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Introduction 

We work over an algebraically closed field of characteristic zero. 

One of the motivations of the present paper is provided by the following problem, 

which, as far as we know, is widely open (see [H2;9.17D: 

normalized, rank two vector bundle E on pa. 

A similar problem was solved by Gurrola (see [G]) in the context of stable reflexive sheaves. 

Indeed he was able to show that, given a stable, normalized, rank two reflexive sheaf 

F with Chern classes CI, C2, Ca, there is a function m(CI, C2 , C3) s. t . hI (F( k )) 0 if 

k ~ m(Cl, c2, ca). Moreover that bound turned out to be sharp in the sense that it is 

realized by reflexive sheaves with maximal Ca. However, in the case Ca = 0, that bound 

gives a vanishing which should be very far from being sharp for vector bundles. Indeed on 

one hand the function m(Cl, C2, ca) found by Gurrola is quadratic in C2, on the other hand 

it was conjectured by Chang ([CD that it should hold: 

In the paper [E], Ellia was able to improve in the linear part the vanishing by Gurrola but 

it seems to be very hard to prove the conjecture by Chang or, at least, a vanishing which 

is linear in C2. Partial results are available when the spectrum of E has a particular shape 

or when C2 is very small. In [H2;9.17] is proved that the conjecture holds for stable vector 

bundles with Cl = 0, C2 = 2m +1 and maximum spectrum, in [E] for stable vector bundles 

with spectra (OC2), (_1,OC2-2 , 1) and for stable vector bundles with Cl = 0, C2 ~ 5. 

In the present paper we will proceed a little bit in this direction proving the conjecture for 

vector bundles with Cl = 0 and sp = (-m, .. , -1,02 , ••• ,m) and with Cl = -1 and maximum 
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spectrum. In the first two sections of the paper we will achieve the results, interesting 

in their own, of the complete characterization of such vector bundles (see theorems 1.1, 

2.1). The vanishing will turn out as a corollary (see corollaries 1.4,2.7). Moreover we will 

show (see section 3) that the vanishing holds also for vector bundles with Cl = -1 and 

8p = (_la, oa). Finally we will prove the conjecture for -1 ::; Cl ::; 0, C2 ::; 6. 

I am grateful to Ph. Ellia for suggesting me the problem and several improvements 

of the manuscript. 

I) The family of stable rank two vector bundles with spectrum (-m, .. , -1,02 ,1, .. ,m) 

In this section we will prove the following 

Theorem 1.1: Let E be a stable vector bundle with spectrum -m,-m+1,... -1,02,1, 

... m - I,m. Then one of the following must happen: 

a) E(I) has a section whose zero locus is a curve Y' which is the disjoint union of a 

line D with a curve Y which is a double structure on a degree m + 1 plane cuve and s.t. 

Wl'2 = OY2( -2). 

b) E(2) has a section whose zero locus is a curve Y which is the scheme theoretic 

union of two skew lines Ll and L2 with a curve Yo which is a double structure on a degree 

m + 2 plane curve and s.t. Wlo = 010 (-..6.), where ..6. := Yo n (Ll U L2 ) and deg..6. = 4; 

The proof of the theorem will follow after several lemmas. 

Lemma 1.2: Let E be as in 1.1, then E has an instable plane H of order m. Per­

forming the reduction step with respect to H gives us E as an extension 

o ---t E' ---t E ---t IZ,H( -m) ---t 0 (1.1) 

where the Chern classes of E' are (-I,m + 2,m2 + 2m + 2). 
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Proof. From well known properties of the spectrum (see section 3 and references 

therein) we have hl(E( -1 - m)) = 1, hl(E(-m)) = 3 therefore there exists a section 

h E HO(O(I)) such that h E Ker(HO(O(I)) ® H1(E(-m -1)) -4 H1(E(-m))). If H is 

the plane defined by h = 0 we have 

0-+ E(-m -1) ~ E(-m) -+ EH(-m) -+ 0 (+). 

The exact cohomology sequence shows that hO(EH(-m)) =f. 0 and H is instable of order 

m. The last part of the statement comes from [H2;9.I]. <> 

Lemma 1.3: Let E' be the sheaf coming from the reduction step (1.1), then E' has 

an instable plane HI of oder m+1. Performing the reduction step with respect to H' we 

get 

o-+ E"( -1) -+ E' -+ IZI,HI(-m -1) -+ 0 (1.2). 

the Chern classes of E" being (0, 1, c~). Moreover the plane HI can be chosen to be the 

same of H arising in lemma 1.2. 

