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Abstract 
vYe consider the generalized exclusion statistics in the Kondo prob. 

lem. The thermodynamic Bethe ansatz equations }lave been used for a 
multicomponent system of particles obeying the generalized exclusion 
principle. vVe have found a relation bet\veen the derivative of the phase 
shift of the scat tering matrix for Fermi particles and for particles charac
terized by generalized exclusion statistics. vVe show that the statistical 
matrix in the Kondo problem has a universal form in high and low tem
perature limits. 
PACS numbers: O.5.30.-d, 72.15.Qm, 11.2.5.Hf 

1. Introduction 

Generalized exclusion statistics (GES) [1] has attracted much interest in re
cent papers [2 - 8] A. typical example of the application of generalized exclu
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sion statistics is the Cologero-Sutherland ll10del [9~ 10. 11]. D. Bernard and 
\'.-S. \Vu [12] studied the GES in the thermodynalnic Bethe ansatz (TBA) 
using equivalence of the Bethe ansatz (BA) equations and the ones obtained 
by the Haldane principle [11]. 11. vVadati has shown [1:3] that a change in the 
statistics is deterlllined by an appropriate choice of the phase shift of the scat
tering 111atrix. The generalization of exclusion statistics for multicoll1ponent 
systems was provide in the paper [8]. 

The goal of this paper is to consider the exclusion statistics of excitations 
in the Kondo problen1. To solve this problen1 we have applied the TBA 
for a 111ultico111pOnent systenl of particles obeying the GES. \Ve have found 
the universal behavior of the statistical matrix in high- and 10\v-tell1perature 
lilllits. In these linlits the statistical Inatrix is proportional to the Canan 
matrix for the An-algebra. 

The paper is organized as follows. In the second section we provide the 
ll1ain equations of the exclusion statistics theory to cOlnplete the discussion. 
In this section we haye also derived the relation bet\veen the derivative of 
phase shift (D PS) of the scattering matrix and the statistical matrix in the 
frmnework of the TBA equations for the multiconlponellt systeln of particles. 
The third section deals with the application of this result to the Kondo 
problen1. \Ye show that distribution function and statistical 111atrix in this 
problenl ha\"e the uni\"ersal fonn in high and low ten1perature lilllits. 

2. Exclllsion Statistics Equations 

A change in the nUll1ber DCti of the vacant states due to the addition of the 
nunlber 1V;3j of the part ides, according to Haldane [1] is defined as 

8Dcri 
!-I ;\ T = - 9o:i,{3j . ( 1 ) 
u 1'1{3j 
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Here 9ui,;3j is the matrix of statistical interaction. The indices a (Q 
1, ... Jl) and i correspond to the internal and the dynan1ical degrees of 
freedon1. respectively. The solution of Eq.(l) has the forn1: 

Dcxi = - L gcxi,{3jN/3j + D~i • (2) 
/3j 

where D~i is the number of vacant states of the ai-th type without particles. 
The nun1ber of holes Dui determines the statistical weights ~V as follows 

. II (l'1,cxi -, 1 + D(.,,:fi( {lV/3j}) + Lgj 90i./3 j8CX,38ij)!H= . (:3 ) 
. (JVod!(Dcxi({iV/3j}) -1 + Lpj9ui,;)j8o;38ij)!

0,1 

In the specific cases of 90i,;3j 0 and gcxi,/3j = 8(.<p8ij Eq.(3) yields the well-
known expression for the statistical weights of Bose and Fermi particles. 

The distribution function nui is defined usually [2~ 12, 4] in the following 
way nai = iVc'(d G~i' This is not convenient for systen1s with internal degrees 
of freedom. For example, in the hierarchical basis of the states in the frac
tional quanttln1 Hall effect nui = 00 if a = 2,3, ... because G~i = 0 for spin 
degrees of freedOlTI. The definition of the distribution function in the forn1 

iVai 
noi = -G' 

T cxi 
(-1) 

with 

Goi = C;~i + JVcxi - L 9oi,/3jiV/3j (.5) 
{3j 

is more convenient because it takes into account the influence of the statistical 
interaction on the nun1ber of the states. The equilibrium distribution func
tion ncxi can be found in this case from the extren1um of the grand partition 
function as a solution of the following equations: 

(6) 
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Here C~i is the energy and p~ is the chemical potential for the particles of 
type 0:. The distribution function n~i determines the free energy 

(7) 

as well as the value of the entropy S = In tV. 
The interection between quasiparticles fron1 the TBA point of view is 

encoded in the phases 0 Ji.3j of the dynan1ical scattering n1atrix S~iJ3j = 
- exp( -i0.::.£.3j). The statistical properties expressed by the statistical 111a
trix g~i.(3j depend on the DPS of the scattering n1atrix [12, 13]. 

