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Introduction 

This ,vork was inspired by the final remark in [C-A96] pointing to the possible importance 
of quantum-group Frobenius homomorphisms in understanding the (quantum) symmetry of 
the Standard !\trode!. vVe focus our attention on the cubic root of unity because it is the 
simplest non-trivial odd case and because, as advocated by A. Connes, it might be the "cubic 
symmetry" that is to succeed the supersymmetry in physics. 

In the present study of short exact sequences of quantum groups we adopt the functions
on-group point of view, which is dual to the universal-enveloping-algebra approach (see 
Paragraph 8.17 in [L~G91]). It is known [A-N96, MS] that Frobenius mappings at primitive 
odd roots of unity allow us to view A(SLq(2)) as a faithfully fiat Hopf-Galois extension 
of A(SL(2: C)). The main goal of this paper is to provide direct proofs that A(SL(2, C)) 
can be identified with the algebra of A(F)-coinvariants of A(SLelfi (2)), and to compute 
the cocycle-bicrossed-product structure of the analogous extension of the upper-triangular 
(Borel) subgroup of SL(2, C). 

In the next section, 've establish the basic language of this work and provide general 
results that ,ve apply later to compute examples. The main claim of the section is a criterion 
for the cleft ness of principal homogenous extensions. 

In Section 2, we derive two alternative proofs that A(SL(2, C)) :: A(SLq(2))co.4(F) as 
Hopf algebras. (The right hand side is the standard notation for the space of right coinvari
ants and the isomorphism is the Frobenius map.) The first proof takes advantage of one of 
the aforementioned general results. In the appropriate situations, it allows one to reduce the 
task of computing the coinvariants to finding a certain homomorphism. Just as Hopf-Galois 
extensions generalise to a great extent the concept of a principal bundle, this homomorphism 
generalises the notion of a section of a bundle. The second proof is even more direct: It 
employs the quantum Borel subgroups of F to compute the coinvariants. 

Section 3 and Section 4 are devoted to the study of the same kind Frobenius homomor
phisms in the Borel and Cartan cases. As the Hopf algebra P+ := A(SLq(2))j(c} is pointed, 
we can conclude that P+ is a cleft Hopf-Galois extension of B+ := A(SL(2, C))j(c}. \Ve 
construct a family of cleaving maps A(F)j(c) =: H+ ~ P+, calculate an associated cocycle 
and weak coaction, and prove that P+ has a non-trivial bicrossed-product structure. Our 
construction works for any primitive odd root of unity. The Cartan case (the off-diagonal 
generators put to zero) is commutative and follows closely the Borel case pattern. 

In the final two sections, we determine the integrals in and on A(F), prove the non
existence of the Haar measure on F, and show that the natural A (F)-coinvariants of the 
polynomial algebra of the quantum plane at the cubic root of unity form an algebra isomor
phic with the algebra of polynomials on C2• ';Ve also present corepresentations of A(F). 

vVe end our paper with an appendix where, for the sake of completeness, we prove 
a necessary and sufficient condition for the Galois property of an extension of a general 
homogenous space. ' 

Throughout this paper we use Sweedler's notation (with the summation symbol sup
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pressed) for the coproduct (.6. h = hell ® h(2») and right coaction (.6.R P =P(O) ® pel»)' The 
unadorned tensor product stands for the tensor product over the number field, e and S de
note the counit and antipode respectively, and m is used to signify the multiplication in an 
algebra. By the convolution product of two linear maps we understand f*g := mo(f®g)ob., 
(f * g)(h) = f(h(1»)g(h(2»)' The convolution inverse of f is denoted by f- l and defined by 
f * f- l = e = f- l * f. We use Okl to denote the Kronecker delta. 

Preliminaries 

vVe begin by recalling basic definitions. 

Definition 1.1 Let H be a Hopf algebra, P be a right H -comodule algebra, and B := 

pcoH := {p E PI nR P = P ® I}. We say that P is a (right) Hopf-Galois extension (or 
H -Galois extension) of B iff the canonical left P -module right H -comodule map 

can:= (mp ®id) 0 (id®B nR) : P®B P --7 P® H 

is bijective. 

In \vhat follows, we will use only right Hopf-Galo~s extensions, and skip writing "right" for 
brevity. 

Definition 1.2 We say that P is a faithfully flat H -Galois extension of B iff P is faithfully 
flat as a right and left B-module. (For a comprehensive review of the concept of faithful 
flatness see [B-N72].) 

Definition 1.3 An H -Galois extension is called cleft iff there exists a unital convolution 
invertible linear map ~ : H -+ P satisfying nR 0 ~ = .(~ ® id) 0.6.. We call ~ a cleaving 
map of P. (In general, ~ is not uniquely determined by its defining conditions.) 

Definition 1.4 ([PW91]) A sequence ofHopf algebras (and Hopf algebra maps) B -4 P ~ H 
is called exact iff j is injective and 1r is the canonical surjection on H = PIPj(B+)P, where 
B+ denotes the augmentation ideal of B (kernel of the counit map). 

When no confusion arises regarding the considered class of "functions" on quantum groups, 
one can use the above definition to define exact sequences of quantum groups (see (1.6a) in 
[PW91D. In particular, we can view F as a finite quantum group. Further sophistication of 
the concept of a short exact sequence of quantum groups '~omes with the following definition 
(cf. [AD95, p.23]; see [M-A94, Section 5] for short exact sequences of finite dimensional Hopf 
algebras): 

Definition 1.5 (p.3338 in [S-H93]) An exact sequenc~ of Hopf algebras B -4 P ~ H is 
called strictly exact iff P is right faithfully flat over j(B), and j(B) is a normal Hopf 
subalgebra of P, i.e., (p(1)j(B)S(P(2») U S(p(1»j(B)p(2») ~ j(B) for any pEP. 
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Remark 1.6 Exact sequences of Hopf algebras should not be confused with exact sequences 
of vector spaces: The exact sequence of groups Z3 -+ Z6 -+ Z6/Z3 '" Z2 yields (by duality) 
an exact sequence of Hopf algebras which is not an exact sequence in the category of vector 
spaces (or algebras). 0 

Let us now provide a modification of Remark 1.2(1) in [S-H92] that allows us to avoid 
directly verifying the faithful flatness condition in the first proof of Proposition 2.4. vVe 
replace the faithful flatness assumption by assuming the existence of a certain homomor
phism. Its existence in the case described in Proposition 2.4 is proved through a calculation 
(Lemma 2.5). 

Lemma 1.7 Let P be a right H -comodule algebra and C a subalgebra of pcoH such that 

the map 'ljJ : P ®c P 3 P ®c P' H- ppeO) ® Pel) E P ® H is bijective, and such that there exists 
a unital right C-linear homomorphism s : P -+ C (cf. Definition A.4 in [H-P96J). Then 
C == pcoH, and P is an H -Galois extension of C. 