Proof. Dualizing the reduction step sequence (1.1) we get ([HI;9.I]) 

O-+E~E'(I)-+OH(m+I)-+O (++) 

The cohomology long exact sequence shows that h2 (E' (m - 2)) = h2 (E(m - 3)) = 1, 

h2 (E' (m- 3)) = h2 (E(m-4)) = 3. Moreover the map f induces a morphism j : H!(E) -4 

H; (E' (1 )) so the following diagram commutes 

H2(E(m - 4)) ~ H 2 (E(m 3)) 
1/ 1/ 


H 2 (E' (m - 3)) ~ H 2 (E' (m - 2)) 

Since h2 (EH(m - 3)) hO(EH(-m)) = 1 we have from (+) that the map multiplication 

by h in the top row is zero. Finally because the vertical rows are isomorphisms, we ~ave 

that the bottom row is also zero and h2 (Ek(m - 2)) h2 (E' (m - 2)) = 1. <> 
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Proof of the theorem 1.1. Since E is stable, E" is semi-stable. It follows ([H2;8.2]) 

that c~ = 2 or 0 (c~ must be even ). If c~ = 2 since X(EII) > 0 and h2(E") = 0 [H2;8.2] 

we get hO(EII) 'I- O. 

If c~ = 0 then E" is a vector bundle with Cl = 0, C2 = 1; since it is semi-stable, it is in 

fact stable. 

In conclusion there are two possibilities for E": 

a) c~ = 2, E" is semi-stable given by 

o -+ 0 -+ E" -+ ID -+ 0 

where D is a line; 

b) c~ = 0, E" is a null-correlation bundle. 

a) From (1.1,1.2): HO(E") ~ HO(E'(l)) ~ HO(E(l)). Hence EI(l) has a section which 

vanishes on a degree m + 2 curve X' and E(l) has a section which vanishes on a degree 

2m+3 curve Y' s.t. Wy, = Oy,( -2). Moreover, since E", E' and E are isomorphic outside 

Hand D cannot be contained in H (otherwise hO(E'(l)) 2 2 but hO(E'(l)) = hO(E") = 1), 

we have ResH(X') = D and ResH(yl) = X' where ResH(G) is the residual scheme of the 

curve G with respect to H. We conclude that Y' is the schematic union of D and a double 

structure on a plane curve (contained in H) of degree m + 1. 

b) This time: HO(E"(l)) ~ HO(E'(2)) ~ HO(E(2)). Arguing as above we get that 

E(2) has a section vanishing along a curve Y, such that Wy = Oy, degY = 2m + 6, 

Y = Yo U C where C = Ll U L2 is the union of two skew lines and where Yo is a double 

structure on a curve P C H, (degP = m + 2). We may assume Li ct H (E"(l) is globally 

generated). Moreover since W1' = 01', Li intersects Yo in a subscheme of length two. 

This means that Li is contained in TZi (Yo) the Zariski tangent p~ane to Yo at the point 

Xi = Li n P. Set f:l. := G n Yo and suppf:l. := Xl U X2. Let Yo be given by the Ferrand 
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construction 

o ---+ 11:'0 ---+ Ip ---+ L ---+ 0 

where L is an invertible sheaf on P. Restricting to P the sequence 

o --t Wl''O E9 We ---+ Wy ~ 01'" ---+ W~ --t 0 (*) 

we find Wl''O Ip~ Op( -Xl X2)' Since Wl''O Ip~ Wp ® L-I [B] we deduce L ~ WP(XI + X2)' 

In particular hl(L) = 0 which implies that the natural restriction map from Pic(Yo) to 

Pic(P) is injective [B]; it follows W1"'o = 01''0 (-~). 

To conclude the proof we need to show that cases a) and b) are effective. For the case 

a) it is suffices to take the disjoint union of a line with a suitable double structure on a 

plane curve of degree m + 1 (see [HR] 2.10, 2.11). 

b) Let P c H be a smooth curve of degree m + 2. Let Xl, X2 denote two points of P. 

