ (i -T i) ).,2(v)dv = 

where we notice that the differential )..2 dv has only one pole at v = 0 and no residues: we have 
then used formula (35) so that finally (recall that T = to) 

Proposition 2.8 The Free energy of the Frobenius structure associated to the primary dif­
ferential dv is 

1 
F:= 2 < v d)", v d)" >= 

= -2
1 f C-2-kACk _1_ [r v d)..l v d)" - T1v )"d)" + r V)"d)"] ­

k=O + 4i1T ibeX) a(x) a(x) ibeX) 

8This follows from the fact that ;\2 is an elliptic function with only one pole, and from the general fact that 
the sum of residues in a fundamental mesh of an elliptic function is zero 
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1 1-1 1 1 1 1 
= - ~Ck--C-k-2 - -.-to(td2 - -tI <P2 + - res (v ;\2 (V) dv) = 

2 6 k + 1 4'L1T 2 4 v=O 
k=O 

1-1 


1 I: 1 1 2 1 1 (2())Ck--t k+2 - -.-to(tl) - -t1<P2 + -4 res V;\ v dv .
2 k + 1 4'L1T 2 v=O 

k=O 

We will give an explicit example in the case of A2 later. 

2.5 Flat coordinates of tl'le intersection form 

We now analyze the structure of the fiat coordinates of the intersection form. This enables to 
identify this Frobenius manifold as a suitable covering of the orbit space of the Jacobi group of 
type Ai. 
In particular it will become clear in which sense the moduli <Pk4 are Jacobi forms; the point is 
that as functions of the fiat coordinates of the intersection form, they are exactly the previously 
studied generators of the algebra J., •. 

From Thm. 2.1 we know that the fiat coordinates of the intersection form are the functions 
V(Qi) with Qi a zero of the superpotential ;\, and fb dv == T and u = 2!11' fa log(;\)dv. 

To begin with, the number of zeroes of ;\( v) is l + 1 because ;\ is an elliptic function with 
a pole of order l + 1 at the origin; they are linearly related since the divisor of zeroes must be 
congruent to the divisor of poles. Therefore we have 2:i+I 

Zi == 0 mod (Il + Til). 

We already know how to express the parameters <Po) <P2, ... ) <Pl+I in terms of the zeroes of ;\(v); 
this follows from the explicit construction of the Jacobi forms for Al , which is accomplished in 
eq. (11). This clearly leaves an arbitrariness, since the knowledge of the divisor of zeroes fixes 
a function modulo multiplication by a nonzero number; this multiplicative coefficient will be 
denoted by e2ill's. 

The explicit formula which expresses the superpotential as a function of its zeroes ZI ...Zl+1 (s.t.
l+1 .2:1 Zi 0), of Tand s is thus 

;\(v) == e2ill's+2i1l'9111z 1[2 ni+I 
a (Zi - v) 

al+1(v) 

p(l-l) (v) )i :(~;) ;/(~;) pU-I) (ZI) 
det .(

1+1 p(Zl) 80' (Zl) p(l-I) (Zl) 
0 2p(zd 80' (zd 80 - ) (ZI) ) 

p(Z2) p'(Z2) p(l-2) (Z2) 
=CPHI det. 

1 p(Zl) P'(Zl) p(l-2) (Zl) 

In order to identify completely the flat coordinates of the intersection form with the coordinates 
we used in constructing the Jacobi forms of Al in formula (11) we have to compute explicitly 
the fiat coordinate u; to this end we give the 

Lemma 2.6 The flat coordinate u = fa dv log ( A) equals exactly s. 
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Proof. We have 

2 1 j-l 
1 

(J' V - Zj1 + ( ))1 1u := -2' dv log(A) = -.- dv log(A)i 11 
S + glllzil + 2i7r 1dv log 

(Il I 

-o-!+1(v)Z~ a 22~ 0 

Considering this function depending on Zi we have 

Since for z = 0 the integral is obviously zero we have finally 

[dV [flog (0-(: ~ Zi))] 
o J=l ( ) 

and therefore s =u. 0 

From this explicit formula we recognize that the Hurwitz moduli <P-l' <Po, <P2, ... , <PI+l -as 
functions of the flat coordinates of the intersection form, 7, U, XI, ... , XI- are exactly the invariant 
Jacobi forms constructed in 11 for the Jacobi group J(AI); we have thus proven 

Theorem 2.2 The Hurwitz moduli <P-l = 7, <Po, <P2, ... , <Pl+l as functions of the flat coordinates 

of the intersection form u, ZI, ... , ZI+I, 7 (where L: Zi = 0), are the Jacobi forms for the Jacobi 

group of type AI' 

Moreover the intersection form in Proposition 2.3 coincides with the intersection form in Defi­

nition 1.6. 