Proof. Note first that the map 'ljJ is well defined due to the ass~mption C c;;. pcoH. Now, let 
x be an arbitrary element of pcoH. Then 

(1.1) 

On the other hand, we kno,v from Proposition 2.5 of [CQ95] that P 0c (PIC) is isomorphic 
with Ker(mp : P ®c P -+ P). In particular, this isomorphism sends 1 ®c x - x ®c 1 
to 1 ®c [x]c E P ®c (PIC). Remembering (1.1) and applying first S ®c id and then the 
multiplication map to 1 ®c [x]c, we obtain [x]c == 0, i.e. x E C, as needed. 0 

Remark 1.8 Observe that the assumption of the existence of a unital right C-linear homo
morphism s : P -+ C can be replaced by the assumption that PIC is flat as a left C-module. 
Indeed, we could then vie,\" C ®c (PIC) as a submodule of P ®c (PIC), and consequently 
1 ®c [x]c as an element of the former. Now one could directly apply the multiplication map 
to 1 ®c [x]c and conclude the proof as before. 0 

It is 'veIl known that cleft Hopf-Galois extensions and crossed products are equivalent notions. 
Once 've have a cleaving map <P as in Definition 1.3, we can determine the cocycle and 
cocycle action that define the crossed product structure (see [BCNI86, Section 4], [:vl-S95, 
Definition 6.3.1]) from the follo,ving formulas respectively [S-H94, p.273]: 

h i>if! b :== <P(h(I»)b<'p-I(h(2») E pcoH (1.2) 

O'if!(h ® I) :== <.P(h(I»)<.P(I(I»)<'p-l(h(2)1(2») E pcoH , (1.3) 

where h, I E H, b E pcoH. On the other hand, with the help of <.p we can construct a unital 
left B-module homomorphism Sif! : P -+ B by the formula 

Sif! :== m 0 (id ® <'p- l 
) 0 ~R. (1.4) 

The homomorphism s~ generalises the notion of a section of a principal bundle just as <.p 
generalises the concept of a trivialisation of a principal bundle (see the end of Section 3 here 
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and Remark 2.6 in [H-P96]). The follo\ving straightforward-to-prove lemma allo\vs one to 

compute (7~ by taking advantage of s~. It seems to be a more convenient way of calculating 

(7~ whenever 6. ® 6. is more complicated than 6.R . \Ve will use it to compute a co cycle of 

the cleft extension descr~bing an e.'{act sequence of (quantum) Borel subgroups. 


Lemma 1.9 (cf. Lemma 2.5 in [H-P96]) Let P be a cleft H -Galois extension of Band 

<p a cleaving map as in Definition 1.3. Then (7~ = Sip 0 m 0 (<P ® <P). 


\Vith the help of the translation map [B-T96] r : H -+ P ®B P, r(h) := can-l (1 ® h) =: 

hell ®B h(2) (summation suppressed), Vie can solve formula (1.4) for <P. Indeed, 


(id*.,s~)(h) := h(1)S~(h(2») = h(l)h(2)(O)<P- I (h(2)(1») = (mo(id®<p-1)ocan)(h(1)®Bh(2») = <P-1(h), 

\vhence <p = 	(id *., S~)-l. 

Assume no\v that P is a principal homogenous extension of B, i.e., P is a Hopf algebra and 
a (PII)-Galois extension for the coaction ~R:= (id®'iT) 06., P.2!t PII, where I is a Hopf 

. ideal of P. At this point it makes sense to ask whether S~ is convolution invertible. The 
answer is provided by the follo\ving: 

Theorem 1.10 Let B ~ P be a (PI I)-Galois extension as described above. Then P is 

cleft if and only if there exists a convolution invertible unital left B-module homomorphism 

'W : P -+ B. 


Proof Assume first that P is cleft. Let <p be a cleaving map, and 'W := Sip (see (1.4)). 

Then 'W is a left B-linear unital map. 1Ioreover, it can be directly verified that 'W-I : P -t 

B, 'W-I(p) := <I>(n(p(l)))S(P(2))' (see [A.D95, Definition 3.2.13(3)]) is the convolution inyerse 

of 'W. 


Conversely, assume that \ve have 'W : P -+ B with the required properties. To define <I> in 

terms of 'W, first we need to derive certain property of 'W-I. 


Lemma 1.11 Let'W : P -+ B be a homomorphism as described in Theorem 1.10. Then 

'W-I(b(I)P)b(2) = c(b)'W-I(p) for any b E B: pEP. 


Proof Note first that 	b E B implies bel) ® b(2) E P ® B. Indeed, 

(id ® 6. R )(b(l) ® b(2») 	 - «(id ® id ® 'iT) 0 (id ® 6.) o 6.) (b) 

- «(id ® id ® il) 0 (6. ® id) o 6.) (b) 

- «(Ll ® id) 0 L\R)(b) 

- bel) ® b(2) ® L (1.5) 

Taking advantage of this fact, for any b E B, PEP, we obtain 

c(b)'W-I(P) 	 - 'W-1 (b(I)P(1»)'W(b(2)P(2»)'W-1(P(3») 

- 'W-1(b(1)P(1»)b(2) 'W(P(2»)W-1 (P(3») 

- W-1 (b(l)P )b(2) , 

4 



2 

as claimed. o 

On the other hand, we know (see Theorem 7.1) that, since P is a (P/I)-Galois extension, 
I = B+P. Furthermore, wi.th the help of Lemma 1.11, we can directly sho\v that (w-1 * 
id)(B+P) = O. Hence we have a well-defined map <1> : P/I --+ P, <1>(1i(P)) := (w- 1 * id)(P) = 
w-1 (P{l) )P(2)' Clearly, <1>(1) = 1. \Ve also have: 

(.6.R0<1>07r)(p) = (w-l(P(1»)®1)(id®1i)(~P(2») = W-1(P(1»)P(2)®7i(P(3») = <1>(7r(P(I»))®7i(P(2)) , 

i.e., <1> is colinear. As expected from the general discussion preceding this theorem, the 
formula for the convolution inverse of <1> is <1>-1 = id *r W. In our case \ve know that 
the formula for the translation map is T(1i(p)) = S(P(I») ®B P(2) (see [S-H92, p.294] and 
Corollary 7.3). Thus we obtain: <1>-1 (17(P)) = S(P(I»)W(P(2»)' It can be directly checked that 
<1>-1 is indeed the convolution inverse of <1>. • 

Corollary 1.12 Let P be a (P/I)-Galois extension of B as in Theorem 1.10. Assume that 
P is cleft. Then we have a one-to-one correspondence between the cleaving maps of P and 
the unital convolution invertible left B-module homomorphisms W : P --+ B. The formula 

<1> ~ W:= S.z., := m 0 (id ® <1>-1) 0 .6.R 

defines the desired bijection. Its inverse is given by 

Observe that our considerations are very similar to those on pA7 and p.50 in [A.D95]. Here: 
however, we do not assume that the algebra of coinvariants is a Hopf algebra. 