Let us consider the TBA equations for the set of n1111ticonlponent particles 
obeying the GES. Quantizing a gas of such particles on a circle of length L 
requires that the n10111entun1 kui of the ai-th particle satisfies the follo,ying 
coneli tion: 

s 
exp{ik~(Oi)L} L SOt,{3(Oi - OJ) = 1. (8) 

3j 

The 1110111entum and the energy of the particles are parametrized by the 
rapidity O. Going to the lin1its L -7 .:xJ and iV -+ 00 with the finite yalue of 
iV/L and taking the deriYatiYe of the log of Eq.(S) yield 

dl: (0 ) r:v.\1 

:27rq,,(O) = ~O +§; L;.o <J>"IJ(I1 - (}')P3(O')dO' . (9) 

where 

(10) 

is DPS. The function P3( 0) in Eq.(9) is the density of the particles of 3-type. 
q~( fJ) is the density of the states. 

The infonnation about the statistical properties of the systen1 is contained 
in the distribution functions Hui and in the entropy S. In the framework of 
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the thernloclynal11ic Bethe ansatz [17], we have neither information about the 
ground state energy, nor about the structure of lo\v-Iying excitations with the 
energy t~(ln. They are the objects of the traditional Bethe ansatz approach. 
The equilibrium state at temperature T is obtained by minimizing the free 
energy = E - T 5', where the energy of the systenl is 

!vI 

E = L Jt~(O)p",(O)dO. (11) 
0'=1 

The variation of F with respect to PO' yields the following equations for 
the dressed energy to' (fJ): 

1 ] dO' . 
na(0') 

(12) 

Here the function nO' relates to the functions PO' and qO' in Eq.(9) as follows: 
no = pO'/qu' 

Let us aSStlIlle that the particles are fermions, i.e., g,(Jj.ui = 8uf38ij . \Ve see 
fronl Eq. ( 6) that 

1
nO' = ----::---------::

1 + exp [(t~(O) -llO')/T] 

After substituting this expression into Eq.(I2), we have the standard TBA 
equations 

for fernlions (superscript" f" denotes the Fermi statistics). 
Each statistics corresponds to the specific value of DPS <PO',6(O) in Eq.(I2). 

The transition to the Fernli statistics leads to the new value <p!,l3(0) of this 
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function. Asslllning that the function n{3(8) in Eq.(12) coincides with Eq.( 1:3) 
we can find froll1 Eqs.(12), (14) the relation between DPS Wa:3(B) for the 
arbitrary statistics and for the Fern1i statistics. This relation has the forn1 

w( B B') == wi (8 - B') - 2ir5( B- B')[I - 9], 

where I is the unit n1atrix and 

91l g12 g13 ... )
g.),) g23 ...9 == g21 (16)

g31 g32 g33
( 

is the statistical matrix. It is easy to see frOll1 Eq. (1.5) that for 1110dels with 
the function wL. (B-B') ~ 5( B-B') one can find such statistical n1atrix 9 which 
giyes a zero yalue of the r.h.s. in this equation. In these n10dels the phase 
of the scattering matrix has the structure of the step function. Fron1 the 
TBA point of view these systen1S look like a gas of non-interacting particles 
having the GES. This case is known [12, 6] as the ideal exclusion statistics. 
In these n10dels the correlations bet\\'een particles can be transformed to 
the statistical interaction. The distribution function of excitations in the 
systenls with the ideal exclusion statistics can be obtained from Eq.(6) where 
the statistical n1atrix is now go..3 = 50..;3 - 2\ W~3 and the dressed energy of 
excitations coincides with bare energy t:~. Note that the structure of Eq.(6) 
looks like that for Eq.( 1.5) (after some simple transforn1ation) because the 
function net satisfies Eq.(l:3}. 

3. Generalized exclusion statistics in the 
Kondo problem. 

Let us consider the Kondo problem from the GES point of view, Bethe
ansatz equations for the isotropic s - d exchange n10del [IS] in the I{ondo 
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problem are 

exp(il'jL) exp ( 
iIS)
2 

P (A, + i/2)II A, - i/2, ' ( 17) 

P .. 