2.6 Monodromy 

By means of the identification in Thm. 2.2 between the moduli (<Po, <P2, ... , <Pl+b 7) on the 
space M1,o;l and the Jacobi forms for the Jacobi group associated to At, we have therefore 
constructed a Frobenius structure on a suitable covering of the orbit space ~ := <CEfJC; arH. From 
the above formulae expressing the flat coordinates in terms of the Jacobi forms it is clear that 

1 . 

the multivaluedness of this covering comes uniquely from the tl = - (l 1) (<Pl+l) 1+1 coordinate; 
looking at the explicit form (defining XI+l := 0 =: xo) 

l+1 

<PI+l (Xl, .. , Xl) = II a(Xi - Xi-I) 
j=1 

we realize that the zeroes are situated at the walls (recall that a~ are the coroots spanning over 
Z the lattice A of Al in CI+1 ) 

aj (x) = 0 mod Z + 7Z . 
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namely at the walls of the alcove for the complex crystallographic group 

A := {x E ~ I a'1 (x) E Ao} 

where Ao is the fundamental mesh of C/(71 + T71). 

In other words for fixed T the quotient of ~ :::: Cl by the complex crystallographic group is a 

torus 'JI'l which is simply the product of identical tori of modular parameter T; our Frobenius 

structure lives on a 1+ 1 sheeted covering of this torus with branching divisor Y := {CPl+I O}. 


Example 2.1 The case Al This example was worked out explicitly also in [Du93] but it is useful 
to use the present formalism. The superpotential is 

,\ ( v) := (.) (v)'P2 + 'Po , 

and the J aco bi forms read 

The flat coordinates of the invariant metric 'TJ are 

to:= T ; := 'Po + 4i7rgl 'P2 ; t2 := -20ii2 = -2a(x) 

._ I o'TJ.- ( 2Cr o 

0 

D· 
The free energy is found to be 

(A ) 1 2 1 2 i7r 4
F 1 : = 4i7r to (tI) + 4t I ( t2) - 8"g1 (to)(t2) 

Notice that these flat coordinates live on a double covering of the quotient space CffiCffi1-l./.JJ, inasmuch 
the coordinate t2 changes sign under the action of the Weyl group (in this case the Weyl group is 
simply Z2 acting as x I-:t -x); this comes from the fact that t2 is a square-root of the truly invariant 
lightest Jacobi form 'P2, and this is what happens in the general case. 

Example 2.2 The case A2 We have the superpotential 

,\(v) := - ~(.)! (v )'P3 + (.)(v )'P2 + 'Po 

where the numbers 'P3, 'P2, 'Po in terms of the zeroes of the superpotential read (we set Z1 = Xl, Z2 = 
X2 Xl, Z3 = -X2) 

The flat coordinates of 'TJ and its entries are 
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0)o oo 0 
o o 1 

1 3 o 3" 0 

To compute the free energy we have to find the coefficients C-3, C-2, C-1, Co, C1 in the expansion 

and then plug into the general formula; the result of this rather long but strighforward computation 
is 

1 1 
C-3 -3"t3; C-2 = -3"t2 ; C-1 = 0 

1 1 t23 2. 2 
Co = -9 t3 t1 + 9 t3 2 + 27 ~7rg1 t3 t2 

2 1 t24 4. 2 1 5 
C1 = -9 t2 t1 - 9 + 27 ~7rg1 t3 t2 + 14580 t3 g2(7) 

and the free energy reads 

These computations can be handled algorithmically by a computer; just for fun we list the next free 
energies of the series Al ­

4 
(A) 1 ito t1 2 1 1 2 1 t23 1 t32 t22 1. 2 . 2 1 t2 t3

F S := - -- + - t4 t1 t2 + - t3 t1 + - - - - - - ~ t4 7r g1 (to) t2 + - - ­
4 7r 4 8 6 t4 2 8 4 t4 3 

61 2 1 5 1 t3 1. 4 

- 8 i t4 7r g1 (to) t3 t2 + 61440 t4 g2(tO) t2 24 t44 - 32 ~ 7r g1 (to) t3 


1 2 4 1 ) 8 
- 24576 t3 t4 g2(tO) + 5505024 g3(tO t4 
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2.7 The Frobenius structures of the orbit space of JJ(G2) 

