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INTRODUCTION. 

In a quenching experiment a system is initially in thermodynamic equilibrium with a reservoir 

which is then cooled down from above to below its critical temperature. This process is usually so 

fast that the state of the system in the meantime does not change significantly. At the end of the 

cooling, however, it is no longer in equilibrium with its surroundings, its state is still stationary but 

unstable. What happens next is called "phase separation". At a very early stage the interaction 

with the reservoir (usually modelled by a small random perturbation) is dominant because without 

perturbations the system would stay in its initial stationary state. As soon as the state changes, 

because of its instability the deterministic driving forces internal to the system take over driving 

it toward equilibrium. For a mathematical analysis of this part of phase separation, see [8] and 

references therein. Very often, though, equilibrium is not yet reached at this stage: when the system 

.. 	 is spatially extended, in each subregion the state approaches a stable thermodynamic phase, but 

since several ones are equally accessible (as the temperature is below its critical value) there is 

no reason why the equilibria of far away regions should coincide. The typical picture is thus a 

collection of phases with interfaces in between and the next regime of phase separation describes 

the competition between phases. For non conservative evolutions (that we consider here) the 

larger clusters grow at the expenses of the smaller ones and typically the interfaces move by mean 

curvature. Once the clusters become very large (i.e., the curvature very small) this process becomes 

extremely slow and new effects arise, in particular stochastic forces may again be dominant. As 

a matter of fact there are examples involving deterministic evolutions where the phase separation 

even stops and the system fails to reach the true equilibrium, being stuck in some locally stable 

but spurious equilibrium, see [12]. These effects are more frequent in one dimension and we restrict 

to this case. 

Our model equation is the d 1 Ginzburg-Landau equation with an additive white noise of 

strength 0, see (1.1) below, where € > 0 is the small parameter of the theory and eventually 

€ -4 0+. We consider the equation in the interval ~,I<. = [-€-I<., €-I<.] , '" 2:: 1, imposing Neumann 

boundary conditions. The potential term in the Ginzburg-Landau equation is a symmetric double 

well potential V( m), m E lR, with minima at m = ±1 which represent the equilibrium values of 

the "order parameter" m. The two equilibrium phases are then the constant functions m(x) ±1, 

x E ~,I<.' and the problem of interface dynamics concerns the evolution of profiles where to the left 

of some point, say xu, the state is close to -1 and to the right to +1. Fusco and Hale, [13], and 

Carr and Pego, [6], have shown that for the deterministic Ginzburg-Landau equation the motion is 

extremely slow. The system in fact relaxes after a short time to an apparently stationary state with 

the two phases connected by an "instanton". This state for our choice of the potential is (very 

close to) mzo{x) . tanh{x - xu) (xu is the "center of the instanton"). mzo is not truly stationary, 

it moves almost without changing shape with speed ~ e-cl , c a positive "slowly varying" factor, 

£ the distance of the center from the boundary of the region. Thus if £ is a fraction of the whole 

interval, i.e., £ ~ €-I<., the motion is exponentially slow. If we take into account the stochastic 

term, the picture initially does not change much: except for small random fluctuations we still see, 

after a short relaxation time, the same profile mzo' However on dramatically shorter times (when 

compared with the deterministic case) the instanton moves. At times t€ ~ t€-a, 0 < a < 1/3, 
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t > 0, the shape is still the same but the center Zo has changed by the order of vet: and on this 

scale it is a Brownian motion, [3]. This result is extended up to times te . te- l , t > 0, when the 

displacement is finite and the center of the instanton converges as e ---1- 0+ to a Brownian motion 

bt , as shown in [5] with", = 1. The motion is still Brownian also at longer times, te ..:.. te-l-'"Y, 

t > 0, , > 0 small enough, as shown by Funaki, [14], in a somewhat different setup. At much 

longer times the picture may change, for instance the system may pick up some drift, as it happens 

when the potential V (s) is non-symmetric (still with equally deep minima, as shown by Brassesco 

and Butta, [4]). Here however we restrict to the symmetric case proving that no drift will appear 

even at "very long times". Roughly speaking we prove that the process mt behaves like mzo+..fob 
t 

(the sup norm of the difference vanishing as e ---1- 0+) where bt has the same law as the previous 

Brownian motion. Convergence is proven by scaling space and times with the latter "much shorter" 

than what it takes to a Brownian motion to reach the boundary of Te,,,,,,, The result is far complete, 

a question of physical interest left open is a precise estimate of the first time when a single phase 

takes over. We control in this paper the first time r when one of the two phases occupies the 

whole Te,,..., except for a "small interval close to one of the endpoints of Te,,...," of size proportional 

to e- l
. We show that r has the same law in the limit as e ~ 0+ as a suitable stopping time of 

bt (this law can be easily computed). We could prove that also after r the instanton will move 

like a Brownian motion, but only till it gets close to the endpoints of Te,,,,,, by a distance clog e- l
, 

c > O. Thereafter (for a critical value of c) the Fusco-Hale drift should in fact be dominant with 

the minority phase shrinking deterministically till extinction. The time length (after r) when all 

this happens should be significantly smaller than r itself, which is thus a good estimate for the 

time of relaxation to equilibrium. This is not a true equilibrium, though, and the game is not 

yet over: at much longer times tunnelling phenomena will appear, but this is really beyond the 

purposes of the present discussion. 

The convergence to a one dimensional process simply described by a Brownian motion holds in a 

much stronger sense than one could suspect from the above presentation. In fact by extending the 

work of Mueller, [15], (to the present case where the stable point is replaced by a one-dimensional 

manifold of equilibria, i.e., the translates of the instanton) we construct, in the limit as e ---1- 0+, 

an asymptotic coupling of processes starting from two different initial data, where the time of 

coupling is the same in law as that of the first encounter of two independent Brownian motions in 

d = 1. They represent the motion of the centers of the instantons associated to the different initial 

conditions. Namely it suffices that the centers meet for the whole profiles to be matched completely 

everafter. We refer to the next section for a precise and complete list of results. In Section 2 we 

prove statements concerning the deterministic equation (without noise). In Section 3 we extend 

the results to the case with noise. In Section 4 we prove convergence to the Brownian motion and 

in Section 5 we construct the coupling which proves the loss of memory of the initial datum. A 

brief outline of the main ideas of the proof is given in Section 3 after the proof of Theorem 1.1. 
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1. DEFINITIONS AND MAIN RESULTS. 

(1.1 ) 

In this paper we study a Ginzburg-Landau one-dimensional equation with additive "small" 

nOIse. More precisely, we consider the stochastic partial differential equation 

8m 182m 3 
- == - - + [m ~ m ] + .J€a
8t 2 8x2 ' 

m(x,O) = mo(x). 

We impose Neumann boundary conditions (N.b.c.) at Te,,... The noise a == a(x, t) is a standard 

space-time white noise (see [17) for a precise definition), and E is a small parameter that will go to 

zero. The standard way to give a precise meaning to (1.1) is to consider the corresponding integral 

equation, in terms of the heat kernels associated with the given boundary conditions. In our case, 

the construction is as follows. Let HiE') be the Green operator associated to the heat equation on 

Te,,.. with N.b.c. Let Zt(x) be the Gaussian process defined by the stochastic integral 

(1.2) 


for x E Te,,.. and extended to R by successive reflections around nE-"'. Call CO(R) the set of 

continuous and bounded functions and 

CE',,..(R) == {f : f E CO(R), f is invariant by reflections around the points nE-"', Inl ~ I} 

Given mo E CO(R) and Zt E CE',,..(R) for each t, and continuous in t, we define mt =: Tt{mo; y'€Z), 

t ~ 0, as the solution of the equation 

mt = Ht *mo -it dsHt- 8 * (m! - ms) + y'EZt (1.3) 

where * denotes the convolution of functions on R, Ht(x) is the heat kernel in R: 

H ( ) ...:... _1_ -z2/2t 
t x - ~e (1.4)

v2/Tt 

We will consider the case when Zt is given by (1.2), and refer to it as the Ginzburg-Landau process, 

which is adapted to Zt. For more details, see [5], where", == 1 is considered. In particular, it is 

proved in [5] that (1.3) has a unique continuous solution. If mo E CE',,..(R) then the process lives 

in CE',,..(R) at all times. In general one refers to this as the the Ginzburg-Landau process on Te,,.. 
with Neumann boundary conditions, but, for notational convenience, we have extended the range 

of admissible initial data to the whole CO(R). 

Since the function iii(x) ...:... tanh x verifies the identity 

V'(m) ~ dV(m) , (1.5)
dm 

iii is a stationary solution of the deterministic Ginzburg-Landau equation on JR.; i.e., iii = Tt ( iii) ~ 

Tt ( in; 0), for any t ~ O. The function iii(x) is what we call "instanton", and, its translate by 

xo E R, 
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x E R (1.6) 

will be called "the instanton centered at xo" (thus m =mo). The manifold 

(1.7) 

is locally attractive under the deterministic flow Tt (·), see Fife and McLeod, [10]-[11]. More 

precisely, let II . II denote the sup norm in R, and, for S ~ 0, define 

M6 . {m E G(R): dist(m,M) . inf 11m - mxoll ~ S} (1.8)
xoElR 

Then, Fife and McLeod have proved that there exists So ~ 0 and a real valued function (m) 

defined on M60 ' such that 

for all m E M60 ' (1.9) 

in sup norm and exponentially fast. Thus M60 is foliated by the submanifolds (transversal to M): 

Vxo . {m E Moo: (m) = xo} (1.10) 

one the space translation of the other. (m) will be called the "true center" of m E Moo (in the 

proofs it will be convenient to work with an approximate center that we call the "linear center", 

but the above definition has conceptual advantages). 