Let L := Wp(XI + X2)' Observe that Np ® L is globally generated. Therefore taking a 

suitable surjection NpL we can construct a double structure, Yo, on P s.t. Ip,l'O ~ L. We 

may also assume that the embedded Zariski tangent plane to Yo at :Vi is different from 

H ( otherwise Yo would be a plane curve but this is impossible because hI (11'0 (-1)) = 

hO(Wp(:VI + X2) ® O(-1)) 0). Let Li be a line intersecting P at Xi and such that: 

Li ct. H, Li C TZi Yo, LI n L2 = -P. We define Y as the scheme theoretic union of Yo and 

C:= LI U L 2• 

To construct the desired vector bundle E we have to show 

i) Wy has a section which generates almost everywhere; 

Indeed Y is a locally Cohen Macaulay and generally locally complete intersection curve, 

thus a section as in i) will yield an extension: 0 ~ 0 ~ E(2) ~ 1y(4) ~ 0 with E a 

rank two reflexive sheaf. Since Pa (Y) = Pa (Yo) +2 (because Li C TZi Yo) we easily see that 

c3(E) = 2Pa(Y) 2 0 and E is a vector bundle with the required Chern classes. 
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Finally ii) is equivalent to hI(E(-m-l)) =1= O. This condition implies sp(E) = (-m, ... , -1,02,1, ... 

i) From hI(L) = hI(wp(Zl + Z2)) = 0 we get the injectivity of the restriction map 

from Pic(Yo) to Pic(P). Moreover ":'1''0(6.) Ip::::: L-I ® Wp ® O(ZI Z2)::::: Op implies 

W1''O(6.) ::::: 01''0 hence a generic section of W1''O(6.) ::::: w1" 11''0 generates everywhere (on Yo). 

Since Wy Ie::::: we(6.) ::::: OL l EB OL2 we see that we can find sections of w1" 11''0 and Wy Ie 

which glue to give a section of W1'" generating almost everywhere (in fact everywhere). 

ii) To prove that hI(11"(-m 1)) =1= 0 we proceed as follows. Firstly we have 

hI (11'"( -m + 1)) = hO(Oy(-m + 1)) hI(Oy(m - 1)). Moreover from the sequence 0 -4 

11''O,y -4 01" -4 01''0 -40 where 11''0,1'" ::::: OL1 (-2)E90L 2 (-2), we see that hI(Oy(m-l)) = 

hI(01''O(m-l)). Finally from the cohomology exact sequence associated to 0 -t L(m-l) -t 

01''O(m -1) -4 Op(m -1) -t 0 and from h1(L(m -1)) = hO(L*(-m 1) ® wp) = 0 we get 

hI(01"(m -1)) = hI(Ol''O(m - 1)) hI(Op(m -1)) = hO(wp(1 m)) = hO(Op) = 1. 0 

Corollary 1.4: Let E be as in theorem 1.1. Then hI (E(p)) Oifp>!£1.-1
- 2 

Proof. a) The sequence (1.2) reads: 

with lengthZ' = c3 
(:") 1. From the defining sequence of E" we see that hI(E"(l)) = 0 

if 1 E Z thus h1(E'(k)) = 0 if k ~ m + 2. Dualizing (:) we have (see the proof of theorem 

9.1 of [H2]): 

o ----7 E'(I) ----7 E"(I) ----7 1lv,H(m + 2) ----7 0 (:) 

where W is a subscheme of Z (see (1.1)) and lengthW = lengthZ -1.. From. the properties 

of the spectrum [H2;7.1-5] we have (sp(E') := {k i }): h2(E'(1)) = hI(EBO(ki + 1+ 1)) 0 

if 1 c2(E') - 2 = m and from (:) we get hI(1ll'",H(r)) 0 if r ~ 2m + 1. This implies 

hI(1z,H(l)) = 0 if 1 ~ 2m + 2. Indeed from the sequence 0 -4 1Z,H -t 1n",H -t 11Y,Z -4 0 

we get hI(1z,H(2m + 1)) hO(1n",z(2m + 1)) and from 0 -t 1u",z -t OZ,H -t Oll",H -4 0 
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we find hO(I-yv,z(2m + 1)) = 1 thus hI (Iz,H(2m + 1)) :s; 1. As the Hilbert function of Z 

is strictly increasing until it attains lengthZ, we conclude hI (Iz,H(I)) = 0 if I ~ 2m + 2. 