The exceptional root system G2 displays an interesting and unexpected double Frobenius struc­
ture in the sense we are going to explain. We have seen in section 1.5 that the Jacobi algebra 
J~~2) is naturally embedded as a subalgebra of J~~2); hence~ the flat structure on Spec(J~~2)) 
can be interpreted as a flat structure also on t~e (suitable covering of the) orbit space of the 
Jacobi group Jf(G2). Indeed, recall that the Jacobi forms of G2 are given by 

(G2) _ 1 ( CA2)) 2 
CPs - 2" CP3 

and therefore the flat coordinates associated to the invariant metric 'f/* (,) = £ 8 :1* (,) are 
8iO 

exactly the same as those computed in example 2.2, namely 

therefore we have a Frobenius structure inherited from the one of A2 , where the free energy is 
given by F(G2) = FCA2) := 4i1rto t12 + i t2 t3 tl - l~ ~ - 2~1rt32t2291(tO) - 24~65 t3S 92(tO)' 

On the other hand G2 falls also into the category of "codimension one cases" [SagO], and 
hence it has another natural flat structure which we have computed in Prop. 1.7. An easy 
computation of indices shows that Saito's tensor J* := £ 8 :1* form a linear pencil of flat 

~ 
metric with the intersection form, :1* + >"'J*. As a consequence there exists a unique associated 
Frobenius structure whose free energy can be recovered by application of the formulae described 
in section 2.1.2. In order to find it, we only have to find the scaling dimensions qj and the Euler 
vector. Now, since the unit vector must have scaling dimension -1, and is given by 1 := 8~'

<+'6
then we must take as Euler vector 

d
from this expression we read off the the scaling degrees, qT = 1, ql = q2 = !, qs = 0 (namely, 

T = 0, d1 = d2 = k, ds = 1) and the scaling of the metric of equation (24), nanlely £lJ = J. 
The free energy of this Frobenius-Saito structure is found to be 

where we recall the definition Z(7) := ~ [~~f:93(7) + 1]. Again this expression follows from 
a straightforward but quite long computation which we spare. Notice that this free energy is 
well-behaved in t 1 , t2, ts and has singularities only in 7 coming from the Dedekind's eta function 
and from the branching around the divisor Z(7) a and Z(7) = 1, which both correspond to 
the Z3-symmetric torus with 92(7) = O. 
Summarizing, we have two Frobenius structures in which the Euler and unit vectors are 
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1. 	 E = 'POolPO + 'P20lP2 + 2'P60lP6 and 1 0lPO for the Frobenius structure inherited from the 
one of A2 ; 

2. 	 E = ~'POOlPO + ~'P20lP2 + 'P60lP6 and 1 = 0lP6 for the Frobenius structure associated with 
Saito's fiat structure. 

The situation is that we have a two-dimensional linear pencil of flat metrics; by this we mean 
that the (contravariant) metric 

G* := J* + a TJ* + bJ* , 

is fiat for any choice of the constants a, bEe and the (contravariant) Levi-Civita connection 
is the same linear combination of the corresponding connections. 

The fact that J* is linear in 'Po is not predictable from the counting of bi-grades; in fact 
one could expect a priori the occurrence of a 'term proportional to 'P02 in 9Jt('Po, 'P2) E J~~2\ 
which is not the case -as a matter of fact- as we saw in the explicit computation. 
In the picture of [SagO] the flat structure we have constructed in the case of All and -as a 
by-product in the case of G2 is unexpected; it essentially comes from the additional structure 
provided by the modular properties of the Jacobi forms, which are "unseen" in the framework 
of the theta invariants studied in loco cit. 

There are hints at the possibility that a similar double Frobenius structure could be found 
also in the other exceptional c~es,!4' E6 , E7 (the latter two corresponding, in Saito's notation, 
to the "simple-elliptic cases" E61 E7 ), but this goes far beyond the scope of the present paper; 
we will study these structures in further publications. 
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A Formulae 

In these appendix we list and derive all formulae involving the elliptic functions that are used 
in the previous sections, and we explain the pairing of forms used in the context of Hurwitz 
spaces. 

A.1 Normalized elliptic functions 

In the text we have always used the normalized elliptic functions. 

In order to match with the more common formulae we give here the table of conversion. 