A(SLe~(2)) as a faithfully flat Hopf-Gqlois extension 

Recall that A(SLq(2)) is a complex Hopf algebra generated by 1, a: b, c, d, satisfying the 
follo\ving relations: 

ab = qba, ac = qca, bd = qdb, bc = cb, cd qdc, 

ad - da = (q - q-l)bc, ad - qbc = da - q-1bc = 1, 

where q E <C \ {OJ. The comultiplication 6., counit c, and antipode S of A(SLq(2)) are 
defined by the following formulas: 

6. (: :) = (: :) ® (: :), c(: :) = (~ ~), S (: :) = (-~c _q:lb). 

Let us now establish some notation (e.g., see Section IV.2 in [K-Ch95]): 

(k)q := 1 + q + ... + qk-l = 
-1 

, k E Z, k > 0; 
q 1 

(k) , '= (1) (2) (k) _ (q - ~)(q2 - 1) ••• (qk - 1) ()'
q' • qq' • • q - ()k ,0 q. := 1 ; q-1 

(k)._ (k)q! 
i .- (k _ .) ,(.) " 0 < i :5 k . q t q. 't q. 
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The above defined q-binomial coefficients satisfy the following equality: 

k 
k l(u + V)k = L (7) U'V - , 

1=0 q 

where uv = q-1vu. No\v, if (7ij) = (~ :), then 

k 

~1i~ = (Til®Tlj+Ti2®T2j)k= L (7)q_'lTl11i~-I®TijTt-l. 
1=0 . 

For the rest of this paper we put q = e 'lii. Obviously, we no,v have q-2 = q, and the 
comultiplication on the basis elements of A(SLq(2)) (see Lemma 1.4 in [j\lIMNNU], Exercise 7 
on p.90 in [K-Ch95]) is given by: 

p,T,S 
S~(aPbTC ) = L (~) (~) (:) ap-AbAaJl.bT-JJ.cS-VdV® ap-AcAbJl.~-Jl.aS-VCV , 

A,Jl.,V=O q q q 

k,l,m 
~(bkclam) = L (~) (~) C;) aAbk-Ac'-JJ.dJl.cVam-V ® bAdk-Aal-Jl.cP-bv~-v , (2.6) 

A,Jl.,V=O q q q 

where m is a positive integer and p, r, s, k, l are non-negative integers. 

Following Chapter 7 of [PvV91] and Section 4.5 of [NI-Yu91] (cf. Section 5 in [T-:N192] and 
the end of Part I of [C-P94]), \ve take the Frobenius mapping 

Fr : A(SL(2, C)) 31ij ~ Ti~ E A(SLq(2)) , i,j E {1, 2}, (2.7) 

to construct the exact sequence of Hopf algebras 

A(SL(2, C)) ~ A(SLq(2)) ~ A(F) . (2.8) 

Here A(F) = A(SLq(2))/(1i; - fJ ij ) , i,j E {1,2}, and 7rF is the canonical surjection. The 
following proposition determines a basis of A(F) and shows that A(F) is 27-dimensional. 

Proposition 2.1 Define a := 1iF(a), b := 7rF(b), e := 7rF(C), d:= 7rF(d). Then the set 
{aPbTeS}p,T,SE{0,1,2} is a basis of A(F). 

Proof. Since d = (i2(1 + qbe), the monomials iilbTeS 
, p, r, s E {O, 1, 2}, span A(F). Guided 

by the left action of A(F) on itself, ,ve define a 27-dimensional representation fl : A(F) -t 
End«([;3 ® ([;3 ® <e3) by the following formulas: 

e(a) - J ® 13 ® 13 , 

eel;,) - Q®N®I3 , 

flee) - Q®13®N, 

where 

0 q-l 10J= (~ 
0 

~), Q= U 0 

~)'N=(~ 
0 

~)'I3=U 
0 

~ ).
1 0 q-2 0 1 0 
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It is straightforward to check that g is well defined. Assume now that E p,T,sE{O,I,2} 0pTso,PbTcs = 
O. Applying g, 	we obtain 

I:: OprsJPQr+s ® NT ® N S = 0 . (2.9) 
p,T,sE{O,l ,2} 

On the other hand, let us consider the linear functionals 

h klm : 1VJ3 ( C)®3 -+ C, hklm(.4 ® B ® C) := AkOBLQCmO , k, l, m E {O, 1, 2}, 

where we number the rows and columns of matrices by 0,1,2. From (2.9) \ve can conclude 
that 

( L QprsJPQr~s 0 N r 0 N S ) = 0, Vk, I, m E {O, 1, 2} .hk1m 

\;',Tt SE{O,I,2} 

Consequently, s~ce hklm(JPQr+s ® NT ® NS) = apkaTlOms , we have that Ciprs = 0, for any 
p, r, s. Hence o'pbTcs are linearly independent, as claimed. 0 

Corollary 2.2 (cf. Section 3 in [S-A97]) The representation (}: A(F) -+ End(C3®e3 ® 
e3 

) defined above is faithful. 

Remark 2.3 Observe that we could equally well consider a representation \\'ith Q replaced 
by Q-I, J by Jt and N by Nt, where t denotes the matrLx transpose. 0 

\Vith the help of duality between functions-on-group and universal-enveloping algebra pic
tures, it can be sho\vn ([A-~96! Proposition 304.5], [NIS]) that Fr(A(SL(2, e») = A(SLq(2))A(F). 
This can also be concluded from the fact that A(SLq(2» is Noetherian (see [K-Ch95, The
orem IVA.l, Proposition 1.8.2]) and the combination of [S-H93, Theorem 3.3L [S-H92, Re
mark 1.2(1)] and [S-H93: Remark 1.6(1)]. Note that Theorem 3.~ in [S-H93] establishes 
the faithful flatness of A(SLq(2» o\"er A(SL(2, C)). After identifying A(SL(2: e)) with 
A(SLq(2))coA(F), we can use Theorem 1.3 in [S-H94] (see [KT81]) to infer that .4(SLq{2» is 
finitely generated projective over ..4(SL(2, C» (cf. [DL94, ProP9sition 1.7]). In \vhat follows, 
we provide direct proofs which do not invoke the duality. 

Proposition 2.4 The algebra A(SL(2, e)) of polynomial functions on SL(2, C) is isomor
phic (via the Frobenius map) to the subalgebra A(SLq (2»coA(F) of all right coinvariants. 

First proof. The claim of the proposition follows immediately from the lemma below, [S-H92, 
Lemma 1.3(1)] and Lemma 1.7. (From these lemmas one can also conclude that A(SLq(2)) 
is an A(F)-Galois extension of FT~4(SL(2, C»).) 

