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Abstract 


x2vVe provide analytical functions approximating Je- dx, 

of which is the kink soliton. Because of the accuracy and sim 

the results (maximum error < 0.2%), it brings new hope that dJ.' 

can in fact be written as the sum of simple analytical functi ns. \Ye 

demonstrate our results with some applications. particularly t gener

ation of Gaussian random fields without Monte Carlo metho~s. 

1 Introduction 

There is an inherent asymmetry between integration and differentiation 

which makes integration somewhat of an art fOrIn. and whih is perhaps 

best exemplified by the apparent lack of an elelnentary indefinite integral of 
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the celebrated Gaussian: 

J -(x - (3)2
exp( 0'2 )dx ( 1) 

The Gaussian integral is one of the most fundamental, findi g applications 

in statistics, error theory and many branches of physics. In act, anywhere 

where one has Gaussian distributions, cummulatives of thes~ distributions 

will involve the above integral. Only special case definite in1egrals of e-X-
? 

are known, the most famous being: 

Via 
(2 )

2 

In addition there is the series expansion [1]: 

{X (_ll-lx2k- 12 00 
u 

Jo e- du = E(k - 1)!(2k - 1) 

Now in practise one can evaluate the integral accurately by nu erical quadra

ture, but in many cases it would be preferable to have an anal tical solution. 

even if it were not exact. as long as the maximum error were ery small and 

the approximation were simple 2 

It turns out that there exists a function well known in aAalysis of non

linear PDE's whose derivative is very close to Gaussian - theikink soliton: 

o(x) = A tanh(bx - c(3) (-! ) 

whose derivative is: 

(.5) 

2Several rational function approximations exist but they are rather c implicated [2]. 
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where A, b, c, and ,8 are all real constants. The graphs of and x( J,') are 

shown in figure (1). 3 The kink soliton is the positive, time-independent. 

topological solution to the non-linear 1 + 1 dimensional partial differential 

equation: 

2 1 3 
<!Jtt - ¢xx = 2b (¢ - A2¢ ) (6) 

where a subscript denotes partial derivative with respect to that variable. 

The solution to this equation is topological because the boundary conditions 

at x = ±oo are different. Leaving the physical origin of ¢ behind, it is 

interesting to examine the series expansion of tanh(x): 

tanh(x) 
1r 

valid for x < - (7)
2 

which should be compared with eq, (3) for Je-x2 dx. Here BJ.: are the 

Bernoulli numbers with generating function t/(et - 1). We see that al

though the coefficients differ in each case, the powers of x in the expansions 

are identical. Further both x( x) and e-x2 have the property that their 

derivatives can be re-expressed in terms of themselves and ¢(x) or powers 

of x respectively. These observations shed some light on the foundations of 

the approximation. 

can consider a one-parameter family of approximations to the Gaussian given by 

replacing x xf. in eq. (5) which give better fits when f ¥= 1, but which do not have 

indefinite integrals as far as is known to the author. 

3 
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Figure 1: Plot of e_x
2 

(solid line), x( x) (doted line) and ta lh( x) (dashed 

line ) which is the kink soliton. 
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2 Details of the approximation 

Turning to practical issues, we are left with choosing the constants, A, b. c 

to optimise the approximation of eq. (1). We need three constraints to fix 

the three parameters. First we require that the Gaussian and x( x) have 

the same symmetry axis. This requires the argument of tanh to vanish at 

x* = (3 which immediately implies from eq. (5) that c b. 

At this stage we have a choice, dependent on whether we are interested 

in an approximate solution for small or large x. For large x, a constraint 

is obviously that our new approximation, 4>( x), must give exactly the same 

result as eq. (2) when differenced at infinity and the origin. This will ensure 

convergence of our approximation. Since tanh(x) 1 as x -7 00, and-7 

tanh(O) = 0, this implies from eq. (4) that: 

A= 
2 

Finally we can impose that x( x) = e-(x-.6)2j0"2 at some point, Le. we 

match the derivatives. \Ye will choose x = {3 as the simplest. This gives: 

2 
Ab = 1 ==> b = 

In fact the two are equal at another point as can be seen from figure (1). Our 

analytical approximation. which is very accurate for large x, is therefore: 

foa (2 ) J ( r:1)2j 24>(x) = ~tanh fia(x - (3) ~ e- x-I-' 0" dx (8) 

where in this paper ~ is understood as meaning asymptotic convergence~ 

as x -7 00 and bounded error '\Ix. From figures (1,2) we see that the kink 

5 
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Figure 2: Plot of the difference between and / 

2
Alternatively if one is interested in fou e-

x2 
/0- dx where u 

this will not be good enough. since the error in our approxima 

confined to small x. Instead we can impose that ¢( x) must 

result, not at infinity~ but at the end of the interval, i.e. 

impose: 

A tallh( b{ u - /3)) = iou e-(x-,6)2 /0-
2dx 

In addition we need to match the derivatives x(x*) = e-(x.

point x* as before, and then solve the equations for A, b. It is 

6 

6 7 

(x). 