Finally from the sequence (1.1) we find hI (E(p)) = 0 if p ~ 3m + 2 = ~ - 1. 

b) This time the sequence (1.2) reads: 

o ---4 E"( -1) ---4 E' ---4 OH(-m - 1) ---4 0 (0) 

As E" is a null-correlation bundle we have hl(E"(I)) = 0 if 1 > c2(E") - 1 o and 

hl(E'(r)) = 0 if r ~ 1. Dualizing (0) we get: 

o ---4 E'(I) ---4 E"(I) ---t Iz,H(m + 2) ---4 0 

where Z is the same scheme of (1.1) ([H2;9.1]). Arguing as above we find hl(E(p)) = 0 if 

p~ ~ -2.0 

II) The family of stable rank two vector bundles with spectrum (-m + 

1, ... ,m - 2) 

In this section we will be concerned with the family of rank two stable vector bundles 

on p3 with CI = -1, C2 = 2m - 2 and the maximum spectrum (-m + 1, ... , m - 2). As our 

situation is very similar to that of rank two stable vector bundle with CI = 0 and maximum 

spectrum, we will be sketchy and follow sec. 9.3-17 of the paper [H2]. 

What we are going to prove is the following 

Theorem 2.1: For any m ~ 2 the stable vector bundles with Chern classes (-1, 2m­

2) and maximum spectrum, form an irreducible, non singular, rational family of dimension 

3m2 + m - 1. Moreover, given any vector bundle E in the family, then the following are 

true: 

l)hO(E(I)) = 1 and if s E HO(E(I)), then (8)0 describes a degreee 2m - 2 curve Y, 

which'is a multiplicity two structure on a degree m - 1 plane curve; 
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2) hO(E(m)) 2:: m(m + 1)2 - 1 and if 8 E HO(E(m)) is general, then it vanishes in 

codimension 2 and its zero locus is a curve C which is the disjoint union of a degree 2m - 2 

plane curve with a complete intersection (m,m-l). 0 

We begin proving the following result: 

Proposition 2.2: For any m 2:: 2, the moduli space of rank 2 semistable reflexive 

sheaves with Chern classes (0, r, r2 + r) (C3 is maximal for semistable sheaves [Hl;8.2]) is 

irreducible and non singular of dimension r2 + 4r + 2. 

The proof of proposition 2.2 will follow after several lemmas. 

Lemma 2.3: Let F be any sheaf as in 2.2, then F has an instable plane H of order 

r. The reduction step with respect to H gives us F as an extension 

o-+ 0 EX) O( -1) -+ F -+ IY,H ---4 0 (2.1) 

where Y is a degree r plane curve. 

Proof. The proof of the existence of H goes along the same lines of lemma 1.2. 

Reduction step gives 

o-+ F' -+ F -+ Il"V,H( -r) ---4 0 ( 8 ) 

The Chern classes of F' are (-1, 0, C3 ). From (8) and the semistability of F, we see that F' 

has order of instability -1 (see[S]). Proposition 3.8 of the paper [S] says C3 ~ C2(C2 +1) = 0, 

thus F' is a vector bundle. Moreover as hO(F') =1= 0, hO(F'( -1)) 0 we see that F' is given 

by the extension 

0-+ 0 -+ F' -+ Ix(-I) -+ 0 (0) 

with X a curve with degX = c~ O. But then X = <P, Ix( -1) = O( -1) and (0) splits. 

Finally putting 8 := lengthOH-·, we have ([H2;9.1]) 28 = c~ = 0, 8 = 0 , W = <P and (8) 

becomes the extension of the statement. 0 
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Lemma 2.4: Every semistable rank 2 reflexive sheaf F with Chern classes (0, r, r2 +r) 

°
is given by an extension 0 ~ ~ F ~ Iy ~ 0 where Y is a degree r plane curve. 

Conversely every such an extension gives a reflexive sheaf with the right Chern classes. 

This construction gives us a family which is irreducible of dimension r2 + 4r + 2. 

Proof. [HI ;4.1] implies that the extension of the statement gives a semistable reflexive 

sheaf with Chern classes (0, r, r2 +r). Conversely lemma 2.3 implies F to be given by (2.1) 

where Y was a degree r plane curve and so F has a section whose zero locus is Y. Dualizing 

the reduction step sequence (2.1) we get 0 ~ F ~ °E9 0(1) ~ IZ,H(r + 1) ~ 0, where 

Z is a zero dimensional scheme s.t. lengthZ = r2 + r ([H2;9.1]). To prove the statement 

concerning the family it is sufficient to note that giving F is equivalent to giving a plane 