Lemma 2.5 Let p, r, s, k, l, m E n\o, m > O. The linear map s : A(SLq(2» -+ Fr(A(SL(2, e») 
defined by the formulas 

s(aPbT CS ) = { 	 aPbT c:' when p.' r, s are divisible by 3 
o otherWIse, 

s(bkc1d"') = {lIda:n when~, I, m are divisible by 3 
o otherwise, . 

is a unital Fr(A(SL(2, C)))-homomorphism. 
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Proof. The unitality is obvious. Next, as Fr(A(SL(2, C))) is a central subalgebra of 
A(SLq(2)) (see Theorem 5.1.(a) in [M-Yu91]) , the left and right Fr(A(SL(2, C)))-module 
structure of A(SLq(2)) coincide. Now, 'we want to show that s(lw) = Is(w), for any 
I E Fr(A(SL(2, C))) and w E A(SLq(2)). In terms of the basis of A(SLq(2)), we have 

2	 3sa natural decomposition I = II + 1 2, W = WI + w , where II = L f;rsa3Pb3r c , f2 = 
b3k" j2 3id3m 1 -" I a:'LJ1 "'I 2 " 2 b>' J,ldV U 1 th' 'fi dL.,m>O kim C ,W - L" wa:{J,a cr C , w L.,v>O W>'J,lV C • ness 0 erwIse speCl e , 

we sum here over non-negative integers. It is straightforward to see that S(IIwI ) = II s(w1 
) 

2 2 2 2	 1 2and s(1 w ) = f s(w ). vVe ,vill demonstrate that s(f2w 1) = s(w I ). vVe have: 

3mHere, due to the relation da = 1 + q-Ibc, the monomials da:aa: =: pa:(b, c) and d 3ma =: 
3Pm(b3, c ) are polynomials in b, c and b3 , c3 respectively. Applying s yields: 

2 I "j2 wI s(d3(m->.)p (b C)b3k+f3 C31+"'I)s(1	w ) - ~ klm 3>.,Jj;"f 3A , 
m>>' 

" f2 wI s(a3(>.-m)p (b3 c 3)b3(k+J.L)C3(l+v»)+ 	 ~ kIm 3>.,3J.L,3v m, 
O<m:5>' 

" j2 WI s(d3>'a3Ab3k-:-!3C3l+"'Id3(m->.»)- ~ kim 3>',.3" 
m>>' 

" f2 WI a 3(A-m)p (b3 c 3)b3(k+J.L) C3(l+v)+ L...J kim 3>.,3J.,L,3v m, 
O<m:5>' 
"" j2 WI d 3>'a3>'b3(k+p) C3(i+v) d 3(m->.»)- L...J kim 3>',3J,l,3v 


m>>' 


"" j2 WI a3(>.-m)d3ma3mb3(k+p)C3(I+v)+ L...J kim 3>.,3J,l,3v 	 • 
O<m:5>' 

On the other hand, we have: 

3k 3l 3m 3 3 3v"" j2kimb C d L..t a >' b J,l C'""' WIL...J 	 3>'3p3v 
m>O 
"" 	j2 WI d3ma3>'b3k+3PC3l+3v
L...J klm 3>.3J.'3v 

m>O 
"" 	j2 WI d3m-3>'d3>'a3>'b3k+3PC3l+3v
L...J kIm 3>.3J.'3v 

m>>' 
"" 12 WI . d3ma3ma3>.-3mb3k+3J.Lc31+3v+ ~ kim 3>.3J.'3v 	 • 

O<m:5>' 
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Hence s(f2w1) = f 2s(W1), as needed. The remaining equality s(f1w2) = f 1s(W2) can be 
proved in a similar manner. 0 

Note that it follows from the above lemma that P = Bffi(id-s)P as B-modules; cf. Lemma 3(3) 
in [R-D97]. 

Second proof. It can be quickly verified or concluded from [S-H92, Lemma 1.3(1)] that 
A(SL(2, C)) is embedded in the algebra of A(F)-coinvariants, Le., 

Fr(A(SL(2, CC))) ~ A(SLq(2) )coA(F). 

Now, put H+ = A(F)j(c) and H_ = A(F)j(b). Both H+ and H_ coact in a natural 
way on A(SLq(2)), that is, we have ~= := (id®Tt±) o~: A(F) 4 H+, ~4(F) ~ H_. 
By construction, we kno\v that A(F)-coinvariants are necessarily in the intersection of H+ 
and H_ coinvariants of A(SLq(2)). Kno\ving linear bases of the relevant Hopf algebras: 
through a lengthy but direct calculation based on the formulas (2.6), one can show that 
A(SLq(2)toH+nA(SLq(2))coH- is contained in the image of A{SL(2, C)) under the Frobenius 
map. Hence 

which concludes the proof. o 

Corollary 2.6 A(SLq(2)) is a faithfully fiat A(F)-Galois extension of Fr'4(SL(2: <c))). 

Proof. The fact that A(SLq{2)) is an A(F)-Galois extension of Fr(A{SL{2~ CC))) can be 
inferred from the first proof of Proposition 2.4. 

Another way to see it is as follows: For any Hopf algebra P, the canonical map P Q9 P :3 

P ® p' 1-7 pph) ® P(2) E P ® P is bijective. Consequently, for any Hopf ideal I of P, the 
canonical map P ®pco(P/I) P -+ P ® (PjI) is surjective. {Here :we assume the natural right 
coaction (id~)1r) 0 tJ. : P -+ P ® (Pj I).) No\v, since in our case we additionally have that 
PjI = A(F) is finite dimensional: we can conclude that A{SLq(2)) is an A(F)-Galois exten
sion of Fr(A(SL(2, CC))) by Proposition 2.4 and [S-H94, Theorem 1.3] (see [KT81]). 

The faithful flatness of A(SLq(2)) oyer Fr(A(SL(2, C))) follows from the commutativity of 
the latter and Corollary 1.5 in [S-H941 (see [KT81]). 0 

Remark 2.7 Note that just as the fact that Fr(A(SL(2, e))) is the space of all coinvari
ants implies that A(SLq(2)) is faithfully flat over it, the faithful flatness of A(SLq(2)) 
over Fr(A(SL(2, e))) entails, by "irtue of [S-H92, Lemma 1.3(2)] (or the centrality of 
Fr,4(SL(2, e))) in A(SLq(2)) and [S-H93, Remark 1.6(1)]), that Fr(A(SL(2, e))) is the 
space of all coinvariants. Therefore it suffices either to find all the coinvariants or prove the 
faithful flatness. 0 

9orollary 2.8 Sequence (2.8) is a strictly exact sequence of Hopf algebras. 
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Corollary 2.9 Sequence (2.8) allows one to view SLq(2) as a quantum group covering of 
SL(2, C) (see Section 18 in (PW91J). 