Given m E GO(R) we set m~,1( . m if m f/:. G~,I(R), otherwise 

(1.11) 

(Observe that if m E G~,I(R) then m tj. Mo (if S is small enough) no matter how close it is to an 

instanton when restricted to ~,I(' yet m~,1( may be in M6). 

We define 

(~,I(m) ~ 
{ 

Xo 

2€-1( 
0 

if m~,1( E Vx 

otherwise 
(1.12) 

Given mt a solution of (1.3) we set 

(1.13) 

and, for any 0 < l < 1 and h > 0 we define the stopping time 

T~( /\', £, h) ...:.. €-h /\ inf { t ~ 0 : I(~,I( mt)1 ~ €-I\: - £€-l } (1.14) 

and the stopped process {mt}t;:::o, 

where a /\ b stands for the minimum between a and b. 

Finally we shall denote by p~ the probability distribution of the various stochastic elements we 

consider and by E~ the expectation value. 
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1.1 Theorem. 

There is 0 E (0,00]' 00 as in (1.9), and for any K, ~ 1, h > 0, a E (0,1/4) and i E (0,1) there are 

c > °and p > °so that the following holds. 

Let m E CO(lR), l(f,lt(m)1 < f- It -if-I, then 

P
pf((mtt,1t E M 26 Vt:::; (log f) 2, (mtt,1t E Mfl/2-a Vt E [(log f?,Tf(K"i, h)]) ~ 1- ce-

f


(1.15) 

Our next result states that the process Ct converges as f -t 0+ to a Brownian motion with 

diffusion coefficient D ..:... 3/4. 

1.2 Theorem. (Convergence to Brownian motion.) 

Let K, ~ 1, h > 0, t* > 0, i E (0,1) and for all f > °let mo E M6, 0 as in Theorem 1.1, such 

that l(f,lt(mo)1 :::; f- It -if-I We also suppose that there are R± E [-00, +00] such that 

Then fh/2Cf-h-1t, as a process on C([O, t*]), converges to a Brownian motion with diffusion coeffi

cient D, starting from 0 and stopped at R±. 

Theorem 1.1 thus states that the Ginzburg-Landau process is locally attracted by the manifold 

M (when the center is sufficiently far from the endpoints of ~,It) and Theorem 1.2 that it performs 

a Brownian motion on M. We also have sharper results, see Proposition 3.5 and Corollary 3.6, on 

the small deviations of the process transversally to M. 

Finally, we construct, in the same probability space a pair mt and m~ of Ginzburg-Landau 

processes starting from two initial data. In such space, we define 

(]" = inf{t : mt == m~} (1.16) 

(where we are considering the processes in 4,1t). As the process, by Theorem 1.2, looks like a 

Brownian motion on M, a natural guess is that (]" has the same (limit) law as the first encounter 

of two independent Brownians that start from the centers of the initial data. 

1.3 Theorem. (Couplings.) 

Let mo and m~ be in Cf,1t and let both verify the assumptions of Theorem 1.2 with respectively 

R± and R'±. We suppose that 

Then we can construct mt and m~ , Ginzburg Landau processes starting from mo and m~ respec

tively so that, if (]" is defined by (1.16) , then fh+l(]" converges in law to the distribution of the 

variable S defined as follows. Let bt and b~ be independent Brownians with diffusion D starting 
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from 0 and stopped respectively at R± and R,±. Then S is the first time when b~ - bt = r*, provided 

S occurs before any of the Brownians is stopped, in that case S = +00. 

2. THE DETERMINISTIC FLOW. 

In this section we study the deterministic flow {Tt(m)}t~O' proving that a neighborhhod of M 
is attracted exponentially by M and it is therefore foliated by the submanifolds {Vzo, Xo E IR} 

defined in (1.10). 

If mE CO(IR) then m(x, t) . Tt(m)(x), t > 0, is in C 2 (IR), is differentiable with respect to t and 

satisfies the Ginzburg-Landau equation 

8m 182 m 	 3 
-8 (x, t) = - -82 (x, t) + m(x, t) - m(x, t) 	 (2.1) 

t 2 x 

The instantons m zo , Xo E IR, are stationary solutions of (2.1). The linearized flow around mzo is 

the linear semigroup 9t,zo on CO(IR) whose generator Lzo acts on C 2 (IR) as 

(2.2) 


The operator Lzo has 0 as an eigenvalue (for any Xu E IR) since Lzom~o = o. Denoting by (.,.) the 

scalar product in L2 (IR) we set for any Xo E IR, 

-I . V3_ 1 (-' -I) 1 	 (2.3)mzo = Tmzo' mzo,mzo = 

which is thus a unitary eigenvector in L2 (IR) of Lzo. Lzo has a spectral gap: 

2.1 	Theorem. 

There are a and c positive so that for any f E CU(IR) and Xu E IR 

(2.4) 

A proof of Theorem 2.1 in a L2 setting may be found in [10], the proof with sup-norms is similar 

to that in Section 4 of [7] and it is omitted. 

We will exploit Theorem 2.1 by observing that m(x, t) . Tt(m)(x) solves for t > 0 the equation: 

We next define the "linear center" of a function f E CO(IR). This notion was introduced in [5], 

where it was called simply "center". 
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2.2 Definition. 

The point Xo E R is a linear center of m E GO(R) if 

(2.6) 

Existence and uniqueness of the linear center are stated in the next lemma, whose proof, being 

essentially the same as that of Proposition 3.2 of [5], is omitted: 

2.3 Lemma. 

There is 80 > 0 so that any m E M.so has a unique linear center e(m). Moreover there is Co > 0 

so that if m E GO(R), Yo E Rand 

(2.7) 

then the linear center Xo of m is such that 

(2.8) 

Let mand m be in M.so' Xo and xo, their respective linear centers and 11m - mil:::; 80. Then 

m)1 :::; collm - mil (2.9) 

The next one is the main result in this Section: 

2.4 Theorem. 

There are f3 > 0, c > 0 and 81 E (0,80 ], (80 as in Lemma 2.3) so that any m E MCl has a true 

center ((m), a unique linear center e(m) and 

(2.10) 

Moreover Tt(m) E M.so for all t 2: 0 and setting et ~ e(Tt(m)) , 

(2.11) 

(2.12) 

We will prove a preliminary Lemma, Lemma 2.5, and then Theorem 2.4. The bound (2.10) is 

not optimal, in fact a bound without the logarithmic factor holds true; the right hand side of the 

first inequality in (2.12) can be replaced by cllm - m~(m) 112. Both refinements are not needed and 

will not be proved. 
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2.5 Lemma. 

There is C1 > 0 so that for any A E (0,1], :to E lR and v E C(lR) such that /lvll < 1 and 

(m~o' v) = 0 the following holds. Let 

(2.13) 


and c, a as in Theorem 2.1. Then for all 0 :::; t :::; tA 

(2.14) 


Proof. 


Let Ut . Tt(m) - mzo , Uo . Av. By (2.5) and Theorem 2.1 there is C2 > 0 so that 


(2.15) 


Call T the first time such that lIuTl1 = 2CA, and suppose that T :::; tAo Then by (2.15) 

which does not hold when ,\ is small enough, say ,\:::; Ao, Ao E (0,1]. 

But (2.14) follows from (2.15) when A E (Ao, 1], if we use the maximum principle to bound Ilusll 
for all s 2: o. For A :::; Ao, we have seen that T > tA so IIUtl1 < 2CA for all t :::; tAo With this bound 

on the right hand side of (2.15) we obtain (2.14), completing the proof of the Lemma. 0 

Proof of Theorem 2.4. 

We use the same notation as in Lemmas 2.5 and 2.3. We take 61 > 0 (other requests on 61 will 

be specified later) so that for any ,\ E (0,61 ] 

sup [ce-otA + C1A2t] :::; 60, 60 as in Lemma 2.3 (2.16) 
t'51>.. 

Let m E M15 l and call :to = e(m). If m m zo , then the theorem follows since mzo is stationary 

for Tt • We write 

m= mzo II: =:::II 11m - mzo II· 

We are then in the setting of Lemma 2.5, with A = 11m mzo II and, by Lemma 2.3, (2.14) and 

(2.16), the linear center e(Tt(m)) is well defined for t :::; tA, and, calling m* . Tt>. (m) there is a 

constant C2 > 0 so that, 

(2.17) 


We will prove that there is a constant Ca > 0 so that 

(2.18) 
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Proof of (2.10). 


Since ((m) = ((Tt(m)), ((m) = ((m*). Then by (2.18) and (2.17) 


Recalling that m' ::; 1, 

Ilm* - me(m*) II ::; Ilm* - m:eoll + Ilm:eo me(m*) II ::; (1 + co)llm* - m:eoll 

::; (1+co)c2 [AlogA]2 (2.19) 
Co 

The last inequality uses (2.17). Thus, (2.10) is proved (provided (2.18) holds). 

Proof of (2.18). 

We further specify 81 by requiring that for all A E (0,81 ] 

(2.20) 


By (2.19) and (2.14), (2.20) implies 

(2.21) 


thus reconstructing the initial assumption also at time t A• 

We define T so that 
aT ( ) 1e- c 1 + Co = 4" 

We require that 81 is such that for all A E (0,81 ] 

(2.22) 


(2.23) 

and 

Al ~ (1 + co)[ce-aT Ao + C1A~T] 

By iteration we then define m(n), :v(n) and An, n > 1. We have from (2.23) 

n 

l:v(n) - :v(O) I ::; L Ai ::; 2Ao 
i=l 

Since :v(n) ~ ((m(O)) as n ~ +00 this proves (2.18) (recall that m* = m(O)). 
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Proof of (2.12). 