H and two plane curves without common components with degrees rand r + 1. 0 

Proof of the proposition 2.2. To complete the proof we are only concerned with the 

smoothness. What we have to check is the equality between the dimension of the family 

above and the dimension of the Zariski tangent space to the moduli space at a sheaf F. The 

Zariski tangent space at F is Extl (F, F) and we have to show dimExt l (F, F) = r2 +4r +2 

if F is given by (2.1). To calculate dimExtl(F,F) one can apply the functor Hom(·,F) 

to (2.1) 

o~ Hom(F,F) ~ Hom(O(-I),F) ~ Extl(OH(-r),F) ~ Extl(F,F) ~ 0 

Extl (0H(-r), F) can be found applying the functor H om(., F) to the resolution sequence 

of OH(r), Extl(O(-i),F) = Hl(F(i)) and HO(F(i)) are easily calculated from (2.1). 

To find dimHom(F, F) we can proceed as follows. Firstly we have dimHom(F, F) ~ 2 

because F is not stable. Then applying Hom(F,.) to (2.1) we find dimHom(F,F) < 

1 + dimHom{F,OH{-r)) and applying Hom(·,OH(-r)) to (2.1) we get 

dimHom(F,OH(-r)) = 1 so dimHom(F,F) = 2 and the proposition follows. 0 

Taking into account 2.3, 2.4, the proof of the following lemmas goes exactly as the 
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one of lemmas 9.11-12 of [H2]: 

Lemma 2.5: Let E be as the statement of the theorem. Then E has an unique 

unstable plane H of order m - 1. Performing the reduction step with respect to H gives 

o --+ E' (-1) --+ E --+ 1z,H(1 - m) --+ 0 (2.2) 

where E' is a stable reflexive sheaf with Chern classes (0, m - 1, m 2 
- m); H is also the 

unique instable plane of order m - 1 of E'. <> 

Lemma 2.6: The restriction of E and E' to H is described by 

o --+ OH(m - 2) --+ EH --+ 1z,H(1 - m) --+ 0 

and Ek ~ 1z,H(m 1) 9 OH(1 - m). <> 

Proof of the theorem 2.1. Dualizing the sequence (2.2) we get a surjection v :E'H ~ 

1z,H(m - 1) 9 OH(1 - m) ~ OH(m 1) ~ 0 where v is given by a form f of degree 

2m - 2 and not vanishing on Z on the second factor and a scalar on the first. With a 

simple counting the parameters we conclude the statement concerning the dimension of 

the family (see [H2;9.13-14]). 

Proof of 1). We have hO(E(I)) = hO(E') = hO(O(-1) 9 0) = 1 as follows from the 

sequences of lemmas 2.3 and 2.5. Giving 8 E HO(E(I)) is equivalent to giving E(I) as an 

extension 

o--+ 0 --+ E(I) --+ 1y(l) --+ 0 

where Y is a degree 2m - 2 scheme of codimension 2 s.t. wy = Oy( -3). As the sheaves 

E(I), E' and 0 ffi O( -1) are isomorphic outside the unstable plane H, it is clear that the 

support of Y is in H. From the sequence of lemma 2.6 we have HO(EH(I)) HO(OH(m 

1)), so the restriction of Y to H is a plane curve Yo of degree m - 1. Because of Wy = 

Oy( -3), no component of Y can be contained in H and so the conclusion com~s from the 

degrees. 
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Proof of2). From the sequences of Lemmas 2.1 and 2.5 we get HO(E(l)) ~ HO(E'(l-l)) ~ 

HO(O(l - 2) ffi 0(1- 1)) if 1 < m and hO(E(m)) > hO(O(m - 2) ffi Oem - 1)). Therefore 

E(m) has sections vanishing in co dimension 2 . Let s be such a section. Its zero locus 

will be a degree m 2 + m - 2 curve C s.t. We = Oe(2m - 5). From the sequence of lemma 

2.6 we see that the restriction SH of s to H is the product of the section of EH( -m + 2) 

with a form of degree m - 2 so its zero locus is the union of a degree 2m - 2 plane curve 

P with Z. Arguing as in the proof of lemma 9.16 of the paper [H1], it can be easily seen 

that Z n P = <I>. On the other hand the sequence 

o ---t E' ----+ 0 ffi O(-1) ---t I Z,H ----+ 0 

obtained dualizing the reduction step (2.1) (see [H1;9.1]) shows that, outside H, s is a 

complete intersection (m,m -1). 0 

Corollary 2.7: Let E be as in theorem 2:1. Then h1 (E(p)) = 0 if p ~ ~ - 1 

Proof. As the the proof is very similar to that of corollary 1.4 we are going to be very 

sketchy. 