Remark 2.10 \Ve can think of SLq(2) as a quantum principal bundle over 8L(2, C). This 
bundle, however, is not locally trivial (see p.460 in [D-M96]). Indeed, otherwise it ,,-ould 
have to be reducible to its classical subbundle (see p.466 in [D-M96]), which is impossible 
because 8Lq(2) has "less" classical points (characters of A(8Lq(2))) than 8L(2, C). (Cf. 
Section 4.2 in [BK96].) 0 

3 Quotients of A(SL 27ii (2)) as cleft Hopf-Galois exten
. eT

sIons 

Let us now consider the case of (quantum) Borel subgroups. To abbreviate notation: in 
analogy,vith the previous section, 've put P+ = A.. (SLq(2))/(c) , B+ = A(8L(2, C))/(c), 
and H+ = P+/(a3 - 1, b3 ) = A(F)/(c). (\Ve abuse the notation by not distinguishing 
formally generators of P, P+, P_, P±, etc.) .;\s in the previous se"ction, \ve have the Frobenius 
homomorphism (cf. [PW91, Section 7.5]) Fr+ : B+ -+ P+ given by the same formula as (2.7), 
and the associated exact sequence of Hopf algebras: 

Before proceeding further, let us first establish a basis of P+ and a basis of H+ . 

Proposition 3.1 The set {aPbT 
} p,TEZ,T~O is a basis of P+. 

Proof This proof is based on the Diamond Lemma (Theorem 1.2 in [B-G78]). Let C(o, (3~ 8) 
be the free unital associative algebra generated by Q: {3, 8. We well-order the monomials of 
C(o., (3, 8) first by their length, and then "lexicographically" choosing the follo\ving order 
among letters: 0 :::5 8 :::5 {3. In particular, this is a semigroup partial ordering having 
descending chain condition, as required by the Diamond Lemma. Furthermore, we chose the 
reduction system S to be: 

5 = {(08, 1) , (80.,1) , ({30., q-1a(3) , ({38, q8(3)} . 

It is straightforward to check that the aforementioned well-ordering is compatible with 5, 
there are no inclusion ambiguities in 5, and all overlap ambiguities of S are resolvable. 
Therefore, by the Diamond Lernma, the set of all S-irreducible monomials is a basis of 
C(a, {3, 8) / J, J := (a8 1 , 8a - 1, {3a - q-1a{3 , {38 - q8{3). The monomials a P{3T, 8k {31, 
p, r, k, l E No, k > 0, are irreducible under S and their image under the canonical surjection 
spans C(a,{3,8)/J. Consequently, they form a basis of C(a,{3,6)/J. To conclude the proof 
it suffices to note that the algebras C(a, /3, 0) / J and P+ are isomorphic. 0 

Proposition 3.2 The set {a,PbT }p,TE{O,1,2} is a basis of H+_ 
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Proof. ..Analogous to the proof of Proposition 2.1. o 

This time, the formula for the right coaction of H+ on P+ is not so complicated and reads: 
r 

6.R (aPbr) = L (~) q-p.(2r-2p.)aP+P.br-P. ® a2r+p- 2P.bP. . (3.10) 
p.=o q 

\tVith the above formula at hand, it is a matter of a straightforward calculation to prove 
that P+ is an H+-Galois extension of Fr+(B+). In particular, \ve have p~oH+ = Fr+(B+). 
l'vioreover, since P+ is generated by a group-like and a skew-primitive element, it is a pointed 
Hopf algebra. Consequently (see p.291 in [S-H92]), we obtain: 

Proposition 3.3 P+ is a cleft H+-Galois extension of Fr+(B+). 

Our next step is to construct a family of cleaving maps for this extension. To simplify the 
notation, for the rest of this paper we will identify B+ with its image under Fr+_ First, we 
construct a family of unital convolution invertible B+-linear maps Wv : P+ -+ B+, and then 
employ Corollary 1.12. It is straightforward to verify that, for any function v : {O, 1, 2} -+ Z 
satisfying v(O) = 0, the family {wv} of B+-homomorphisms given by the formula 

wv(aPbr):= c50ra3v(P), p,r E {O, 1,2}, (3.11) 

fulfils the desired conditions. The convolution inverse of W v is provided by (see [A.D95: p.47]) 

w;l(aPbr) := c50ra-3v(P) , p: r E {O, 1, 2}, W;l(wt):= W;I(t)S(W), t E P+, W E B+. 

Consequently, 

~v : H+ -+ P+: ~v(iiPbr) = w;l(ap+r)aPbT = a-3([p+rh+v([p+rh»+PbT
, (3.12) 

where 3[p+rh +[p+rh p+r: 0:::; [p+rh < 3: is a family of cleaving maps. In particular, 
we can choose v(l) = 0, v(2) 1. Then we ha,"e: 

3b2~(1) = 1 , ~(a) = a, ~(a2) = a-I , ~(b) = b , ~(b2) = a- , 

2b2 a-1b2~(ab) = a-2b 1 ~(a2b) = a-1b , ~(ab2) = a- , ~(a2b2) = . (3.13) 

Remark 3.4 Here \ve rely on the fact that the monomials aPbr, p, r E {O, 1, 2}, form an 
B+-basis of PT' As can be proven with the help of the linear basis {aPbr}p,rEZ,r~o' the set 
{aPbr}p,rE{O, ...,n-l} is an B+-basis of P+ for any n-th primitive odd root of unity. Hence our 
construction of a family of cleaving maps can be immediately generalised to an arbitrary 
primitive odd root of unity. 0 

Let us now apply Lemma 1.9 to calculate explicitly the cocycle O'~ : H+ ® H+ -+ B+: 

CT~(a ® a) = a3, CT~(a2 ® 0.2) = a-3 , CT~(b ® b2) = a-3b3 , 

CT~ (b ® ab2) = q2a-3b3 , CT~ (b ® a2b2) = qb3, CT~ (b2® b) = a-3b3 , 

CT~ (b2 ® ab) = qa-6b3 , CT~(b2 ® a2b) = q2a-3b3 , CT~(ab ® b2) = a-6b3 , 

O'~(ab ® ai)2) = q2a-3b3 , CT~(ai) ® a2b2) qa-3b3 , CT~(a2b ® i)2) = a-3b3 , (3.14) 
CT~(a2b ® ab2) = q2a-3b3 , CT~(a2b ® a2b2) = qa-3b3 , CT~(ab2 ® b) = a-3b3 , 

CT~(ab2 ® ab) = qa-3 b3 , CT~(ab2 ® a2b) = q2a-3b3, CT~(a2b2 ® b) = b3 , 
3 b3 2 3b3CT~(~2b2 ® ab) = qa- , CT~(a2b2 ® a2b) = q a- , CT~ lother basis elements = e ® e. 