Here normalized means that the periods are 1 and T while usually the half periods are WI 1 W2, 

where T = ~. We define the Weierstrass eta functions by means of the quasi-periodicity of the 
WI 

unnormalized Weierstrass zeta function 

56 




((z + 2W2) = ((z) 27]2 
7]1 := ((WI) ; 7]2 := ((W2) 

TJl W2 - 7]2Wl 2' 

If 1J(/) is the Dedekind's eta function we have the following relation 

2WITJ1 = - 2i7r91(-r) 
2WITJ2 = -2i7r, 91(1) - i7r , 

and hence the quasi-periodicity of the normalized zeta function (here -and only here- we put 
a subscript N to mean the normalized function) 

(N(V) := 2Wl((Z) 
(N(V + 1) = (N(V) 4i7r91 (I) 
(N(V + I) = (N(V) - 4i7r, 91(/) 2i7r. 

In the previous sections we have always used normalized elliptic functions. 

A.2 The elliptic connection lI)). 


Proposition A.I Let F(vl/) be an elliptic function of weight k, namely 


(33) 

then the function 

is an elliptic function of weight k + 2. 


Proof. Differentiating both members of eq. (33) w.r.t. I we get 


(8TF) (~I- ~) = rk+28TF(vlr) + k~+1F(vlr) + rk+3vF'(vlr); 

and in particular we find 

(\7TF) (~I- ~) = rk+2\7TF( vir) + rk+3vF'(vir) ; 

C'VrF)(v + III) = VrF(vl/) - F'(vl/) . 

Recall now that 

( I ) 
'- _1 a'(vl/) _ 2 () ((vii)

I v I . - . (I) - V 91 I + 2 . 2'l7r a v I 'l7r 
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'Y (~I- ~) = T'Y(vIT) + VT2; ,(v + r) = ,(vir) - 1 ; ,(v + 11r) = ,(vir) . 

Therefore we finally have 

(ll}(k) F) (~I- ~) r k +2 [J)(k) F(vlr) ; ([J)(k) F)(vlr + 1) [J)(k) F(vlr) 

([J)(k) F)(v + rlr) [J)(k) F(vir) ; ([J)(k) F)( v + 11r) == [J)(k) F( vir) . 

This ends the proof. 0 

In order to interpret this operator we consider the universal torus, namely the fibration 
over (C2 )+ := {(w, w') s.t. ~ E 1l} whose fiber is the unnormalized torus C/(2wZ + 2w'Z), or 
better 

EA 
-!­

M:= .c , 
where .c is the set of all lattices A := 2wZ + 2W'Z. 

Cursorily speaking we can take (z; w, w') as local coordinates over M (which can be seen also 

as a smooth principal fiber bundle with structure group 8 1 x 8 1). 


The analytic sections of this bundle are the (unnormalized) elliptic functions with periods 

2w,2w'. 
Over this fiber bundle we have three natural vector fields [Du93] 

a I a a 
D1 :==w- +wa +z-a aw w' z 

a 

a 

where the ( function is the unnormalized one. 

Consider now the projection over the universal elliptic curve £. defined as 

II: 	 M ---t £. 
(z; w, w') r-t (vlr):= (2~ I~) 

and the push-forward of the above three vectors. It appears that D1 is the vertical vector field 
and II realizes the universal torus M as a trivial C*-principal fibre-bundle over the universal 
elliptic curve; the other two vectors are horizontal and hence they induce a natural connection 
over this fibration II : M -+ £. 
The sections of the associated line bundle is the sheaf S of homogeneous elliptic functions 

f(cz;cw,cw') = c-kf(z;w,w') E S®k 
f(z + 2mW + 2nw';w, w') = f(z; w, w') , 

and the horizontal connection D induced by the vectors D2 , D3 is 

a
D z =­av 
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a'(vlr) 8 
2i1fa( vir) 8v . 