We have 

(2.24) 


The last term is bounded using (2.10). For the other one observe that by (2.9) for any t 2: 0 

lIet ((m)11 == lIe(met) - e(m(m))11 

:::; collmet - m(m)11 :::; collmet - Tt(m)11 + collm(m) - Tt(m)11 (2.25) 

which by (2.11) proves the first inequality in (2.12). The second one follows from the first one and 

(2.11). Theorem 2.4 is proved. D 

3. THE STOCHASTIC FLOW. 

In this Section we prove Theorem 1.1 and some of the key estimates that will be used in Sections 

4 and 5 to prove the other theorems of Section 1. We start with Proposition 3.1 where we derive 

the basic bounds on the Gaussian process Zt. The Proposition is proved in [5] for It == 1, its 

extension to It > 1 is not difficult, for completeness we report it in the Appendix. 

3.1 	Proposition. 

Let It ~ 1 , f > 0 and Zt as defined in (1.2), and Tt(m, y'€Z) the solution of (1.3) starting from 

m. Then there are positive constants bo and bI such that, if we set te ...:... (log f)2 and 

(3.1) 


then, for all f > 0 and p > 0 

(3.2) 


and for all mE C°(I~) with Ilmil :::; 1 + 10-2 and any S 2: t e , 

pe ( sup IITt(m; y'fZ)11 :::; 2, IITs(m; y'fZ)11 :::; 1 + 10-2 ) 2: 1 - Sboe-ble-l (3.3) 
0:5 t :5s 

Note how (3.3) implies that, for any N > 0, the process remains uniformly bounded up to times 

f-
N with probability close to 1 exponentially in f- I . 

Let m E CO(IR), set mt ~ Tt(m; y'€Z), t 2: 0, then, for any :Co E IR, Ut ...:... mt - mxo solves the 

following integral version of the Ginzburg-Landau stochastic equation (also considered in [5]) 

(3.4) 

The operator 9t,xo was defined in the beginning of Section 2 and 

Z,,%O . Z. + l'ds 9.-.,%0 [(3m;0 - l)Z.J 	 (3.5) 
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Zt,zo is also given by the stochastic integral 

(3.6) 


where 

9~~s,zo(:V,y) . L (9t-s,zo(:V,Y + 4j€-tt) + 9t-s zo(:v,4j€-tt + 2€-tt - y)), (3.7)
t 

jEZ 

and 9t,zo("') stands for the kernel corresponding to the operator 9t,zo' An estimate analogous to 

that given by the previous Proposition follows for Zt,zo: 

3.2 Proposition. 

Let ZttZO as above. Then there are positive constants bo and b1 such that, if we set t f ~ (log €)2 

and 

then 

(3.8) 

Proof· 

It follows easily from (3.2), (3.5) and (A.32). 

Recall from Lemma 2.3 that e(m) is the linear center of m (see (2.6)), and that there is 80 so that 

if m E M60 then e(m) is uniquely defined. In analogy with (1.12), given any K, ~ 1, we set 

if mf,tt E M6 
0 

(3.9) 
otherwise 

and, given any i E (0,1) and 8 E (0,80 ], 

(3.10) 

By (2.10), Theorem 1.1 follows from the analogous statement with the true center replaced by the 

linear center. Theorem 1.1 will then be a consequence of the following Proposition. 

3.3 Proposition. 

There is 82 E (0,81 ] (81 as ln Theorem 2.4) so that the following holds. Let a E (0,1/2), 

i E (0,1), K, 2:: 1, 8 E (0,82 ] and p E (0, a/2). Then there are positive constants bo, bl and c so that 

for any € small enough and for any m E M~ l D' if mt ..:.. Tt(mj .jEZ), i' = i - €c( 8 V €1/2-a), and, , 
tf (log €)2, 

(3.11 ) 

Proof. 

Let m be as in the statement and consider first the case m E M D1 • We study mt ..:. Tt ( mj .jEZ) 

as a perturbation of m~ . Tt(m). Let 

O' 0
:Vo = e(m), U t = m t D t . Ilmt - m~ll, (3.12) 
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3 

By Theorem 2.4 there is a constant c = c(01) so that for all t 2:: 0 

(3.13) 


Next, we write the integral equation for mt - m~ in terms of the operator 9t,xo' Recalling that 

V'(mt) - V'(m~) = (mt - m~)[3(m~)2 - 1 + 3m;o - 3m;o] + 3m~(mt - m~)2 + (mt - m~)3, we 
obtain 

mt - m~ =-	itds 9t-8,XO [(mt - m~)3(m~ - mxo)(m~ + mxo) + 3m~(mt - mn2 + (mt - mn ] 

1/2 A 

e Zt,xo, 

where Zt,xo was defined in (3.5). By (2.12), (3.12) and (A.34), we get that in Bp,e,xo (which, by 

(3.8), has probability greater than 1 - boe-ble-P), 

(3.14) 


for some positive constant C3 Then, by Gronwall's Lemma applied in this set, there is r > 0 so 

that, calling t* . rllog el, 
2psup D t <_ e1 / 2-	 (3.15) 

t~t* 

By (3.12) there is b = b(r), b E (0,1/2 - 2p), so that calling Yo .-:.. e(m~*), 

(3.16) 


Then 

(3.17) 


Hence for e > 0 small enough the linear center x* . e(mt*) of mt* exists and by Lemma 2.3 

Ix* - Yo I ::; c02eb
• Then 

Ix* - Xo I ::; Ix* - Yo I + Iyo - Xo I ::; co(1 + 2i) ::;: c' 	 (3.18) 

Thus by (3.17) and (3.18) mt* E M!,ll,8' i1 = i- ec' and 0 . 2eb. 

Moreover, recalling that m' ::; 1, 

IImt* mx* II 	 ::; IImt* - myO II + IImyo - mx* II ::; (1 + co)\lmt* - myO II 
::; (1 + Co )2eb (3.19) 

We next consider mt . Tt ( mt*; y'€Z). We call m~ ~ Tt (mt*) and D t ~ IImt - m~ II. Again in 

Bp,E,XO' (3.15) holds in this setup, but now, by (3.19), lIug II ::; (1 + Co )2eb
• Hence, by Gronwall's 

Lemma we get this time that there is c > 0 so that D t ::; ce1 / 
2

-
p for all t ::; tEo 

By the same argument used above we then complete the proof of the Proposition under the 

additional assumption that m E M6 1 and consider next the case m E M!,l,8 n Ce,Jt(lR.). Then 
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m£,K E Ma and le£,K(m)1 ~ €-K - i.€-l and hence (3.11) holds for Tt(m£!K; .J€Z). Let Bp ,£ be the 

set in (3.1). Then there are constants c' and V positive so that setting L£ . €-K - V t£ 

sup sup ITt(m; .J€Z) - Tt(m£,K; .J€Z)I ~ ce- tf (3.20) 
O~t~tE Ixl~LE 

(3.20) is proved in Proposition 5.3 of [5] (Barrier Lemma) for K, = 1, but the proof is also valid for 

K > 1 . Let next x E [L£, €-K] (the proof for x E [_€-K, -L£], is similar). By assumption there is 

a constant c E (O, 1) so that 

sup Im{x) -11 ~ c (3.21 ) 
Ix-£-It 1~2YtE 

Recalling that m E C£,K{lR), we define mE C(lR) as 

m{x) if Ix - €-KI ~ 2Vt£ 

m{x)' 
{ 

m{€-K - 2Vt£) 

m(€-K + 2Vt£) 

if x ~ €-K - 2Vt£ 

if x ~ €-K + 2Vt£ 

(3.22) 

Using again the Barrier Lemma there is c > 0 so that in Bp !£ 

tEsup sup ITt{m; .J€Z) - Tt{m; .J€Z)I ~ ce- (3.23) 
O~t~tE LE <x~£-It 

Since m(.) == 1 is stable (see Lemma A.2 in the Appendix) there is a constant c > 0 so that in BPI£ 

for any t E [0, t£] 

(3.24) 

By (3.20), (3.23) and (3.24) there is c > 0 so that (Tt{m; .J€Z))£!K is in Mea for all t ~ t£ and in 

M c£1/2-a at time t£. 

It remains to control the position of the center. From (3.20), (3.11) and (3.24), there is a 

constant c > 0 so that 

(3.25) 

By choosing S2 > 0 so small that CS2 ~ So, So as in Lemma 2.3 we conclude that 

(3.26) 

Since le(Tt{m£,K; v'€Z)) I ~ €-K - €-li l similar conclusion {with i' replaced by i' - €(cocS)) holds 

for e( (Tt{m; .J€Z)) £I 
K
), and Proposition 3.3 is proved. 0 

Proof of Theorem 1.1. 

By iterating (3.11) and recalling that by (2.10) the true and the linear centers are close we 

conclude the proof of Theorem 1.1. D 

Main ideaa of the proofa. 

The proof of Theorem 1.1 is a (simple) perturbative argument that relates Tt{m; .J€Z) and 

Tt {m); convergence to a Brownian motion is a quite different game, its proof much more delicate. 
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When times are scaled as e-1
'T, 'T in a compact of R, the argument used in [5] applies. It is 

based on the bound 

(3.27) 

which holds if m E M~ 1/2-a and c > °a suitable constant. The bound follows easily fromJJ 
K.,-t.,~ 

the integral representation (3.4) using the estimates of Section 2. The idea then is to split the 

time into intervals of length t~ (a different value of tf is actually used in [5]) and to replace at the 

beginning of each interval the true process by that starting from the instanton with the same linear 

center. One can see that if a is small then the sum of all the errors, bounded using (3.27) vanishes 

when e ~ 0+ so that we can consider a process that at each interval starts from an instanton. 

Then except for the (negligible) influence of the boundaries, the increments of the linear center are 

mutually independent and convergence to a Brownian motion is easily proved. 