As the cocycle action (see (1.2)) is necessarily trivial due to the centrality of B+ in P+, we 
obtain the following: 
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Proposition 3.5 P+ is isomorphic as a comodule algebra to the twisted product (see [BCM86, 
Example 4.10}) of B+ with H+ defined by the above described cocycle (lip • 

1Iore explicitly, we can simply say that the algebra structure on B+ ® H+ that is equivalent 
to th~ algebra structure of P+ is given by the formula 

(3.15) 


Let us also mention that aip is not a coboundary, i.e., it cannot be gauged by a unital 
convolution invertible map I : H+ -+ B+ to the trivial cocycle c ® c (see Proposition 6.3.4 
in [lvI-S95]). Nlore formally, we have: 

Proposition 3.6 The cocycle a~ represents a non-trivial cohomology class in the (non
Abelian) 2-cohomology of H+ with values in B+ . 

Proof. Suppose that the claim of the proposition is false. Then there ,,"ould exist "'f such 
that a"Y*~ = c ® c, i.e., 

(3.16) 


Here qyr := 1* q> and the middle convolution product is defined with respect to the natural 
coalgebra structure on H+ ® H+, namely fl.® := (id ® flip ® id) 0 (.6. ® fl.). (Note that 
~1 is also a cleaving map.) A standard argument (apply *(q>"Y 0 m) from the right to both 
sides of (3.16» allows us to conclude that q>"Y is an algebra homomorphism. Again, it is 
well known that q>"Y must be always injective: It is a restriction to H+ of the isomorphism 
B7 ® H+ ::1 x®h t-+ xq>"Y(h) E P+. Hence we can vie"w H+ as a subalgebra of P+. In par
ticular, there exists 0 =f P E P+ such that p2 = O. (Put P = q>"Y(b2

).) \tYrite p as EJLEZ aJLpJL' 

where the coefficients {PJL} JLEZ are polynomials in b. Let J-Lo(p) := max{J-L E Z I PJL =f O}. It 
is ,,'ell defined because aJLbn , J-L, nEZ, n > 0, form a basis of P+ , and exists because P =f O. 
l\ow, due to the commutation relation in P+ and the fact that the polynomial ring C[b] has 
no zero divisors, "we can conclude that J-LO(P2) exists (and equals 2J-Lo(p). This contradicts 
the equality p2 = O. 1 0 

To put it simply, H+ cannot be embedded in P+ as a subalgebra. 

Remark 3.7 Note that we could equally ,veIl try to use the lower (quantum) Borel sub
groups P_, B_, H_. The Hopf algebras H+ and H_ are naturally isomorphic as algebras 
and anti-isomorphic as coalgebras via the map that sends a to aand bto C. They are also 
isomorphic as coalgebras and anti-isomorphic as algebras via the map that sends ato 0,2 and 
b to c. It might be worth noticing that H+ and H_ are not isomorphic as Hopf algebras. 
Indeed, if they were so, there would exist an invertible algebra map cp: H+ --* H_ commut
ing with the antipodes. From direct computations, it turns out that any such map has to 
satisfy cp(b) = x;(a -; q2a2)Cl, with x; an arbitrary constant. This implies cp(b)2 = cp(b2) = 0 
contradicting, due to b2 =F 0 (see Proposition 3",2), the injectivity of cp • 0 

1 \Ve are grateful to Ioannis Emmanouil for helping us to make the nilpotent part of the proof simple. 
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4 

To end this section, let us consider the Cartan case: ,\Ve define the Hopf algebras P±, B± and 
H± by putting the off-diagonal generators to 0, Le., P±:= P/(b,c), B±:= B/(b,c), H±:= 
H/(iJ,c). Everything is now commutative, and we have P± :::: B±:::: A(C X 

), H± ~ A(Z3), 
where ex := e \ {OJ. It is immediate to see that, just as in the above discussed Borel case, 

we have an exact sequence of Hopf algebras B= ~ P± -t H± , and P± is a cleft H±-Galois 
extension of Fr±(B±). A cleaving map <;P and cocycle (Jib are given by the formulas that 
look exactly as the a-part of (3.13) and (3.14) respectively. It might be worth to emphasise 
that, even though this e:xi:ension is cleft, the principal bundle ex (eX, Z3) is not trivial. 
Othenvise ex would have to be disconnected. This is why we call <;P a cleaving map rather 
than a trivialisation. 

The bicrossproduct structure of P+ 

Let P be a Hopf algebra and I a Hopf ideal of P such that B ~ P is a (P/I)-Galois extension 
as in Theorem 1.10. In the spirit of [AD95, p.47], we say that P is cocleft iff there exists 
a counital convolution invertible left B-module map (retraction) W : P -t B. ,\Ve can see 
from Theorem 1.10 that the difference between cleft ness and cocleftness boils down to the 
distinction between the unitality and counitality of W. 

In particular, the concept of cocleftness applies to the Hopf-Galois extensions obtained from 
short exact sequences of Hopf algebras. One can view cocleft ness as dual to cleft ness the 
same way crossed coproducts are dual to crossed products [;\I-S90]. In the case of the upper 
Borel extension B+ ~ P+: the maps W£I of (3.11) are both unital and counital. Hence P+ is 
both cleft and cocleft. By Proposition 3.2.9 in [AD95], the latter property implies that P+ 
is isomorphic as a left B+-nlodule coalgebra to the crossed coproduct of B+ and H+ given 
by the weak coaction A : H+ -t H+ ® B+, A(1I+(p)) := 11+ (P(2») ® W- 1 (P(1»)W(P(3»), and the 
co-cocycle ( : H+ -t B+ ~ B+, ((7r+(P)) := ~(W-l(P(1»))(W(P(2)) ® W(P(3»))' Here W is the 
retraction obtained from (3.11) for the choice of 1/ made above (3.13). Explicitly, we have: 

A(aP) = aP ® 1 , A(b) = b® 1 , A(ab) = ab ® a-3 
, A(a2b) a2b® a-3 

, 

6 3 2 3A(b2
) = b2 ® a- , A(al?) = ab2 ® a- , A(a2b ) = a2 b2 ® a- • (4.17) 

The co-cocycle is trivial, Le., ((7r+(P)) = c(p) ® 1. ,\Ve have thus arrived at: 

Proposition 4.1 P+ is isomorphic as a left B+-module coalgebra to the crossed coproduct 
B+ A#H+ defined by the above coaction A. 

In particular, this means that the coproduct on B+ ® H+ that makes it isomorphic to P+ as 
a coalgebra is given by 

~(w ® h) w(l) ® A[IJ(h(1») ® W(2) A[21 (h(l») ® h(2) , 

where A(h) := A[l] (h) ® A[21 (h) (summation suppressed). 