It follows that the elliptic connection ]J)(k) is just the horizontal vector DT acting on section of 
the sheaf S®k. Since we also have a natural structure of graded algebra, we see that we can 
define the connection on the whole algebra by 

00 

<]J). := EB JD)(k) . 

j=O 

A.3 Pseudo addition formulae 

Proposition A.2 The following formula holds 

a"(x) + a"(y) _ 2a'(x)a'(y)) = _4i1f8Ta(x - y) + 2a'{x - y) {a'(x) _ a'(y)}
( a(x) a(y) a(x)a(y) a(x - y) a(x - y) a(x) a(y) 

, 2 

Proof. Recall first that a(x) 2~TJ-3e2i7r~X o-(x) where 0- is the Weierstrass sigma function. 
Recall also the standard notation 

d 
( := dx log(0-); 

Thus we can compute9 (putting A := 2i1f*) 

all(x) a"(y) _ 2a'(x)al(y)) = 

(
 a(x) a(y) a(x)a(y) 

= 4A + 4A2(x '_ y? + 4A(x _ y) (((i) _ ((y)) + 0-" (x )o-(y) + o-"(y)o-(X) 20-' (x )0-' (y) 
. o-(x)o-(y) 

and the long fraction involving the sigma functions can be rewritten as 

a(y)a"(x) + a;~~~:i~~ - 2a'(x)a'(y) = -p(x) _ p(y) + (((x) _ ((y))2 . 

We now need the following pseudo-addition theorem for the ( function 

Theorem A.I [see [WW] , pag 446] If x + y + z 0 then 

[((x) ((y) + ((Z)]2 = p(x) + p(y) + p(z) 

9We use the straightforward formulae 

a:'(x) e Ax2 (2xAO'(x) + O"(x)) ; a:"(x) e Ax2 (4x2 A20'(x) + 4xAO"(x) + 2AO'(x) + 0'" (x)) , 

with A := 2i7r%. 
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Applying this formula with the substitution y M -y we can write 

[((x) - ((y)]2 - p(x) - p(y) = p(z) (2(Z) - 2((z) [((x) ((y)] 

and hence, expanding and rearranging terms we obtain 

a ll (x) + a"(y) _ 2a'(x)a'(y)) 
( a(x) a(y) a(x)a(y) 

= 12i7rgl(r) a"(x - y) + 2a'(x y) {a'(x) _ a'(y)} = • if 

a(x-y) a(x-y) a(x) a(y) 

= _4i7r8ra(X y) + 2a'(x - y) {a'(x) _ a'(y)} (34)
a(x y) a(x - y) a(x) a(y) 

This ends the proof. 0 

Corollary A.I From the previous it follows 

4i7r [Vra(X) + Vra(y)] _ 2a'(x)a'(y) = -4i7r Vra(x y) + 2a'(x - y) {al(x) _ a'(y)} 
a(x) a(y) a(x)a(y) a(x - y) a(x - y) a(x) a(y) 

Proof. It follows from the proposition recalling the definition V ra(x) := 8ra(x) + 2gla(x) , 
and the equation 

D. 

A.4 Periods of elliptic functions 

Let ~(v) be a meromorphic elliptic differential of the second kind (Le. without residues), namely 
~(v) = f(v) dv, with f(v) meromorphic elliptic function. 
For the sake of simplicity assume that ¢ has only one pole at, say, v = 0; if the principal part 
is 

o 

f(v) = L CkVk + O(v) C- I 0, 
-N 

then the periods of the differential ¢ are computed by expressing f(v) in terms of the ( function 

f(v) = Co ~ (-l)k C r(k-I)(v) 
L..J (k -I)! k'-J 
k=2 

• 

Then we promptly find 

1fa ~ = jC+I
C f(v)dv = Co + 4i7 [f(V)dV]rgIC-2 =} ~~g V + 4i7rglV f(v)dv 

i if! = j*f(V)dV = 7 Co + 4i1f (7 gl + 2i1f) C_2 => ~~g [7f(~dV + (4i1f7g1 + 2i1f) V f(V)dV] 

i if! - 7 f. if! = 2i1f ~~g (v f(v)dV) . (35) 
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A.5 The pairing of forms. 


Let M := Mg,m;no, ... ,nm be the covering of the Hurwitz space Mg,m;no, ... ,nm introduced in De£. 
2.7; this means that its points are the set of data (C,)., {aI, .. " ag ; bl , ... , bg }, ko, kl' .. " km ) where 

i) 	 C is a smooth curve of genus 9 wit,h m + 1 marked points 000, ... , OOm; 

ii) 	 ). is a map). : C --+ Cpl with poles at the marked points and of branching degree 
respectively no, "" nm ; 

iii) 	 {aI, ,." ag ; bl , "" bg } is a symplectic basis in the homology of the curve C; 

iv) 	 ko, kl' "" km are some fixed branches of the roots of ). at the marked points (infinities), 
namely 