Let E' be the sheaf arising from the sequence (2.2). Dualizing the defining sequence of E' 

(see (2.1)) 

o ---t 0 ffi O(-1) ---t E' ----+ 0 H( -m + 1) ---t 0 (:) 

we find ([H2;9.1]) 

o ---t E' ---t 0 ffi 0(1) ---t Iz,H(m) ---t 0 (0) 

where Z is the same scheme of (2.2). From (:) we see h1(E'(1)) = 0 if 1 E Z. From the 

properties of the spectrum we find h2 (E'(l)) = hI (ffiO(ki + 1+ 1)) = 0 if 1~ c2(E') - 2 = 

m-3 (sp(E') := {ki}). Finally from (0) and (2.2) we conclude hI (Iz,H(r)) = 0 if r ~ 2m-3 

and hl(E(p)) = 0 if p ~ 3m - 4 = !p- - 1. 0 

III) A vanishing theorem 
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We start recalling the following facts (see [E],[HR] and ref. therein). 

Proposition 3.1: Let E a rank 2 vector bundle on pa, with Chern classes Ct, C2, 

-1 ~ Cl ~ O. Let M denote the grad~d module H 1 (E(*)). If 

o~ L4 ~ La ~ L2 ~ Ll ~ Lo ~ M ~ 0 

is a minimal resolution of M, then rk(Ll) = 2rk(Lo) + 2, and there exists an isomorphism 

4> : Li(Cl) ~ Ll s.t. e4>e*(Cl) = 0 and which induces a minimal monad for E: 
• 

- tPe* (el) - e­o~ L~(Cl) ~ Ll ~ Lo ~ O. 

Moreover .to(Cl) is direct summand in L2 ([HR;3.2]). <:; 

In the sequel we will put: .to = EIh~i~rO( -ai), .tl = EIh~j~2r+20( -,8i), al ~ ... ~ a r; 

,81 ~ ... ~ ,82r+2. 

If moreover E is such that hO(E(-1)) = 0, we denote by sp(E) = {ki}l::;i~e:n the 

spectrum of E. Furthermore we set k+ := maz{ki}, s(n) := #{kilki = n}. Finally we 

denote by r(n) the number of minimal generators of degree n of the module M. Then the 

following properties hold (mi := dimMi): 

• 


5) m_1-i = Lj~i s(j)(j - i + 1), i 2:: 0; 


6) s(i) - 2 Lj~i+l s(j) ::; r(-i - 1) s(i) 1 for 0 ::; i < k+, r( -1 - k+) = s(k). 


Lemma 3.2: Using the above notations, suppose L o has r summands with degrees 

::; l. Then Ll must contain at least r + 3 summands with degrees 2:: 1 - 1 if Cl = 0, 2:: -1 

(see [HRJ prop 3.3). <:; 
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Lemma 3.3: Using the above notations, h1(E(m)) == 0, if m 2:: ({3r - a1) + ({3r+1 ­

a2) ... + ({32r-1 - a r) + ({32r - a1) + ({32r+1 - a1) + ({32r+2 - 3) (see [E] 111.5 ). I:) 

The aim of this section is to prov~ the following improvement of Corollary IV.6 of [E]: 

Proposition 3.4: Let E be a stable vector bundle with C2 ~ 6. Then h1(E(m)) == 0 

if m 2:: 2C2 + 2 - (4C2 + 5)1/2 and C1 == 0 or m 2:: 2C2 + 1/2 - (C2 + 1/4)1/2 and C1 == -1. 

Let us start by proving three lemmas 

Lemma 3.5: Let E be a stable vector bundle with Chern classes (-1,6) and spectrum 

(-2, -12,02,1). Then E is the cohomology of a monad of one of the following types: 

o---t 0(-3) ---t 20( -1) E9 20 ---t 0(2) ---t 0 

() ---t O(-3) E9 O( -2) ---t O( -2) E9 20( -1) E9 20 E9 0(1) ---t 0(1) E9 0(2) ~ 0 

In particular, applying lemma 3.3, we get h1(E(m)) == 0 if m 2:: 8. 