If times are proportional to e- h , h large, the sum of the errors is no longer negligible and this 

approach fails even though the bound (3.27) is optimal. The way out, at least that is what we 

do, exploits the fact that there is a much better bound that goes even like Cn en (for any given n) 

provided we construct the two processes not as simply as when taking just the same noise in the 

whole interval [0, tfJ. But the most important point is that we only compare the processes modulo 

translations. We can then conclude that after a time delay tf the two processes, suitably shifted, 

are in law very close to each other. The successive increments of the linear centers are independent 

of the shift (except for the influence of the boundary, controlled by using the Barrier Lemma) so 

that they are in law very close to each other. 
nThe crucial bound involving cne is proved below, see Proposition 3.5 and Corollary 3.6, its 

application to the convergence to a Brownian motion in Section 4. 

To investigate the process modulo translation, i.e. its transversal deviations from M neglecting 

the localization along M, it is convenient to introduce a function D~(m,m*) which plays the role 

of a distance between m and m *, but it is not a distance. 

3.4 Definition. 

Let f E C(R), e > 0, x and y E R, we set 

(3.28) 

For m and m* in C(IR), we then define Df(m,m*) by 

(3.29) 

where Xo • e~,K.(m) ,xu . ef,K.(m*) (see (3.9) for notation) and a V b stands for the maximum 

between a and b. 

In general D~(m,m*) ::j:. Df(m~,m). By its definition for any 5 E (0,1), Df(m,m*) :::; 5 if and 

only if mf,K., (m*)~'K. E M~1/2-a and there is 11 such that 111 - (xu - xo)1 :::; 5 and IIm-'T1Jm*II~,xo ~ 5. 
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We next prove a contraction property of the evolution with respect to DE' 

3.5 Proposition. 

Let K. ~ 1, l E (0,1), a E (0,1/2), n ~ 1, b > 0 and I E (0,1/2 - a). Then there are p > 0 

and c > 0 such that for all 0 < € < 1 the following holds. For all pairs m and m* E C(R) so that 

Df(m,m*) s; €b, we can construct the processes mt and m;, solutions of (1.1) with initial data m 

and m * respectively in the same probability space ~nd such that, if we set t f = (log €)2, then 

(3.30) 

Proof· 

Notation: for simplicity we consider the case n = 1. Let Xo ...:.. ef,lt(m), x~ ...:.. eE,It(m*), fj, ~ 
,.,* _ ,.,. \...:.. ",,1!2-a c.-:. ""b 
0410 041 0,;,,\ - ~ , u - ~ , 

(3.31) 

By assumption there is 17, 117- fj,1 s; 6, so that (recall that m' S; 1) 

(3.32) 

We divide the proof into several steps. 

STEP 1. Conatruction of the coupling. 

Starting from a white noise process Q, consider the processes Zt and Zt,;r;o as defined in (1.2) 

and (3.5) (or (3.6)) respectively. 

Next, take a second noise a independent of Q and set 

Zn",);" it ds Jdz 1{lz+~-xoI54<-1/lO; z+<lET.•• ) H~~.("', z + ~) <>(8, z) 

+ it ds Jdy 1{ly-x l>4<-1/lO; yET. .• } H~~.("', y) 5(8, y) (3.33)
o

(1.4. denotes the characteristic function of the set A). It is easy to check (by comparing covariances) 

that the processes Z; and Zt have the same law. Using them, we construct the Ginzburg-Landau 

processes by setting 

(3.34) 

Define 
. * - .

Ut = m t - m;r;~, Uo = U (3.35) 

STEP 2. The good lJeta. 

Let p E (0, a/2), € > 0, c > 0 and 

(3.36) 
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(3.37) 

(3) ...:.. { " " * _£ - 1/100 }
B£ - SUp IIZt,zo - TD,Zt z* IIzo,£ < e (3.38) 

O~t~tl! ' 0 

where Zt,zo is given by (3.5), and Z~z~ is given by (3.5), with Z: (given by (3.33)) in the place of 

Zt and x~ in the place of Xo • That is, 

Z"* 
t z* =. Z* 

t l d8gt_.,z~ [(3m;~ - 1)Z;] (3.39) 
, 0 

We will prove that there is c > 0 so that 

(3.40) 

ebSince D£(m,m*) :s; < 1, both m and m* are in M£1/2-<l. Then by (3.8) and the proof of 

Proposition 3.3 there is a constant c so that 

(3.41) 

A similar bound holds for the probability of B~i), i = 2, 3. (See Lemma A.5 of the Appendix and 

recall that p < 1/2). 

STEP 9. Bound8 cl08e to the center. 

Let, E (0,1/2 - a) and b > 0 ,:y E (,,1/2 - a) and M a positive integer such that b :y < 
M(1/2 - a). It follows that there exists eo so that for e < eo 

(3.42) 

We will prove that there are c and p positive so that for e < eo, in the set B£tp, 

sup IVtE(x) - T~'UtE(X)1 :s; coe'Y (3.43) 
Iz-zol~£-1/10_JU£-1/ 20 

Proof of (3.43). We set 
(3.44) 

For x, y and h in lR. and t > 0 

(3.45) 

hence, for any function f E Co (lR.), 

(3.46) 

Writing the integral equation (3.4) for Vt and 'Ut (the former with 9t,zo' the latter with 9t,z~) we 

get 

(3.47) 
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where 

For any k = 0, ... , M we define 

(3.48) 

Dk,t -=- sup Idt ( x)\ (3.49) 
xEEk 

We next prove that there are Cl > 0, C2 > 0 and for any n there is c~ > 0 so that in Be,p 

(3.50) 

To prove (3.50) we first notice that by (3.36) and (3.40) there is C > 0 so that in Bf!p 

(3.51 ) 

Furthermore from (3.38) and (3.40) it follows that for any n there is Cn so that 

(3.52) 

By (3.45), 

(9t,%oV )(x)-(r"9t,%~u )(x) = [9t,%o(v-r~u)] (x)+ Jdyrqu(y) [9t,%o(X, Y)-9t,%o(X, y-Ll+l1)] (3.53) 

We then use (3.32), that lIull ~ 2€1/2-a and (A.33) to conclude that for any k = 0, .. , M 

(3.54) 

Furthermore by Theorem 2.1 and the Appendix, see (A.32) and (A.34), for any n there is Cn > 0 

so that for all k = 0, .. , M 

(3.55) 

so (3.50) follows from (3.47), (3.51), (3.52), (3.54) 	and (3.55). 

By Theorem 2.1 

(3.56) 

By (3.47), (3.56) and (3.51) we have that, in the set Bf,p 
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Therefore by iterating (3.50) we get 

1 aBy the choice of M and since DO,SM ::; e. / 2 - we conclude the proof of Step 3. 

STEP 4. Bound8 aWlly from the center. 

We prove that there are c, p and e.o positive so that if e. < e.o and the processes mt and m; are 

in B€,p, then 

sup IVt(x) - T.:lut(x)1 ::; ce-t ,\, (3.57) 
€-1/10 -i11 € - 1/20 ~ Ix -Xo I~2€-1/10 

We set 

10and consider the case x - Xo E [r€,lu,2e.- 1 / ]. The analysis of the other interval involved in the 

sup in (3.57) is similar and omitted. Given V > 0 we define 

for x - Xo E (r€!l\I - Vt€, 2e.-1
/

10 + Vt€) 
(3.58) 

for x - Xo E {( - 00, r€,l\I - 2Vt€) U (2e.-1
/ 

10 + 2Vt€, +oo)} 

and complete the definition of m+ in the missing intervals by linear interpolation. m+ is defined 

similarly with m replaced by m * and Xo by x~. 

We set 

We choose V in (3.58) as the parameter entering in the Barrier Lemma (Proposition 5.3 of [5]). 

Then there is c > 0 so that in B€,p for all t ::; to 

sup Imt(x) - mt(x)1 ::; ce-t (3.59) 
x-xoE[r£,M ,2€-1/1O] 

The same bound holds for m;(x) - mt(x) when Xo is replaced by x~. We define 

(3.60) 


It is not difficult to prove the following a-priori bound for vt and ut: for p < a there is c > 0 so 

that 

(3.61 ) 

We consider next the versions of vt and ut given by the corresponding solutions of the equations: 
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vi = e-2'H, *vt + l' dse-2('-B)H'_B * (- 3(V:)2 - (V:)3) + v'EVi 

2ui = e- ' H, * ut +1t dse-2(t-s) Ht - s * ( - 3(u:)2 - (u:)3) + v'Ev,* 

where 

Vt(x) ~ rt ds r dy e - 2 ( t- 8) H ~~8 ( X, y) a ( s , y)

Jo J~,I( 


. t 

v,*(:c),;" 1ds Jdz l{1z+~_z~19,-1/1D; z+~ET".) e-(t-B) H;~.(:c, z +.6.) a(s,z) 

+ 1t ds Jdy l{1y_x~I>4.-1/1D; yET".) e-(t-s) H;~B(:C' y) 5(s, y) (3.62) 

We call 

di . sup (vi - T~ui) 
z-zoE( T l ,lII ,2E'-1/lO) 

From (3.61), we get that there is a constant c' > 0 such that 

2di ~ e-2t 2,Ac C',A 1t ds e- (t-s).r.- + v'EIIVi - T~vtll"XD (3.63) 

But IIVt - T~ vtllE',zo ::; IIZt - T~Z;IIE',:r;o, and, by (3.37), a bound like (3.52) holds also for IIZt 

T~Z;IIE',zo' Then by (3.63) there is c > 0 so that 

(3.64) 

Since 

from (3.64) and (3.59), we get that 

sup IVt(x) T~ut(x)1 ~ c(e-UA e-t ), (3.65) 
:r;-:r;oE(rl ,lII,2E'-1/lO) 

STEP 5. Gonclu.sion. 