Proposition 4.2 The above defined coproduct is not equivalent to the tensor coproduct 
~® := (id ® flip ® id) 0 (.6. ® .6.) : B+ ® H+ --t (B+ ® H+) ® (B+ ® H+). 
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Proof. Suppose the contrary. Then, by [AD95, Proposition 3.2.12], there would exist a 
counital convolution invertible map ~ : H+ -7 B+ such that )'(h) = h(2) ® c;-l(h(l»)c;(h(3») . 
\Vith the help of Proposition 3.2, applying this formula to bimplies ~-1(a)c;(a2) = 1, and 
requiring it for b2gives c;-l (a2)~(a) = a-6. Since a is group-like, c;(a) and ~(a2) are invertible, 
and we obtain 1 = c;-1(a)c;(a2) = a6 • This contradicts Proposition 3.1. 0 

Note that as far as the algebra structure of P+ is concerned: it is given by the trivial action 
and a non-trivial cocycle. For the coalgebra structure it is the other ,vay round, i.e., it is 
given by the trivial co-co cycle and a non-trivial coaction (cf. [~fl-S97]). Due to the triviality 
of co-co cycle (, wis a coalgebra homomorphism. Also, one ~n check that the cocycle and 
coaction put together make B+ ® H+ a cocycle bicrossproduct Hopf algebra [lVl-S95]. 

Corollary 4.3 The Hop! algebra P+ is isomorphic to the cocycle bicrossproduct Hop! algebra 
B+ )..#uH+. The isomorphism and its inverse are given by 

Here ~ is related to W as in Corollary 1.12, and given explicitly by formulas (3.13). 

5 Integrals on and in A(F) 

Recall that a left (respectively right) integral on a Hopf algebra H over a field k is a linear 
functional h : H -7 k satisfying: 

(id ® h) o/:). IH • h (respectively (h ® id) 0 /:). = lH . h). (5.18) 

(For a comprehensive review of the theory of integrals see [lVI-S95, Section 1.7], [S-lVI69, 
Chapter V].) In the case of the Hopf algebra A(F), 've have the follo,ving result: 

Proposition 5.1 The space of left integrals on A(F) coincides with the space of right inte
sgrals on A(F), i.e., A(F) is a unimodular Hop! algebra. In terms of the basis {aPbrc }Plr ,SE{O,l,2} 

of .4(F), for any integral h, we have by h(aPbrcs ) = z8b8;8~, z E C. 

Proof. By applying the projection 1r± : A(F) -7 H± to (5.18), it is easy to see that any 
left (and similarly any right) integral has to vanish on about half of the elements of the 
basis. With this information at hand, and using the fact that on a finite dimensional Hopf 
algebra the space of left and the space of right integrals are one dimensional [LS69], it is 
straightforward to verify by a direct calculation the claim of the proposition. 0 

A two-sided integral on a Hopf algebra H is called a Haar measure iff it is normalised, Le., 
iff h(l) = 1. As integrals on A(F) are not normalisable, we have: 

Corollary 5.2 There is no Haar measure on the Hop! algebra A(F) (cf. Theorem 2.16 
in [KP97) and (3.2) in [MMNNU}). 

Remark 5.3 Since the Hopf algebra A(F) is finite dimensional, F can be considered as a 
finite quantum group. However, it is not a compact matriX quantum group in the sense of 
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Definition 1.1 in [vV-S87]. Indeed, by Theorem 4.2 in [vV-S87], compact matri"{ quantum 
groups always admit a (unique) Haar measure. Furthermore, as A(F) satisfies all the axioms 
of Definition 1.1 in [VV-S87] except for the C*-axiom, there does not exist a *-structure and 
a norm on A(F) that 'would make A(F) a Hopf-C*-algebra. In particular, for the *-structure 
given by setting a* = a, h* = h, c· = c, d* = d, this fact is evident: Suppose that there exists 

4a norm satisfying the C*-conditions. Then 0 =11 c 11=1\ (~)*C2 1\=11 ~ 11 2 
, which implies 

~ = 0 and thus contradicts Proposition 2.1. 0 

vVe recall also that an element A E H is called a left (respectively right) integral in H, iff it 
verifies aA = c-(a)A, (respectively Ao: == c-(a)A) for any a E H. If H is finite dimensional, 
an integral in H corresponds to an integral on the dual Hopf algebra H*. Clearly, an integral 
in A(F) should annihilate any non-constant polynomial in hand c, whereas it should leave 
unchanged any polynomial in a. It is easy to see that the element AL = (1 + a+ a2)h2~ 
is a left integral and the element AR == h2~(1 + a+ a2) is a right integral. Hence in this 
case left and right integrals are not proportional. vVe can therefore conclude that H*, which 
by Section 3 in [DNS] can be identified \vith Uq(Sl2) / (K3 - 1, E3, F3) of [C-R96L is not 
unimodular. Again, since A(F) is finite dimensional, any left integral in A(F) is propor
tional to AL , and any right integral in A(F) is proportional to AR . In addition, by Theorem 
5.1.8 in [S-~I69], the property C-(AL) = 0 assures us that A(F) is not semisimple as an algebra. 

6 A coaction of A(F) on M(3, <C) 

Let us now consider F as a quantum-group symmetry of lvI(3, ([;) a direct summand of 
A. Connes' algebra for the Standard r..Jodel. Recall first that for any n E :lK the algebra 
of matrices lvI(n, ([;) can be identified with the algebra ([;(x,y}/(xy - J.LYX, xn - 1~ yn - I), 
J.L e 

2

: 

i
• (l\Iapxto (~ InOl) andytodiag(l,p, ... ,pn-l); see Section IV.D.15 of [\Y-H31].) 

Denoting by A( ([;~) the polynomial algebra (in x and y) of the quantum plane, by A( ([;2) == 

([;[x, y] the algebra of polynomials on ([;2, and maintaining our assumption that q = e 2;i , \ve 
obtain the follo\ving sequence of algebras and algebra homomorphisms: 

(6.19) 

Here fT is an injection given by fr(x) x 3, fT(Y) == y3, and 1i~f is the map induced by the 
canonical surjection A(([;~) -7 A(C~)/(X3 - 1, y3 - I}. 

Let us note that although A( ([;~) and A( ([;2) ® M(3, ([;) are isomorphic as A( C2)-modules, 
their algebraic structures (cf. (3.15)) are slightly different: 

(6.20) 

where 3[nh + [nh = n, [nh, [nh E N, 0 ~ [nh <:: 3, x = 1l"M(X) , jj 1l"M(Y)- Inciden
tally, the associativity of this product amounts to the identity [k+mh +[[k+mh+uh == 
[m+uh + [[k+[m+uh+uh· 
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Next, observe that combining sequences (6.19) and (2.8) together with the natural right 
coactions (ei I-t LjE{I,2} ej ® Mji , i E {I, 2}) on A( ( 2), A( C~), and M(3, C) respectively, 
one can obtain the following commutative diagram of algebras and algebra homomorphisms: 

A( ( 2
) ~ A( C2

) ® A(SL(2, C)) 
IT 1 llr®Fr 

A(C;) ~ A(C;) ® A(SLq(2, C)) (6.21) 
'Jr....! 1 11rM ®1rF • 

iVI(3, C)~ 1\;/(3, C) ® A(F) . 