- II (A, - \, + ~) . 
(3 A,  \3 Z 

(18 ) 

These equations solve the problen1 of diagonalization of the s d exchange 
haIlliltonian with the in1purity spin S and with the coupling constant I. Here 
the total nUlnber of electrons Cup-spin electrons) is denoted as JV(P). The 
general solutions of Eqs.(17), (18) have the form of n-strings according to 
the string hypothesis [1-1:]. The n-string is a set of n solutions given by 

).~,nJ) ).~ + i (n ; 1 _ j) , j:= 1, ... ,n. (19) 

Here A~ is the real nun1ber and n is the order of the string. The distribution 
of the n-type particles (holes) density in the thern10dynan1ic limit is Pn (/\) 
(p~lh\ /\»). Assluning that the particles obey the Fenlli statistics, the TBA 
equations for the function t n ( A) have the form 

2tF -I T 10.:;. 1 
- _ tan exp( iT A)6nl + -. h( (A 

Ii 27r -0.:;. cos iT 

[In (1 + efn-d,V)/T) + In (1 + efn+1 (,\')/T) 1ciA' . (20) 

Here and below the dressed energy iStn (/\) = Tln[p~h)(,\)/Pn(A)]. 
The solutions of these nonlinear integral equations describe the thern10

dynamic properties of the s - d-model. The external magnetic field H of the 
problelll enters in the boundary condition as follows: 

lim tn(A) - H = O. (21) 
n-oo n 
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.\"ote that this boundary condition means the condition of conlpensation of 
the internal 111agnetic field h = lim ( En / n) by external magnetic field 

n-'x; 

H. This situation takes place as well for some phase states in (2 + 1) D 
systenls. 

The spin free energy 

1
':>':) 1 

- jVT . In (1 + efd-\)/T) cI)" 
-00 2 cosh{ it /\) 

1
1 

- T 
00 

. In (1 + ef2S ('\)/T) d)" 
_.:>,:) 2cosh(ir()" + 1/9)) 

is expressed by the functions t n (/\). The first term in the Lh.s. of Eq.(:2:2} 
corresponds to the spin free energy in the absence of inlpurity. The second 
ternl is the iInpurity contribution to the free energy. \Ve will focus on the 
universal properties of the solutions of Eqs.(20) in the linlits T -J. 00 and 
T -J. O. 

Conlparing BA Eqs.(20) and TBA Eqs.(14) one can see that the relation 
between thelll exists if 

(:2:3 ) 

In other words. the energy of the particles in TBA Eqs.(l4) corresponds 
to the energy of the holes in BA Eqs.(20) of the I~ol1do problenl. The 0

type particle in the TBA equations is made corresponding to the n-th string 
solution of Eqs.(20). By changing the index n by Q we can rewrite Eqs.{:20) 
in the new notations as follows 

(2-1:) 

The boundary conditions have now the form tt = ()C and linl t!/a = -H. 
0'-00 
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From Eqs.(24) and Eqs.(14) we have 

1 
(25)

cosh(1T( A - ,.\') 

and 
2tF -1

(/\) = tan exp( 7r A)8':\1 . (26)
1i 

where 
1 
o 

(27) 

1 

Unlike in the TBA Eqs.(14). we know the function t~(/\) in Eqs.(26) because 
it was found by the BA method. 

Let us aSSUlne now that the particles have the GES with any statistica.l 
matrix g. In this case the 11latrix <P in Eqs. (15) for the Kondo problem is 

A') = 1 A') )£ - 27r8(A - /\') [I - g] . (28)
cosh(1i(A 

It is easy to see fron1 the last expression that in the general case we cannot find 
a matrix 9 to set the 11latrix <P to zero. Ho\vever, it is possible to consider 
the particular cases of high- and low-temperature lin1its. The asymptotic 
behavior of the spin free energy determines the different values of the rapidity 
range required for the consideration of the high- and low-ten1perature lill1its. 
\Nhen T -7 ex:;. (weak coupling lin1it), the impurity energy is given by 

T2 In ( 1 + exp ( - t~s(T-OC))) . (29) 
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\Vhen T ~ 0 (strong coupling linlit), 

T ( ( €!,,( +(0)))Pimp == - 2 In 1 + exp - -- T (:30) 

Therefore. in these temperature linlits \ve ha\-e to consider c;s(."\) at 1;\1 ~ ac. 
Taking the liinit 1;\1 -t oc in Eqs.(24) we ha\-e the equations for €~(±':xJ): 

€~(±oo) = - ~ In [(1 + exp ( - €!_l~±OO))) (1 + exp ( _ €!+1~±':x))) )] . 