By (3.43) and (3.57) there are c and fO so that if f < fO and the processes mt and m; E BE',p, 
then 

sup ImtE(x) - T~m;l(x)1 = sup IVtE(X) - T~UtE(X)1 ~ Cf;Y (3.66) 
1:r;-zo!::;2E'-1/lO 1:r;-:r;ol::;2E'-1/lO 

We then observe that from Lemma 2.3 it follows that in BE',p, 

so that from (3.66) it follows that 

(3.67) 
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By 	Lemma 2.3 

(3.68) 

By (3.67) and the exponential decay at infinity of me(mt ) there is c > 0 so that 
f 

(3.69) 


Since 7 > i, we have thus proven that in B€,p, with p small enough, 

(3.70) 


Proposition 3.5 is proved. D 

As a corollary of the previous Proposition we have a fast decay trasversally to M, as we are 

going to see. We define 

(3.71)'r/; : C(JR) ~ C(JR) such that 

Note that we omit in the expression of'r/; the explicit dependence on f and 1\,. 

3.6 	Corollary. 

Let I\, ~ 1, I, E (0,1), a E (0,1/2), m E M~,ll€1/2-a. We call 

Then for any positive integer N we can construct Tt(m; .j€Z) and Tt(m*; .j€Z) in the same prob

ability space and such that there are c > 0, and p > °so that 

(3.72) 


Proof· 

Let i E (0,1/2 - a), n > 1, mt . Tt(m, .j€Z) and m; . Tt(m*, .j€Z) constructed as in 

Proposition 3.5. By iterating (3.30) n times we get (for a constant c possibly different from that 

in (3.30)) 

(3.73) 


Then, see right after Definition 3.4, there is 1] such that (we bound fl/2-a with 1) 

(3.74) 

(3.75) 

21 




In the Appendix, see Lemma A.3, it is proved the following property of the Ginzburg-Landau 

process. For any 8 > 0, a: E (0,1/2) there is a constant c > 0 so that for any e small enough 

P€ ( sup sup Imte(x) - ":te(Y)1 > 8) :::; e-c .;2 (3.76) 
Ixl,IYI x#y Ix - YIIt 

Ix-YI~1 

Applying the previous inequality to m;, we obtain' 

P t: ( Imt(x) - mt(y)1 1) < 
. sup sup I >11 / 4Ixl,IYI~€-1t x#y x - Y 

Ix-YI~lll-.:.l1 

P € ( Im;e(x) - mt(y)1 > I AI- I / B) <_ e-c1ll -.:.l1 1/4 (3.77)sup sup I 13/ B TJ - .u. 
Ixl,IYI~€-1t x#y x - Y 

Ix-YI~1 

nBy (3.74), (3.75) and (3.77), and choosing n such that e -y/4 < eN we then derive (3.72). Corollary 

3.6 is proved. 0 

Corollary 3.6 proves that two processes that start from different data become almost equal 

modulo translations, with probability going to 1 as e -4 0+ as fast as in (3.72). We improve this 

result in the next Proposition in the sense that we have a similar statement without translations. 

The price we pay is twofold. The processes must start from data with linear centers close to each 

other and, more importantly, the rate of convergence is not as fast as before. In particular it 

is not fast enough for what needed in Section 4, where we prove Theorem 1.2. In that case we 

use Corollary 3.6 as we can reduce the analysis to events invariant under translations. This is no 

longer possible when proving Theorem 1.3, where however we need only convergence in probability, 

without bounds on the rate of convergence: for that Proposition 3.7 below will suffice. 

3.7 Proposition. 

Let a E (0, 1/2), b ~ 1 a, I E (0,1/2 - a), m and m both in M€ 1/2-4 and0K,.r..,€ 

(3.78) 


Then we can construct the Ginzburg-Landau processes {mt}t~O and {mt}t~o starting respectively 

from m and m in the same probability space and so that 

(3.79) 

Proof· 

We set 8 . eb and .\ ...:. el / 2 - a • 

We consider first the case when m and m are not in C€,K(IR). Let Xo . e(m), xo ~ e(m) and 

t; . eqt€, q> 0 will be specified later. Let {e}d}j~1 be an ortonormal basis of L2(Te,K)' such that 

eit:) ....;Ii;m~o on Te,K' D€ the normalization constant, (D€ -4 D = 3/4 as e -4 0+). Set 

(3.80)(j,g).,K 'l... dxf(x)g(x), 
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Let {bj(t)}j;?:o be a family of standard independent brownian motions, and consider the Gaussian 

process 

(3.81) 

where 

(3.82) 

and 9~~s,xo was defined in (3.7) . By comparing covariances, it is easy to check that Z;,~o has the 

same law of the process Zt,xo defined in (3.6). We will construct another Gaussian process Z;,~o 
with the same law. Consider, for Yo that will be conveniently chosen later, the process 

_ { bo{t) for any t E [O,r]
bI (t) . (3.83) 

bI ( t) - Yo for any t ~ r 

where 

r . inf{t ~ 0 : [bI ( t) - bo(t)] Yo } (3.84) 

The process b1 (t) is a Brownian motion, independent of {bj(t)}j;?:2' Finally, let 

(3.85) 

Write the integral equations (3.4) for mt and mt as in the statement of the Proposition, using the 

Gaussian processes Zt(~ and Zt(2 ) respectively. Then, 
, 0 , x 0 

mT- mT = 9T,XO(m - m) -iTds 9T-.,XO (Axo[V.] - Axo[U.]) 

+ vre [d(b1 - bo)(s) l dY9l~.,xo(:Z:,y) e~')(y), (3.86) 
o ?:,K 

where Axo[f] ....:.. 3mxo f2 + f3, Vt ~ mt - m xo ' Ut • mt - mxo' We multiply both sides by m~o and 

integrate over JR. We get, in {r ::; t;}: 

( - , -) iTds (m~o, (Axo [v.] - Axo [u.]))- mxo,m 

+ vre iTd(b1 - bo)(s) (a.. e~·»).,~, (3.87) 

where 

a e y . (e) ( ) -') " (-' ( 4' -1\.) + -, ( 4' -I\. + 2 -I\.( ) = 9 r-s,xo ',y ,mxo = L...J mxo x,y + JE mxo x, JE E 

jEll.. 

(3.88) 
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By standard results on Brownian motions and since limE_o+ (a E , eiE»)EltI: = .J]5, there is c > 0 

so that 

By choosing q < 1 - 2a, 
(3.89) 

The set 

has, by Propositions 3.3, probability that goes to 1 as € ~ 0+. There is C2 > 0 so that in 9 

sup Ilmt - mt II ~ C2 0 (3.90) 
O~t~t: 

Let i E (,,1/2 - a), then in {r ~ t;} n 9 and for all € > 0 small enough 

(3.91 ) 

By Lemma 2.3 there is C3 > 0 so that in the same set 

(3.92) 

Finally, using the integral equation (3.4) in the time interval [r, t;], by (3.90) and (3.91), there is 

C4 > 0 so that in {T ~ t;} n 9 
(3.93) 

We next consider the time interval [t;, tE]' 
tE ;:; (1 - €q)t E, 

Let x; . e(mt;). We set, for any t E [0, l~], 

(3.94) 

We write (3.4) for Vt and Ut relatively to Tnz:. Setting ~* = x; - e(mt:), 

9j z*(vo* - *) = 9l z*(mt* - mt*) = 9:;, ".*(mt* u o T~*mt*)+E I E to I fEE E I'" E E E 

(3.95) 

Then Theorem 2.1, (3.93) and (A.33) imply that there are Cs and C6 so that 

(3.96) 

Using (3.96) and the integral equations for v; and ut, we get, for some constant C7, 

(3.97) 

By (3.97), using Lemma 2.3, we have also, for some constant Ca, 

(3.98) 
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and so, since ;;Y > " by (3.97) and (3.98) we finally obtain 

(3.99) 

This proves the Proposition for m, m f/:. Cf,It(IR). By using conveniently the Barrier Lemma, one 

easily extends the result to the general case. We omit the details. 0 

When proving Theorem 1.3 we will consider the case when at some time T we have two data, 

mT and mT, both in Cf,It(IR) and in M~.l fl/2-a, and such that ef,lt(mT) = ef,lt(mT)' see the end , , 
of Section 5. This case is not directly covered by Proposition 3.7, but we will see in the following 

Lemma that if we construct with the same noise the two processes then they will verify with large 

probability the conditions of Proposition 3.7 after a time t f • 

3.8 	Lemma. 

Let m and m both in Mf 0 1/2-a' a E (0,1/2), with Xo • ef,lt(m) = ef,lt(m) and let p E (O,a).
It,~,f 

Then for any w E (2a, 1/2) and any € small enough, in Bp,f,ZO the following estimate holds: 

Proof· 

Writing the integral equation (3.4) around mzo for the two processes one obtains an equation for 

the difference like (3.47) but with the same center and noises. Then the estimate follows easily. 

We conclude the section with two lemmas consequence of general properties of the Ginzburg

Landau process. For any a E (0,1/2) and any ¢ E M f l/2-a, let us denote by E~ the expectation 

with respect to the Ginzburg-Landau process starting from ¢. We indicate with mt the coordinate 

map on C(IR+; C(IR)) and let et = ef,lt(mt). 

3.9 	Lemma. 

For any t, s ~ 0, 

(3.100) 


Proof· 

Consider the symmetry trasformation R : C(IR) ~ C(R) defined by (R¢)(x) . -¢( -x). For 

any m E M f l/2-a, t ~ 0, Tt(m, .J€Z) = RTt(Rm, ..j€RZ). Since m = Rm, for any bounded 

functional F on C(IR+; C(IR)), Em[F] = Em [nF]. In particular the law of 1{;(ms) is symmetric 

with respect to n so that 

(3.101 ) 

On the other hand, by symmetry, if e(m) = °then Em [et] = -E'Rm[et]. The Lemma is proved. D 
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3.10 Lemma. 