Another way to look at A/(3, C) ~ iV/(3, C)®A(F) is to treat AI(3, C) as a 9-dimensionai co
module rather than a comodule algebra. Let us choose the following linear basis of iVI(3, C): 

- - -2 -- -2 -2- --2 -2-2el = 1,e2 = x, e3 = y, e4 = x , es = xy, es = y , e7 = x y, es = xy , e9 = x Y . 

The formula D..Rei = ej®JVji allows us to determine the corepresentation matrix N: 

1 0 0 0 0 0 a2 (b + q2C2 ) a(b2 + q2c- qbf?) 0 
0 a b 0 0 0 0 0 a2 (b2 qc) 
0 c d 0 0 0 0 0 a(q2b2c+ qc2 - b) 
0 0 0 0.2 ab b2 0 0 0 i 
0 0 0 -q2 a.c (1 - be) -q2 bd 0 0 0 (6.22) 

0 0 0 f? cd Jl 0 0 0 

0 0 0 0 0 0 a -b 0 

0 0 0 0 0 0 -c d 0 

0 0 0 0 0 0 0 0 1 


It is clear that N is reducible. The upper right corner terms of N appear to be an effect of 
the finiteness of F. By restricting the comodule M(3, C) respectively to the linear span of 
1, x2y, xfj2 and the linear span of X, fj, x2fj2, ,ve obtain two "exotic" corepresentations of A{F) 
(see [DNS, Section 4] for the dual picture): 

2 (b21 a2(b + q2f?) a(b2+ q2~ - QbC2)) (a .~ a - qc) )
21\~1 = 00 a -_b , N2 = c d a(q2bc ~ qc? - b) .

( -c d 0 0 
(6.23) 

To end ,vith, let us remark that, very much like the Frobenius map Fr, the "Frobenius-like'~ 
map Ir of sequence (6.19) allows us to identify A( ( 2

) with the subalgebra of (id ® 7rF) 0 Pq~ 
coin'variants of A{ OJ;): 

(6.24) 

Indeed, since we can embed A(C;) in A(SLq(2)) as a subcomodule algebra (e.g., x I-t a, 
y I-t b), equality (6.24) follows directly from Proposition 2.4 and the lemma below: 

Lemma 6.1 Let PI and P2 be right H -comodules, and j : PI ~ P2 an injective comodule 
homomorphism. Then P{oH = j-l(P:rH). 
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Proof. Denote by PI : PI -+ PI ® Hand {J2 : P2 -+ P2 ® H the right H -coact ions on PI and 
P2 respectively. Assume now that P E PioH. Then {J2(j(p)) = (j ® id)(PI(P)) j(p) ® 1, i.e., 
P E j-l(p~oH). Conversely, assume that P E j-l(P2oH). Then (j ® id)(p ® 1) = P2(j(P)) = 
(j ® id)(Pl(P)). Consequently, by the injectivity of (j ® id), we have Pl(P) = P ® 1, i.e.: 
pE PiH. 0 

7 Appendix 

vVe o\ve the following result (cf. [B!vI93, Lemma 5.2]) to Peter Schauenburg. 

Theorem 7.1 Let P be a Hopf algebra and I a Hopf ideal of P. Then P is a (PI I)-Galois 
extension for the coaction 6. R := (id ® Ii) 06. : P -+ P ® (PII)~ P ~ PII, if and only if 
1= B+ P, where B := peo(P/!), B+ := B n Kere:. 

Proof. Assume first that I B+P. Taking advantage of (1.5), for any b E B+, pEP, we 
have: 

S(b(I)P(l») ®B b(2)P(2) = S(b(1)P(I»)b(2) ®B P(2) = S(p(l))e:(b) ®B P(2) = O. (7.25) 

Hence "'e have a well-defined map p: P® (PII) -+ P®B P, p(p® [P'hL:= pS(PCI») ®BP(2)' 
It is straightforward to verify that p is the inverse of the canonical map can. Consequently: 
P is a Hopf-Galois extension. 

To show the converse, let us first prove the following: 

Lemma 7.2 Let P, I and B be as above. Then B r;; P is a (PII) -Galois extension if and 
only if (liB 0 (S ® id) 0 6. ) (I) = 0, where liB : P ® P -+ P ® B P is the canonical surjection. 

Proof. If P is a (PI I)-Galois extension of B, then we have the following short exact sequence 
(see the proof of Proposition 1.6 in [H-P96]): 

(7.26) 

Here nIB := Ker (m : B ® B -+ B) and TR = (m ® 1i) 0 (id ® .6.). One can check that 
(TR 0 (S ® id) 06.) (I) = O. Hence, it follows from the exactness of (7.26) that (S ® id) 0 
6.)(1) r;; P(flIB)P. Consequently, (liB 0 (S ® id) 06.)(1) = 0 due to the exactness of the 
sequence 

0-+ P(fl1B)P Y P® P ~ P®B P -+ O. 

To prove the converse, one can proceed as in the considerations preceding this lemma. 0 

Corollary 7.3 Let B r;; P be a (PI I)-Galois extension as above. Then the translation map 
is given by the formula: r([p]J) := S(p(1») ®B P(2) . 

Assume now that P is a (PII)-Galois extension of B. It follows from the above corollary and 
(7.25) that r([B+ Ph) = O. Hence, by the injectivity of r, we have B+ P I. Furthermore, 
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we have a well-defined map can' : P ®B P -+ P ® (P/B+P), P ®B P' H PP(r) ® (P(2)]B+P' 
Indeed, taking again an advantage of (1.5), we obtain 

p ® bp' H pb(l)P(l) ® [(b(2) - £(b(2») )P(2) + €(b(2»)P(2)]B+ P 

- pb(l)P(l) ® £(b(2») [P(2)]B+ P 

- pbp(1) ® [P(2)]B+ P , 

and pb®p' f-7 pbp(r) ® [P(2)]B+P' Reasoning as in the first part of the proof, we can conclude 
that can' is bijective. \Ve have the follo\ving commutative diagram: 

~P®(P/B+P)1id®l 

can 
---+ P ® (P/1) , 

where £([P]B+P) := [Ph. (Recall that \ve have already showed that B+P ~ I, so that £ is 
well defined.) It follows from the commutativity of the diagram that id ® £ is bijective. In 
particular, we have that £ is injective, and therefore I ~ B+P, as needed. • 
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