Proof. From the properties of the spectrum we find m-2 == 1, m-1 4, r( -2) 1, 

o~ r( -1) ~ 1. 

a) r( -1) == 0: none of the a's is equal to -1, moreover the generator in M-2 has no 

relations in degree -1 so none of the (3's is equal to -1. By the symmetry property 4) we 

have {{3i} == (oa+2, 1a+2). From the constraint on the ranks and the property 3) above we 

have {ai} == (-2, oa). Finally lemma 3.2 with 1== 0 implies a 0; 

b) r( -1) == 1: now one of the a's is equal to -1 and the generator of lvI_2 has one 

relation in degree -1 thus property 4) implies {{3i} == (-1,OC,lC,2). By property 3) we 

have {ail (-2,-I,oa,Ib) and from the constraint on the ranks c a+ b+ 2. Again 

lemma 3.2 with 1 -1 gives b == 0 and with 1 == 0 gives a == O. I:) 

Lemma 3.6: Let E be a stable vector bundle with Chern classes (-1, C2) and spec­
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trum (-1 c2 /2, OC2 /2). Then E is the cohomology of a monad of the following type: 

where u :::; C2 5. In particular, applying lemma 3.3, we get h1(E(m)) = °if m 2:: 


maz(c2 - 5, c2/2). 


Proof. We have m-l = c2/2, r( -1) = C2/2. From the properties 3), 4) we find {,ail = 


•(OC2/2+1+U,lc2/2+1+U), {ail = (_l c2 / 2,OU). Let us consider the following sequence 

°~ K ~ (C2/2 + 1 + u)O ~ (c2/2)0(1) (3.1) 

Suppose now the map j to be generically surjective and define G := coker( uO( -1) -+ 

(C2/2 + 1 + u)O). From the Eagon-Northcott complex associated to ) : G -+ (c2/2)0(1) 

() is the map induced by j ) 

C2 ) }®det} ( /) () ( C2 ) °~ 0 ( u ) ~ G ® 0 ( 2 --+ C2 2 0 1 ® 0 2 --+ ° 
we infer u :::; C2/2 otherwise G would have a section contained in the kernel of) and this 

cannot happen as follows from the sequence °-+ (c2/2)0( -2) -+ K er) EB :F -+ E -+ ° 
(:F:= Ker«T +l+u)O(-l) -+ Lo)), recalling that hO(E) = °by stability. Suppose 

now the map j of (3.1) to be not generically surjective. Then lemma 3.7 of [HR] implies 

hO(K(l)) 2:: 4(c2/2+1+u)-10(c2/2-1) and hO(E(l)) 2:: 4(c2/2+1+u)-10(c2/2 l)-u. 

But hO(E(l)) :::; 1 otherwise the zero locus of a section of E(l) would be a plane curve Y 

with Wy = 01-( -3) which is impossible. This gives u :::; C2 - 5. 0 

Lemma 3.7: Let E be a stable vector bundle with Chern classes (-1,6) and spectrum 

(_22, -1,0,12 ). Then E is the cohomology of a monad of the following type: 

o--+ 20(-3) --+ 30(-2) EB 30(1) --+ 20(2) --+ ° 
In particular, applying lemma 3.3, we get h1(E(m)) °if m 2:: 4. 
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Proof. We have m-2 = 2, m-l = 5, r( -1) = O. Arguing as above we find {,ail = 

(-13 , oa+b, 1a+b, 23 ), {ai} = (_22, oa, 1b). From lemma 3.2 with 1= -1 we get b = O. Let 

us consider the following sequence 

o---4 K ~ aO EB 30(1) ~ 20(2) (3.2) 

The map k cannot have rank < 2 otherwise lemma 3.7 of [HR] would imply hO(E) > 

hOCK) ~ a + 12 - 10 a + 2. Setting G := coker(aO(-I) -+ aO EB 30(1)) we have from 

the Eagon-Northcott complex associated to 1 : G -+ 20(2). (1 is the map induced by k ) 

o~ O(a -1) ~ G ~ 20(2) ---4 0 

Again, we must have a-I < 0 otherwise E would have a section. 0 

Proof of proposition 3.4. a) Cl = 0: all the allowed monads are listed in tab. 5.3 of 

the paper [HR]. For all but the 6(4) it is sufficient to apply lemma 3.3 to the monad. The 

case 6(4) is treated in corollary 1.4. 

b) 	Cl -1: all the possibilities are covered by lemmas 3.5-7 and corollary 2.7. 0 
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