Let a E (0,1/4) and m E M~1/2-a such that e(m) == O. Then 

D == 3/4 (3.102) 

Proof· 

Given p E (0, a) let Vp be the nice set where sUPO::;t::;tE IIVEZt,o II ~ €1/2-p. By Lemma 2.3, for 

small €, in this set m + VEZtE ,0 has a unique linear center ef and it holds 

(3.103) 

~oreover, in Vp , 

(3.104) 

On the other hand, looking at the integral version of the Ginzburg-Landau equation, since m is 

ortogonal to in', one easily obtains that, in V p , 

(3.105) 

and then, by Lemma 2.3, 

(3.106) 

In the proof of Theorem 4.2 we will use the following conseguence of (3.106); in Vp one has 

(3.107) 

where et~ == e(Tt~ (in, y'€Z)). 
Since P~(Vp) converge to 1 as € -+ 0+ faster than any power of €, from (3.103), (3.104) and 

(3.106), 

(3.108) 

But one easily compute 

(3.109) 

where ei~) is defined in the proof of Proposition 3.7 (here is considered as an element of C~,K(1R)). 
The Lemma follows then from (3.108) and (3.109) since lim~_o+ (in', ei~)) == vID. 0 

4. CONVERGENCE TO A BROWNIAN MOTION. 

In this Section we prove that the linear center e(mt ), suitably normalized, converges to a Brown

ian motion. 

Let a E (0,1/2), '" 2:: 1, € > 0, and 

(4.1) 
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As in the previous section, set t£ = (log €)2. We consider an auxiliary Markov chain (xn,,,pn )nEN 

with state space JR x X. We denote by p£( ~I.) its transition probabilities, given by: 
X'n, 'f/n 

If instead "pn E Xf,a we define, for any given B and A Borel sets in JR and CO(JR) respectively 

where 

We next introduce some stopping times: for r > °we set 

(4.2) 


and for € > °and a E (0,1/2) 

(4.3) 


Finally, suppose we construct the Markov chain and the Ginzburg-Landau process in the same 

space, and consider the stopping time Sf,n«(), € > 0, K, 2:: 1, ( > 0, 

(4.4) 

The seminorm II . II f is defined in (3.28). In the above definitions the stopping times are set equal 

to +00 if the sets on the right hand side are empty. 

In the next Proposition we indeed construct the original Ginzburg-Landau process and the 

auxiliary Markov chain in the same probability space, and prove lower bounds on Sf,n(() thus 

showing that they are close. 

4.1 Proposition. 

Let I. E (0,1), a E (0,1/2), K, 2:: 1, h > 0, q > 0. Then tnere is c > °so that the following holds. 

Let € > 0, m E CO(JR) with mf,n E M f l/2-o., 

-,(.. € -1o (4.5) 

Then we can construct the Ginzburg-Landau process mt (that starts from m) and the Markov 

chain (that starts from (xo,,,po)) in the same probability space so that 

( 4.6) 

Proof. 

The proof follows by applying iteratively Corollary 3.6 and Proposition 3.3. 0 
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We next study the Markov chain (a!n' -rPn) and prove convergence to a Brownian motion. We set 

Zo == 0 and for n 2:: 1 
. a!n - a!n-1 (4.7) 

We then define 

(4.8) 

and given N (eventually we let N = N( e) and N( e) ~ +c:x» 

X(t) -'- JwZn t =n/N (4.9) 

We finally extend X (t) to t E R+ by linear interpolation. 

4.2 Theorem. 

Let h > 0, a!o E R, a E (0,1/4) and 1/Jo E X£,a' Let ]Pf be the law on C(R+) of the process X(t) 

induced via (4.9) with N . (e- h ] by the Markov chain that starts from (a!o, 1/Jo). Then]pf converges 

weakly on the compacts to P as e ~ 0+, where P is the law of a Brownian motion starting from 

owith diffusion equal to 3/4. 

Proof. 

Without loss of generality we may restrict to t E [0,1]. Tightness on C((O, l]) follows from the 

existence of c > 0 for which 

lEf ( sup Z~) ~ cN ( 4.10) 
n'5:N 

lEf ([Zn 3 - Zn2f[Zn2 - Znl]2) ~ c(na - n1)2, for all 1 ~ n1 < n2 < n3 ~ N ( 4.11) 

see [2]. 

We first prove (4.10) and (4.11), then a martingale relation for the limit laws that will identify 

the law P of the theorem. 

We call Fn , n E N, the u-algebra generated by the coordinates (a!i' 1/Jd, 0 SiS n, of the Markov 

chain and denote by lE~, n E N, the conditional expectation given Fn (sometimes we write more 

explicitly lE(Xn ,l/ln»)' We set 

for n 2:: 0 and I; -1, . 11,0 ( 4.12) 

We then have for n 2:: 1 

Zn == rr n-2 + M~-l + Mn, ( 4.13) 

where 

n 

r*l,n ..:.. "" *- L...J Il,i' n 2:: -1 (4.14) 
i=-l 

n 

M: . L[/l,i -It,i-1]' n 2:: 1, M;":" 0 (4.15) 
i=l 

n 

Mn . L(Zi -/l,i-l], n 2:: 1, Mo":" 0 ( 4.16) 
i=l 
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Observe that M:; and Mn are .rn-martingales. The usual semimartingale representation for Zn 

in terms of the compensators I'l,i and Mn is not useful in the present context: the time delay in 

the definition of the compensators 1'; i allows in fact to exploit the relaxation properties of the 
I 

Ginzburg-Landau process stated in Corollary 3.,6. 


The semimartingale representation of M~ is 


(4.17) 
n 

r 2,n . 	L 1'2,i, 1'2,n· E~ (Zn+1 -1'1,n)2), n ~ 0 ( 4.18) 
;=0 

where we set No = 0 and for n ~ 1 

n 

Nn . 2 L [Zi -l'l,i-d[zi -I'l,j-l] + L[(Z; -1'1,;_1)2 -1'2,i-1] ( 4.19) 
;=1 

is a .rn martingale. For (M:;)2 we have 

r * N' Nil ( 4.20) 2 ,n-l + n + n 


n 


n~O 	 ( 4.21) r* -=- ~ *2,n - ~ 1'2,;' 
i=O 

n-l 

N~ ..:. L [(1'1,i+1 _1';,;)2 -I';,i], n ~ 1, N'o o 	 ( 4.22) 
i=O 

N~ ..:. 2 L [l'l,i -1';,i-l][l'l,i -l't,i-1], n > 1, N~' = N~' = 0 ( 4.23) 

l$.i<i$.n 

where N~ and N~ are .rn-martingales. 

Proof of tightne38. By (4.13) 

iE' (:~~ Z~) ~ E' (:~~(M~_1)2) + E' (!~~(Mn)2) + 2N2 :~~E' (C'Y;,n)2) 

and using Doob's inequality 

(4.24) 


We set N(€) [€-h], then we obtain 

( 4.25) 

Since the chain is stopped once it is not in X€,a it follows that if 1/Jn 1:. X€,a then rt,n = 1'2,n = 
I';,n = 0 so that (4.10) holds if there is c > 0 so that 

sup E(o,lP) (N(€)2(l't,O)2 + 1'2,0 1';,0) ~ c 	 ( 4.26) 
1/IE ,1'(, tl 

We will prove (4.26) later. 
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To prove (4.11) we use the same argument after conditioning on :Fn2 . We call (X n2 ,'l/ln2) the 

state of the chain at time n2, n .:.... na - n2 and n . n2 - n1' Then 

lEe ([Zn 3 - Zn2]2 [Zn2 - Znl]2) 

~ sup E~2 ([Zn 3 - Zn2]2)E€ ([Zn 2 - Znl]2) 
( Zn 2,1/Jn 2) , 

~ sup E(O,1/J) (Z~) sup E(O,1/J) ( Z~)
t,bE,l:e,a 1/JE,l:e,a 

(4.27) 

and using (4.26) we have, for a suitable constant c' > 0, 

sup E(o,1/J) ( Z~) sup E(o,tb) (Z~)
1/JE.te,a 1/JE,l:e,a 

2~ 16 nn sup lE(O,1/J) (n(/;,o? + /2,0 + /;,0) sup E(o,1/J) (n(/t,o? + /2,0 + /;,0)
1/JE .1.'e, a 1/JEXl, a 

~ c'(na - nd2 ( 4.28) 

having used (4.26). (4.11) and tightness are proved provided that (4.26) holds. 

Let lP be a limit law on C([O,I)) of {lPf}f>O' By Levy's characterization theorem it will be 

sufficient to prove that the coordinate process X(t) in C([O, 1]) is a square integrable lP-martingale 

and that X(t)2 - 3t/4 is also a JP>-martingale. 

By (4.13) and (4.24)-(4.26) 

lim N·1() sup E(o 1/J ) ( sup (Zn - Mn?) = 0 (4.29)
€-+o+ € 1/JoE;t'e,a ,0 n-:;N(f) 

which proves that X(t) is alP-martingale. 

By (4.17) 

(4.30) 

differs from a JP>f-martingale by the term [Z~ - M~] which by.(4.29) vanishes in L1 as € -7 0+. 