4(1 say, then 

ion is strongly 

give the exact 

t 'flo Thus we 

(9) 

)2/0-
2

) at sonle 

an open ques
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Figure 3: Plot of the error function, soliton approximant, ¢(x). The maxi

mum relative error occurs at x 1.12 and is 3.91 %. The error drops below 

1% for x ~ 2.3 and conyerges rapidly to zero. 

tion which matching point yields the best results. For illustrative purposes 

we choose x = f3 and again find A lib, so that substituting in eq.(9) gives 

us a nonlinear root-finding problem for A. The right-hand side can be found 

for example, from tables of the error function, erf( x). This yields an approx

imation which is exact at :r = u and hence a much better approximation for 

small x, but which is inyalid for x > u. The extension to cases with variable 

lower limit of integration is obvious and will not be considered. 

One might be tempted to generalise eq. (4) to a one-parameter family 
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of approximations to the error function: 

~p(x) = A tanhP(bx) 

which have derivative: 

~~(x) Abp tanhP-I(bx )sech2(bx) 

However, since for p f:. 1, ~~(O) = 0, they are not really suit 

imations to a Gaussian. Rather they are skewed distribution 

(10) 

(11) 

ble as approx

with maxima 

at x > O. It turns out however., that they will be useful late. 

For testing our approximation for large x ~ 

denoted 4>( x )L, given by eq. (8). The crucial question is f course, how 

good is this approximation? It turns out that it is very good in most 

cases, as can be seen from figures (3) and (4). The maxi urn error from 

using 4>( X)L is 3.919C at x 1.12. However as discussed e rlier, if one is 

interested in the result for small x, and Xl is small, then this is not the best 

approximation to use. In practise, the error drops off very quO ckly due to the 

exponential nature of tanh(x). For example, the error in es imating erf(.r) 

drops below 1% for :r ~ 2.3 and at x = 5 the error is 2.51 X 10-5. The error 

as a function of x is plotted in figure (4). 

3 Does fe-x:? dx exist in elementary for ? 

The shape of figure (-!) is, in fact, rather startling because t is a comInon 

shape and leads to the conjecture that it can be found exa tly in terms of 
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elementary functions. From the graph it has a single local nlaximulll and 

hence two points where the concavity changes. The set of all such functions 

is very small relative to the set of all smooth functions on R but it may not 

be small enough to ensure that the conjecture is true. Several shapes were 

tried, such as the log-normal and Poisson distributions, but the best was 

found to be a generalised 1tlaxwell-distribution: 

(12) 

For the case used in the figures, that of erf(x), the best parameters for 

reducing the maximum error (i.e. minimising w.r.t. the sup-norm 11·1100) 

were (see figure (5)): 

0:1 = 0.062, n = 2.27, 0:2 = 1.43 

which reduced the mOJ.·imum error to 0.15%. It would of course be incread

ible if a function could be found which exactly accounted for the error. 

proving that f dx existed in elementary form, but even if this is not the 

case, we have found an accurate and simple solution, erf(x) = ¢(x) + E(~r). 

It is also likely that our choice of function and parameters for E(x) is not 

optimal, since a formal optimisation was not used, but was based rather 

on a numerical investigation of the parameter space {Q}, Q2, n}, which was 

certainly not exhaustive. 