1

kll := ().) nil+! ; v = 0, ..,m, 

Let C be the universal covering of the punctured curve C / {ooo, "" OOm} with canonical projec­
tion IT 

II : C ---t C / {ooo, ,." OOm} 

and let <I>, W be two holomorphic differentials on this covering (namely with poles possibly 
only at the poles of ).). We moreover assume that their polydromy is fixed and independent 
of the moduli UI, "'! Un of the Hurwitz space. Explicitly we work in the following hypotheses: 
let {aI, ,.. , ag ; bl , "" bg } be a symplectic basis of cycles on the curve C realized by paths which 
avoid the infinities, with basepoint Po E C such that )'(Po) = 0; let So, "" Sm be pairwise 
nonintersecting paths joining Po to the infinities and to, "" tm small loops around the infinities 
in counterclockwise orientation. 

Let C be a simply connected domain in the universal covering C constructed as follows: we 
lift the cycle al to C and hence obtain a segment from Qo to QI such that IT(Qo) = IT(Qd = Po, 
We then lift the cycles bl , a2, b2 , "" bg , all, bl 

l 
, , .. , b;l in this order and consequently obtain 49 

points Qo, Qb .. " Q4g on the covering, Now we lift.the paths So, to, SOl, Sl, tl' sll, "" Sm, tm, S~l 
and at the end, by definition 2f universal covering, we have come back to the initial point Qo 
and hence have a boundary BC, 

We now make the following assumptions on the differentials <I>, W; 

1. 	Polydromy we assume that the two differentials are d).-multivalued, namely there 
exist suitable analytic functions A~, B~, A~, B~ on the complex plane such that for any 
cycles aj, bj we have the following properties 

. 	 d . 
<I>(P + aj) = <I>(P) + dA~()') = <I>(P) + d)' A~()')d)' 

. 	 d . 
<I>(P + bj ) = <I>(P) + dB~(A) = <p(P) + d)' B~(A)dA , 

and similar formulae for w; we stress that the cycles are to be me~nt such that their lift 
to the universal covering lies inside the simply connected domain C c C defined above, 
We further ask that the branching around the infinities is at most d)'-logarithmic, namely 
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there exist suitable analytic functions F:()...) , Ft()...) , J..L = 0,1, ... , m such that, near ooJL 

the polydromy is the same of the differential d (F:()"') log()...)). 

All these polydromy data are assumed to be independent of the moduli. 


2. 	 Periods We assume that the a-periods are independent of the moduli. 

3. 	 Poles We assume that the singular part (up to the polydromy described above) does 

not depend on the moduli, namely, near an infinity ooJL' in the fixed local coordinate10 
 ..z 	 .- 1 _ 1

JL .- kp. - np.+ijx 

<I>(P) L
00 

~,kz=dZJL + d (F:()"') log()...)) , 
-N 

and the singular part, namely the numbers ~,-N' .... , ~,-l are all independent on the 
moduli. 

We remark that we have used the fixed branches kJL of the roots of )... at the infinities ooJL' which 
is a datum of the Hurwitz space. 

Definition A.I The pairing is defined by means of 

The expression is rather cumbersome, though it is important to notice that the dependence of 
the moduli enters only through W. 

Consider the tautological fiber bundle over the Hurwitz space such that the fiber is the 
punctured curve C; onto this fiber bundle we define a lift of the vectors 

Definition A.2 We define the connection on the locally trivial fiber-bundle 

~C 
M 

defined implicitly by the formula 

This means that all derivatives w.r.t. the moduli have to be done at )... constant; this implies 
that if we realize the curves Cu as locally identical curves, the connection defines some vector 
fields on this curve by means of the formula (in a local coordinate w on the curve) 

8w 1 8)"'(w; u) 
-

8Ui )...f(W; u) 8Ui 

lOThis is to stress that the coefficients are to be defined w.r.t. the Laurent expansion w.r.t. these variables 
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Notice that if Wi is a local coordinate in the neighborhood of the point Pi we have that 

8w·J _ 1 8)..(wj;u) 
8Ui - )..'(Wj; u) 8Ui 

is a function with a simple pole only if i = j and regular otherwise. 

We have the following 

Lemma A.1 [Lemma 5.1 in [Du93]] Let Ui := A(Pi), s.t. dA(Pi) 0 be the moduli of the Hurwitz 
space, then we have 'Vi = 1..n 

Corollary A.2 The pairing is symmetric up to a constant independent of the moduli. 
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