Thus the proof that X(t)2 3t/4 is a lP-martingale follows from 

1 
lim sup lE(O ¢ ) ( sup N () Ir2 ,n-l - ~ I) = 0 (4.31 ) 

f-+O+ 1/JoE'\'e,a ,0 n-:;N( €) € 3 

which, by Proposition 4.1, is implied by 

lim sup 1/2,0('l/l) - ~31 = 0 ( 4.32) 
€-+o+ viEXe,a 

Proof of (4.26) and (4.32). Let'l/l E Xf,a, ¢ ~ Tt e ('l/l; .fEZ), X . ef,,,,(¢) and 'l/lte(x) ..:.. ¢(x + X)· 
By (4.12) 

(4.33) 
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By Lemma 3.9 It,o(m) == 0 and It,O(1fJ) == It,O(1fJ) -It,o(m). We apply Corollary 3.6 so that we 

can construct the processes starting from 1fJ and m in the same probability space in such a way 

f
qthat for any q > 0 there is C > 0 so that II1fJt 

E 
-1/Jtf " € ::; with probability larger than 1 - Cfq. 

(1/Jt f denotes the value of 1fJtf when 1fJ == m). Thus 

I/t,o(1fJ) I ::; Cfq + sup sup IE; (e€,n(¢tJ) El(e€,n(4>t~))1 ( 4.34) 
~,¢>EXf.a 1I~-¢>llf '5:€q 

f
qBy (3.70) with Ll == 0 and 8 == we get I/t,o(1fJ) I ::; Cfq (for a suitable constant C > 0). (4.26) is 

proved. 

By symmetry 11 ,o(m) == 0, so that by (3.107) 

2 2aI/l,O(1fJ)1 ::; Ci€f1
/ - ( 4.35) 

that vanishes as f --? 0+ by the assumption a < 1/4. Finally, by (4.18) 

By the previous bound the last term vanishes as € --? 0+ (uniformly on X€.a) while the first term 

on the right hand side converges to 3/4 by Lemma 3.10. We have thus proved (4.32) and it only 

remains to prove that 1;,O(1fJ) is uniformly bounded on X€,a which follows from (4.21), (4.34) and 

( 4.35). 

The proof of the Theorem is complete. 0 

We next relate the convergence results proved for the auxiliary Markov chain to the Ginzburg

Landau process. We use the same notation as in Theorem 4.2 and Proposition 4.1. We fix the 

initial position :va in the Markov chain so that €h/2:vO . ro (which is independent of f) with 

Iru I < f-n+h/2. We consider the Markov and the Ginzburg-Landau process whose initial state 

is related to that of the Markov chain as in Proposition 4.1. We call Tl\l( r), r E JR., the subfix 

1vI standing for Markov, the first time when the coordinate process X(t) (that we here suppose 

starting from ro) reaches r. The analogous variable in the Ginzburg-Landau process is denoted by 

TGL(r). Let l* E (0,1) and let l E (O,l*), call r; . fh/2[€-n -l*f-1 ], so that (at least for € > ° 
small enough) Iro I < r;. Then, by Proposition 4.1 with l as above, for any q > 0 there is C > °so 

that 

( 4.36) 

Similar statement holds for -r;. 
For any r the law of Tl\J( r) converges as € --? 0+ to the law of the stopping time at ±r for 

the limit brownian motion bt (starting from ro) because the stopping time for the limit process 

is almost surely continuous, see [2]. Moreover the probability of ITi\l(r ± 8) - Tl\J(r) I > , 8 and 

'positive, vanishes as b --? 0+, hence by (4.36) the law of the stopping time at fh/2[f-n -l*€-l] 

in the Ginzburg Landau process converges to the law of the stopping time for the limit Brownian 

motion at 
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This together with Theorem 4.2 proves Theorem 1.2. 

5. ASYMPTOTIC COUPLING. 

In this section we prove Theorem 1.3. By Theorem 1.2 and Proposition 3.7 we only need, as we 

will explain later, the following theorem. 

S.I Theorem. 

Let m, m* E Ce,,,{lR) (eventually depending on e) such that IImll, Ilm*1I ~ 3/2 and 11m - m*1I ~ 
e2+". Then, we can construct a pair of Ginzburg-Landau processes mt and m~, starting from m 

and m * respectively, in the same probability space, and so that, if 

11 ~ inf{t ~ 0 : Ilmt - m;11 = O} 

(11 is defined to be infinity if the set above is empty), for any a < 1 

(5.1) 

Proof· 

The proof uses the coupling and the ideas introduced in [15] to prove Theorem 1, but since V' 

is not monotonic, an extra argument is needed to conclude (5.1). Recall that in fact, we do not 

prove, as in [15J that 11 is finite with probability 1. 

Consider the pair (mt, m~) introduced in [15J, which satisfies 

8m t 1 82mt I I:
7ft = '2 8x2 - V (mt) + Veal 

8m~ 1 82m~ '( * I: * )1/2 *1 )1/2 ]fit = '2 8x2 - V m t ) + ve[1 - {Imt - m t 1/\ 1 al + (Imt - m t /\ 1 a2 

(5.2) 

for al and a2 two independent space-time white noises and with initial conditions 

mo =m, * (5.3)mo=m* 

Consider the case m ~ m*. The general case follows from this one as in [15]. If we write the 

equation for the difference mt m; and approximate the coefficients of the noise by Lipschitz 

functions as in [15J, we can conclude, from theorem 2.3 of [16], that mt ~ m~ \/x E lR, t ~ O. Call 

:Ft the filtration generated by al and a2 up to time t. Next, integrate (5.2) from 0 to t and over 

[-e-" ,e-"]. Call 

U(t) · l.~>1; (mt(1;) - m;(1;)) (5A) 

Proceeding as in [15], we obtain for U the equation 
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where M t is a martingale with respect to :Ft, with compensator 

(M)(t) (5.6) 

Since 

(5.7) 

we have that 

d(M)(t) = U(t)D(t),
dt 

for some adapted process D(t) satisfying 

€ 
(5.8)D(t) ~ IImt - mtll V 1 

Take 

I"(t) = [dS D(s) (5.9) 

It is not difficult to see that Lemma 3.3 of [15] also holds in our case and, for each fixed €, cp(00) = 00. 

Then, we can define the time changed process 

(5.10) 


which satisfies 

for some Brownian motion B(s) and nonpositive adapted process C(s). Applying Ito's formula 

with the function f(x) = 2x1/ 2 , we have that, as long as X(t) ~ 0, 

Y(t) . 2JX(t) (5.11) 

satisfies 

rt (2C(S) 1 Y(S)) (5.12)Y(t) = 2JU(0) + Jo ds Y(s) - 2Y(s) + 2cp'(cp-l(s)) + B(t) 

Now, let us prove (5.1). From (5.11) and the definition of the time change, for any positive y 

(5.13) 


where 

, . inf{t ~ 0 : Y (t) = O} 

Now, take a < 1 as in the statement. From (5.13) we can write, for any given positive a, 

pE(TJ> €Q) ~ pE(, > cp(€Q),<p(€Q) > a) + pE(, > cp(€Q),cp(€Q) ~ a) ~ 

pE(, > a) + pE(cp(€Q) ~ a) 
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Using (5.8) and the a-priori bound on the sup-norm of mt and m; (see Proposition 3.1), if we take 

a = €~, for any f3 > 1+ 0:, it is not difficult to prove that this last probability goes to zero as € ~ 0, 

and so, to prove (5.1) we only need to show that 

(5.14) 


for some f3 as above. Recall equation (5.11) for Y and consider 

T ..:.. inf{t : B(t) + 2JU(0) = 0 or B(t) + 2JU(0) = €Ilog €I} 

and the set S 

Call 

We shall prove that for all € small enough 

(5.15) 


Define the stopping time 

. { 1 Y(S)}
to = Inf 8: 2Y(s) ~ 2<p'(<p-l(s)) 

Take wEE and suppose by contradiction that, for this w, Y(t) > 0 for all t ~ T. Then, equation 

(5.12) holds for Y(t) for any t ~ T, and so, for the w we are considering, 

Y(t) ~ B(t) + 2JU(0) Vt ~ to 1\ T (5.16) 

If T ~ to the evaluation of the previous expression at T yields Y(T) ~ B(T) + 2JU(0) = 0, which 

is a contradiction. 	Then T > to and since wEE :J S, 

Y(t ) = <p'(<p-l(tO)) > _€_ 

o Y(to) - Y(to) 

which implies 

Y(to) ~ Vi 

and this contradicts (5.16) for small € for the definition of T, which finishes the proof of (5.15). To 

conclude, we only have to show that we can take f3 > 1 + a such that P€ (E) ---+ 1 as € ---+ O. But, 

if we recall that U(O) ~ 2€2, we obtain 

Also, taking f3 < 2, it follows that 
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To finish, let us prove 

(5.17) 


First recall that by Proposition 3.1 for any /3 < 2 

lim p E 
( > ~ Vs < ,/3)1 = 1 

£-+0+ lima - m~1I V 1 4 

so, from (5.8) and (5.9), 

lim ptE (cp(S) > € VS < €f3) = 1
t;-+O+ 4 

and then 

(5.18) 


Recalling cp' = D, from (5.8) and the Proposition 3.1 

lim ptE (cpl(t) >.: Vt < 4€f3- 1
) = 1 (5.19)

t;-+O+ 4 

for any /3 ~ O. Finally, (5.18) and (5.19) imply (5.17), and the Theorem is proved. 0 

Proof of Theorem 1.3. 