Since the required E(.r) is a skewed Gaussian with maximum at nOIl

zero x we can profitably employ the functions given byeq. (11), originally 

introduced to model the Gaussian, as fits for the error. In this case our 

9 



approxinlation becomes: 

(14) 

where I denotes derivative w.r.t. x. For a3 = 0.23 and p = .7 the error is 

at most 9 X 10-3 • By suitable generalisation of the second te it is possible 

to increase the accuracy to the level of the generalised Maxw 11 distribution, 

but for simplicity and because of its suggestiveness, we leave it in the above 

form. 
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Figure 4: The difference of erf( x) and 4>( x)L. This is closely approxilllated 

by log-nornlal distributions or functions of the form a} 0:2. If this can 

be fitted exactly by an analytical function then one has the exact integral 

of e-x2 
• 
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Figure .5: The final error after modeling figure (4) by the generalised Nlaxwell 

distribution of eq.( 12). The maximum error is about 0.15%. 
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tanh- 1 so 

In the case of the error function we have explicitely that (13 = 0): 

2 
(1.5)erf(x) ~ tanh( Vix) +E(x) 

u2where erf( x) <.P( x) = 2/ViJ; e- du is the error function Similarly the 

complementary error function is given by: erfc( x) = 1 tan (.fix) E( x). 

Applications 

Let us now consider a very small sample of possible applicati ns. A primary 

example is in the theory of statistics. If we have a unifor ly distributed 

random variable X and we desire a random variable y with tatistics given 

by a distribution j, first define the integral F(x) 

F- 1 (x) will have the same distribution as j, where F- 1 den tes the inverse 

of F, on the interval [F- 1(0),F- 1(x)]. 

In particular if. as is often the case, we want to generate realisation of 

a Gaussian random distribution, j = exp( _x2/0'2), then wit our approxi

mation, F( x) = 4>( x) (we have dropped the error correction term E( x) for 

simplicity) and the inverse 4>-1 (x), gives us our random va iable. In this 

case if y = 4>( x), then: 

which has the same form as 4>( x) with the replacement tan 

that both the integral and inverse are essentially trivial. 
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necessity of using traditional :Nlonte Carlo methods to calculate Gaussian 

distributions. 

A related problem occurs in the study of structure formation from grav

itational collapse from Gaussian initial conditions, a ubiquitous assump

tion. The Press-Schecter formalism [3], gives the cummulative mass func

tion f(> M), which is the number of objects (such as galaxies) with mass 

greater than AI: 

(17)f(? .\1) = 1 - erfc ( v'2C1~~, z)) 
where cc , z E R and a is the variance of the distribution. This can be found 

immediately using eq. (1.:». 

Other relations are found from the theory of solutions to the Schrodinger 

equation with general potential. In particular, for a logarithmic potential 

we have: (see e.g. [4]) that the wavefunction is determined asymptotically 

by an integral: 

X,A ~ 0 (18) 

where he(u) = £2 + . Perhaps the canonical example from qualltulll 

theory, however comes from Feynman's path-integral formulation: (we drop 

E(x) again for simplicity) [IJ: 

(19) 

with u -00. 

Further, the error function can be related to special values of the degen

13 
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erate hypergeometric function, 1 Fl (a; ,; z). In particular: 

1 3 2 Vi 2 
1Fl(.. . -' -x ) :::: - tanh(-x)

2' 2' 2x Vi 

Our final example comes from the theory of parabolic cyli 

Dp(z), which are solutions to the differential equation: 

d2u 1 z2 
+ (p+ 2" - 4 = 0 

with u = Dp(z) and for integer values of p = n, they are 

Hermite polynomials, Hn(z) by Dn(z) = 2-nj2e-z2j4Hn( z 

may write, for the special cases of n = 1, -2: 

.,.2/4 [7r [ f2 -z2/2 ( h(- c - V"2 V;- e - Z 1 - tan 

These represent an extremely small range of perhaps fa 

plications, apart from the discussion of generating Gaussian 

and it is hoped that there are more useful applications unkn 

thor, where it is truly useful to have an approximate analyt 

for Je-X 
2 
dx. 

Conclusions 

der functons, 

(20) 

related to the 

). Finally we 

(21) 

(22) 

rly trivial ap

andom fields. 

wn to the au

cal expression 

In this Letter we have presented a function approximating e f( x) to better 

than 4% 'if x, with exponential convergence as x ---!- 00. This solution is 

14 



simply the kink soliton. o(x) = tanh(2x/yIi). 

Further we have found a solution with maximum error of 0.15% by adding 

a generalised Maxwell distribution to the kink soliton, equations (12), (14). 

This leads us to conjecture that f ex2 dx exists in elementary form. Future 

work should be aimed at finding truly optimal solutions. Finally applications 

were suggested, particularly to the simple generation of Gaussian random 

fields without Monte Carlo methods. 

The author would like to thank Claudio Scrucca and Lando Caiani for 

very illuminating discussions. 
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