(:31 ) 
The boundary conditions are: liIll €~(±oo)/o == -H, c6(-oo) = cx:' and 

a-'Xi 

€{ (+CXl) == (x). The solution of these equations is [IS] 

1 _ [(Sinh [~(Q + 1)])2 ]ca+ 1 ( -X) - - T In . 1 ( H - 1 . (:3:2)
SIn 1 -) ,

2T 

This result will be the saIne if we assunle that the lllatrix <1>1 (A) in Eqs.( 2-1) 
is proportional to the 6-function, i.e., 

linl <1>1 (A - A') = 7ro(.A - N)£.
I,\I-'x, 

It is clear because the function liIll 1/[cosh(/\ - /\')] 2/[exp(00 - N)] acts 
,\-'XI 

as the b-function at A' == oc. Therefore, in the GES case the nlatrix <1>(A) 
has the following fornl 

(:3-1 ) 
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for these tell1perature limits_ From the condition <P 0 of the ideal statistics 
we have the following form of the statistical n1atrix: 

,) -1 

1 -1 2 
(3.5 )y=

2 (o -1 

\Ve see that it is proportional to the Cartan ll1atrix for algebra, An-
To find the distribution function no we need to know the structure of t.he 

low-lying excitations. It follows fron1 Eq.(24) that to(.A) = 0 for all 0. =f:. 0 
when A == -00 and for all Q =f:. 1 when A = +00. The structure of the 
equations for the distribution function of particles nCr? which can be obtained 
fron1 Eq.(6) with the statistical matrix (3.5), resell1bles that of the equations 
for to ( 1,\ I == ex:;) (:31): 

(~ - 1)2 = (1 no+d (1 - no-t) . (:36) 
no 

The solution of Eqs.(:36) (with the boundary condition lill1 (.l - 1) -t 
0-..;.00 no 

exp( -aHIT)) coincides with the solutions (:32) : 

(:37) 

at T -t 0 and 

(fiT [(sinh( Ji,a.)) 2 ]eO == . H --I (:38)
slnh( 2T) 
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at T ---* oc. The spin free energy does not vary \vhen we change the particle 
statistics. 

The function cpf does not change in the TBA equations for nlultichannel 
Kondo effect [16, 19, 20]. But the function f~(.'\) is changed. It depends on 
the nunlber of channels. k. as 

(:39) 


This leads to the new solutions for f!(;\) in the low-tenlperature liInit 
(/\ ---* +:x)) : 

-TIn [(Sin{.;:-(a+l)/(k+2») 2 - 1] o:<ksm( ;:"/( k+2}) •(-10)ff(+OC
1 

) = [ 2 ] 
0: { -TIn (Sinh(~(O:l-k») 1 o:2:k 

smh( 2T) 

The solutions for the higher-temperature limit (A ---* -(0) are not changed. 
To find the solution (-10) using the statistical nlatrix (3.5) we have to inlpose 
the additional boundary condition no: = 1 at Q. = k. 

4. Conclusion 

Let us discuss in conclusion what new insights into the thennodynanlics of 
integrable systerns (the I\:ondo problem in particular) are gained by consid
ering these systems in ternlS of the GES. 

U sing the GES principle we introduce an additional "paranleter1
', that 

is, particle statistics determined by the form of the statistical matrix. If we 
suppose that the statistical matrix is arbitrary, we can write the TBA equa
tions for a system of particles with any statistics. Each form of the statistical 
matrix in this case has a corresponding distribution- and the DPS-function. 
Therefore. we can write the TBA equations in a nlore convenient fornl. A 
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successful choice of the statistical matrix may lead to a simpler fornl of the 
coupled equations for the dressed energy and for the distribution function. 
In particular. in the case of ideal statistics one can find a statistical matrix 
such that the solution of the TBA equations for the dressed energy coincides 
with the bare energies, and the equations for the distribution function repeat 
(up to transformation) the TBA equations for Fernli particles. 

Let us focus on the features of the Kondo problem which are studied using 
the GES principle. The consideration of spin excitations as quasiparticles in 
the Kondo problenl leads to the conclusion that spin excitations correspond 
to the holes in the TBA approach. To find the distribution function in 
the systenl of particles with internal degrees of freedorn we need additional 
infornlation besides the statistical matrix. \Ve should know the detailed 
structures of the ground state [8]. The energy of the ground state shows itself 
as the boundary conditions for the equations deternlining the distribution 
function. The boundary conditions include the external magnetic field which 
compensates the internal "conformal'~ magnetic field of the system. 

The solution for the distribution function in high and low-temperature 
regions has the universal fornl. It is determined by the q-deformed dimension 
[a + 1 ] q of irreducible representations of the quantU111 group Uq (Sl2)' Here 
[ :r ] q = (qX - q-X)/(q q-l). In the case of the single channel Kondo 
problem, the deformation pararneter q = exp ( H / 2 T ) is real. It depends 
on the external Inagnetic field and the temperature. In the nlultichannel 
Kondo problenl (at a < k), the deformation paralneter q = exp[irr / (k + 2)] 
being the root of unity. is determined by the nurnber, k of the channels. 

In sunlnlary. we used the TBA equations for a systenl of particles \-vith 
internal degrees of freedom to consider the features of the GES in the Kondo 
problenl. It is shown that the statistical matrix and the distribution function 
in the Kondo problem have a universal form in high- and low-temperature 
limits. 
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