The coupling is constructed as follows. The two processes mt and m~ are independent of each 

other till the first time Tl when e£,n(mT1 ) = et;,n(m~J. Let a E (0,1/4), then with probability 

going to 1 a € ~ 0+, both (mty,n and (m~y,n are in Mt;1/2-a, we can thus suppose that such 

a condition is verified. By Lemma 3.8 at time T = Tl + tt; with large probability we are in the 

hypothesis of Proposition 3.7. We construct the processes in the time interval [T, T + tt;] using 

Proposition 3.7 with b = 1 - w, W E (2a,I/2), so that (3.79) is verified and we can suppose that 

the processes at time T + tt; are in the set which appears on its left hand side. We can thus apply 

again Proposition 3.7 with b = 1 - W + i and iterate this procedure N > 1 times. Then calling 

S ~ T+ Ntt;: 

with probability going to 1 as € ~ 0+. Since by assumption m and m' are both in Ct;,n(lR) the 

above holds as well for the sup norm (without the cutoff (€, K)). 
We can then apply Theorem 5.1 to conclude that if N is large enough there is a coupling before 

T + (N l)t£ with probability going to 1 as € ~ 0+. Thus the time of coupling differes from the 

time of first encounter of the linear centers by a term bounded by (N + 1) Ilog €12. The law of first 

encounter of the linear centers converges to that of the brownians limit of the linear centers by 

Theorem 4.2. As the difference between true and linear centers vanishes in the limit, see the proof 

of Theorem 1.2 at the end of Section 4 we then obtain the proof of Theorem 1.3. 
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ApPENDIX. 

A.1 Lemma. 

Let Zt(x) be the process denned in Section 1. There are positive constants bo and b1 so that for 

all p > 0, 

(A.1) 


Proof· 

The process Zt is a Gaussian centered process, with bounded and continuous paths a.e. Define 

IIIZIII-=- sup Zt(x), u;' sup E£[Zt(x)2] (A.2) 
(x,t)ED e (x,t)EDe 

Using the explicit form of the covariance of Zt, see for instance [18], it is not difficult to prove that 

there exists a constant G1, independent of E such that 

what yields 

(A.3) 


(AA) 


for some G independent of E. Then, we can apply the following inequality, that follows from a 

symmetry argument from Theorem 2.1 of [1]: for any A> E£IIIZIII: 

(A.5) 

To give an upper bound to E£IIIZIII, we use Corollary 4.15 of [1]: there exists a universal constant 

K such that 

E'IIIZIlI ~ K [0 dryflogN,(r), (A.B) 

where N£(r) is the minimal number of balls of radius r nedeed to cover Dn with respect to the 

metric 

(A.7) 


It can be proved that there are positive constants kl and k2 (independent of E, t, 8, X and y) such 

that, for any x, y E Rand t, 8 E R+ : 

E£[(Zt(X) - Zt(Y)) 2] ~ kllx  YI (A.8) 

E£[(Zt(X) - Zs(X))2] ~ k2vlt  81 (A.9) 

(see for example Proposition 4.2 in [18]). From (A.8) and (A.9) it is easy to check that there is a 

constant c such that 

N£(r) ~ max{l, c\log EI2E-~r-3} (A.10) 

By (A.B) and (A.IO) it follows that there is a constant K' such that 

(A.11) 
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Using (A.4) and (A.11), from inequality (A.6) with A = E-P we finally obtain 

(A.12) 

The bound (A.12), which is valid for E small enough, implies the estimate (A.1) for some constants 

bo and bl • The estimate can be then extended to any E E (0,1] simply by modifing conveniently 

the values of bo and bl . The Lemma is so proved. D 

A.2 	Lemma. 

Let mE CO(lR), Ilmil ::; 1 + 10-2 • Then there are constants Co and CI so that 

(A.13) 

Proof· 

A Comparison Theorem holds for the stochastic Ginzburg-Landau equation, see Proposition 5.1 

in [5]. So, if mE C(lR; [-1-10-2 , 1 + 10-2]), for any t ~ 0 it holds 

P€ - a.s. 	 (A.14) 

where m; . Tt (± (1 +10-2 ); y'€Z). It is then sufficient to prove (A.13) with Tt(m; y'€Z) replaced 

by m;. We define u±(x,t) . m;(x) 1= 1. Then u±(x,t) solve the equations 

(A.15) 


that is, the integral equations 

(A.16) 

(A.17) 

• 

(note that e-2t Ht(x y) is the Green function for the operator Ot - (1/2)0; + 21 d). By arguing 

as in the proof of Lemma A.1, it is easy to prove that for any b > 0 there are constants ho and hI 

such that 

(A.18) 

Let T . sup{t ~ 0 : lIu±(" t) II < 2(10-2 + b)}. We will prove that there exists b and Eo such that 

for all E ::; EO 

(A.19) 
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and 

(A.20) 


Clearly, by definition of T and u±, sUPO~t~tl IImt II ~ 2 is implied by T 2:: t€ if b is small enough. 

Moreover, in the set 

by equation (A.16), one has the estimate 

(A.21) 

Now there exists EO > 0 and bo > 0 such that, for any E ::; EO and b ::; bo, (A.21) implies 

Ilu±(., t€)11 ::; 10-2 and hence Ilm~ II ::; 1 + 10-2 • (A.19) is then proven. To prove (A.20) we note 

that if sUPO~t~tl lI.J€vt II ~ band T ::; t€ then 

(A.22) 

which gives a contradiction if, for example, b ~ 10-2 • Then, for b bo 1\ 10-2 , both (A.19) and 

(A.20) holds. The estimate (A.13) follows then from (A. IS) for E :::; EO (with Co = ho and Cl = hI) 

and it extends to any E simply by modifing the values of the constants Co and Cl' 0 

A.3 Lemma. 

Let m E CO(JR), mt . Tt(m, .J€Z). For any 6 > 0, a: E (0,1/2) there is a constant c > 0 so that 

for all E small enough 

(A.23) 

Proof· 

We first prove an analogous estimate for the Gaussian process .J€Z. We use Theorem 2.1 of [1] 

applied to the gaussian process 

(A.24) 

By arguing as in the proof of Lemma A.1 we have, for 6 > E€[Ge ], 

(A.25) 

where 

G€ ~ sup sup G€(x,y), (A.26) 
Ixl,lyl~€-1!. x,ey 


Ix-YI~l 
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Using Corollary 4.15 of [1] as in Lemma A.1 one easily proves that EE[GE]~ Clyi€ for some Cl > O. 

To estimate CT; we note that 

(A.27) 

and, for some constant C3 > 0 depending on a, 

(A.28) 

From (A.27) and (A.28) we obtain 0'; ~ C4yi€ t!/2-a for some constant C4 > o. Then by (A.25) we 

recover an estimate like (A.23) for the noise yi€Z. To prove (A.23) we use the i~tegral form (1.3) 

of the Ginzburg-Landau equation and write 

(A.29) 

We consider the intersection of the sets where mtt. is bounded by 2 and where the noise satisfies 

the bound like (A.23) with 8' to be fixed. In this set we can estimate 

(A.30) 

for any x ::j:. y such that lxi, Iyl ~ e- K and Ix - yl ~ 1. Choosing 8' small enough (A.23) follows 

easily. 0 

A.4 	Lemma. 

Let Xo E 1R and let 9t,:co(x,y) be the foundamental solution of the equation 8tu = L:cou. Then 

the following holds. 

for any X,y E 1R (A.31) 

Co 	 > 0 (A.32) 

sup rdy 19t,:co(X, y + d) - 9t,:co(x, y)1 ~ Cl ~ CI > 0 	 (A.33) 
:cER JR 	 vt 

Proof· 

From (3.45) we can restrict ourselves to the case Xu = o. 

From the Feynman-Kac formula (A.31) follows. (A.32) follows from Theorem 2.1. To prove 


(A.33) we use the following integral equation: 

(A.35) 
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We define 

From (A.35) we then have 

(A.36) 

From (A.36) the inequality (A.33) follows immediately for t E (0,1]. For t > 1 we use the semigroup 

property getting that ft(d) ~ COfl(d) with Co as in (A.32). (A.34) is based on the estimate 

2te 2 

9 ( a; y) < __ e-(z-y) /2t 
t , - ..j21T't 

which follows easily from the Feynman-Kac formula. 0 

A.S Lemma. 

Consider the set B~i), i = 2, 3, defined in (3.37) and (3.38). Then, there are Co and Cl positive 

constants such that 

i = 2,3 (A.37) 

Proof· 

Recall equations (3.5) for Zt, and (3.39) for Zt, in terms of Zt and zt. Using (3.46), we obtain 

Z"XO - T:;Z~x~ = Z, - T':'Z: + i'd89,-s,xo(3m;~ -l)(Z"xo - T:;Z~x~) 

= Z, - T:;Z: + i' d8 g,-s,xo lly_xoI9,-1/10(3m;~ - 1)(Zt,xo - T:;Z~x~) 

+ i'dS g,-.,xo lly_xol>2,-1/lo(3m;~ - 1)(Z"xo - T:;Z~x~) 
. Zt - T~Z: + Al(a;, t) + A2 (a;, t). (A.38) 

We will prove below that 

sup (A.39) 
o<t<t f 

Iz-zol~2€-1/1O 

The bound (A.37) for i 2 follows immdiately from this inequality. Moreover, from (A.39) and 

(A.36), we can estimate 

(AAO) 

Also, for A2 , we obtain 
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Then, let us prove (A.39), to conclude the proof of the Lemma. Recall that 

IZt 	- TiolZ:1 s 

1t ds Jdy (1 {yET-,.) H}~.(z, y) - 1 {ly-z oI9,-1/lO,y+<lET.,.} H}~.(z + .6., y + .6.)) a(y, 8) 

+ 1t ds Jdy 1{ly-z~I>4,-1/10;YET.,.} H~~.(z + .6.,y)a(y,s) 

~ IIl(~' t)1 + II2(~' t)1 

Both 11 and 12 are centered Gaussian processes, for which estimates like (A.8) and (A.9) are valid. 

Moreover, recalling that 

H;€) = L (Ht(~,y + 4jE-H:) + Ht(~,4jE-H: + 2E-H: - y)), 
jEZ 

it is not difficult to prove that 

(ud 2 - sup E(Ii(~,t)2) S e- C €-1/16 

o<t<tt: 
1;z;-xoT~2€-1/ 10 

Then, proceeding as in the proof of Lemma A.I , (A.39) follows. 0 
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